Identification and Optimization of a Novel Taxanes Extraction Process from Taxus cuspidata Needles by High-Intensity Pulsed Electric Field
Abstract
:1. Introduction
2. Results and Discussion
2.1. Single-Factor Experiments
2.1.1. Electric Field Strength
2.1.2. Pulse Number
2.1.3. Flow Rate
2.1.4. Number of Extractions
2.1.5. Solid–Liquid Ratio
2.1.6. Particle Size
2.1.7. Centrifugal Speed
2.2. Screening of Significant Factors Using PBD
2.3. Construction of RSM Model and Conditions Optimization
2.4. Construction of GA-BP Modeling and Conditions Optimization
2.5. The Extraction Efficacy of PEF Compared with the Conventional Methods
3. Materials and Methods
3.1. Materials and Reagents
3.2. PEF Treatment
3.3. Experimental Design
3.3.1. Single-Factor Experiment
3.3.2. PBD
3.3.3. RSM for Extraction Optimization
3.4. Detection of Taxanes
3.5. Models and Optimization
3.5.1. RSM Model
3.5.2. ANN Conjugated with Genetic Algorithm (GA-BP) Model
3.6. Verification and Comparsion of the Optimized Extraction Conditions
3.7. SEM
3.8. Method of Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Shao, F.; Wilson, I.W.; Qiu, D. The Research Progress of taxol in Taxus. Curr. Pharm. Biotechnol. 2020, 22, 360–366. [Google Scholar] [CrossRef] [PubMed]
- Malik, S.; Cusidó, R.M.; Mirjalili, M.H.; Moyano, E.; Palazón, J.; Bonfill, M. Production of the anticancer drug taxol in Taxus baccata suspension cultures: A review. Process Biochem. 2011, 46, 23–34. [Google Scholar] [CrossRef]
- Gallego-Jara, J.; Lozano-Terol, G.; Sola-Martinez, R.A.; Canovas-Diaz, M.; de Diego Puente, T. A Compressive Review about Taxol®: History and Future Challenges. Molecules 2020, 25, 5986. [Google Scholar] [CrossRef] [PubMed]
- Cusido, R.M.; Onrubia, M.; Sabater-Jara, A.B.; Moyano, E.; Bonfill, M.; Goossens, A.; Angeles Pedreno, M.; Palazon, J. A rational approach to improving the biotechnological production of taxanes in plant cell cultures of Taxus spp. Biotechnol. Adv. 2014, 32, 1157–1167. [Google Scholar] [CrossRef] [PubMed]
- Miele, M.; Mumot, A.M.; Zappa, A.; Romano, P.; Ottaggio, L. Hazel and other sources of paclitaxel and related compounds. Phytochem. Rev. 2012, 11, 211–225. [Google Scholar] [CrossRef]
- Wang, S.J.; Li, C.; Wang, H.J.; Zhong, X.M.; Zhao, J.; Zhou, Y.J. A process optimization study on ultrasonic extraction of paclitaxel from Taxus cuspidata. Prep. Biochem. Biotechnol. 2016, 46, 274–280. [Google Scholar] [CrossRef] [PubMed]
- Fan, X.; Wang, L.; Chang, Y.; An, J.; Zhu, Y.; Yang, Q.; Meng, D.; Fu, Y. Application of green and recyclable menthol-based hydrophobic deep eutectic solvents aqueous for the extraction of main taxanes from Taxus chinensis needles. J. Mol. Liq. 2021, 326, 114970. [Google Scholar] [CrossRef]
- Kim, G.; Kim, J. Enhancement of extraction efficiency of paclitaxel from biomass using ionic liquid-methanol co-solvents under acidic conditions. Process Biochem. 2015, 50, 989–996. [Google Scholar] [CrossRef]
- Hwang, H.J.; Kim, H.J.; Ko, M.J.; Chung, M.S. Recovery of hesperidin and narirutin from waste Citrus unshiu peel using subcritical water extraction aided by pulsed electric field treatment. Food Sci. Biotechnol. 2021, 30, 217–226. [Google Scholar] [CrossRef]
- Yu, Z.; Zhang, Y.; Zhao, X.; Yu, L.; Chen, X.; Wan, H.; He, Y.; Jin, W. Simultaneous optimization of ultrasonic-assisted extraction of Danshen for maximal tanshinone IIA and salvianolic acid B yields and antioxidant activity: A comparative study of the response surface methodology and artificial neural network. Ind. Crop. Prod. 2021, 161, 113199. [Google Scholar] [CrossRef]
- Yamakage, K.; Yamada, T.; Takahashi, K.; Takaki, K.; Komuro, M.; Sasaki, K.; Aoki, H.; Kamagata, J.; Koide, S.; Orikasa, T. Impact of pre-treatment with pulsed electric field on drying rate and changes in spinach quality during hot air drying. Innov. Food Sci. Emerg. 2021, 68, 102615. [Google Scholar] [CrossRef]
- He, G.; Yan, X.; Wang, X.; Wang, Y. Extraction and structural characterization of collagen from fishbone by high intensity pulsed electric fields. J. Food Process Eng. 2019, 42, e13214. [Google Scholar] [CrossRef]
- He, G.; Yin, Y.; Yan, X.; Wang, Y. Semi-Bionic Extraction of Effective Ingredient from Fishbone by High Intensity Pulsed Electric Fields. J. Food Process Eng. 2017, 40, e12392. [Google Scholar] [CrossRef]
- Ranjha, M.; Kanwal, R.; Shafique, B.; Arshad, R.N.; Irfan, S.; Kieliszek, M.; Kowalczewski, P.L.; Irfan, M.; Khalid, M.Z.; Roobab, U.; et al. A Critical Review on Pulsed Electric Field: A Novel Technology for the Extraction of Phytoconstituents. Molecules 2021, 26, 4893. [Google Scholar] [CrossRef] [PubMed]
- Tzima, K.; Brunton, N.P.; Lyng, J.G.; Frontuto, D.; Rai, D.K. The effect of Pulsed Electric Field as a pre-treatment step in Ultrasound Assisted Extraction of phenolic compounds from fresh rosemary and thyme by-products. Innov. Food Sci. Emerg. 2021, 69, 102644. [Google Scholar] [CrossRef]
- Luengo, E.; Álvarez, I.; Raso, J. Improving the pressing extraction of polyphenols of orange peel by pulsed electric fields. Innov. Food Sci. Emerg. 2013, 17, 79–84. [Google Scholar] [CrossRef]
- Bi, Y.; Chi, X.; Zhang, R.; Lu, Y.; Wang, Z.; Dong, Q.; Ding, C.; Yang, R.; Jiang, L. Highly efficient extraction of mulberry anthocyanins in deep eutectic solvents: Insights of degradation kinetics and stability evaluation. Innov. Food Sci. Emerg. 2020, 66, 102512. [Google Scholar] [CrossRef]
- Panda, G.; Vivek, K.; Mishra, S.; Pradhan, R.C. Characterization and Optimization of Process Parameters for Enzyme Assisted Extraction of Kendu (Diospyros Melanoxylon Roxb.) Fruit Juice. Int. J. Fruit Sci. 2021, 21, 299–311. [Google Scholar] [CrossRef]
- Uslu, S. Optimization of diesel engine operating parameters fueled with palm oil-diesel blend: Comparative evaluation between response surface methodology (RSM) and artificial neural network (ANN). Fuel 2020, 276, 117990. [Google Scholar] [CrossRef]
- Pradhan, D.; Abdullah, S.; Pradhan, R.C. Optimization of Pectinase Assisted Extraction of Chironji (Buchanania Lanzan) Fruit Juice Using Response Surface Methodology and Artificial Neural Network. Int. J. Fruit Sci. 2020, 20, S318–S336. [Google Scholar] [CrossRef]
- Zhao, Z.; Sun, W.; Ray, M.B.; Ray, A.K.; Huang, T.; Chen, J. Optimization and modeling of coagulation-flocculation to remove algae and organic matter from surface water by response surface methodology. Front. Env. Sci. Eng. 2019, 13, 111–123. [Google Scholar] [CrossRef]
- Inyang, V.; Lokhat, D. Propionic acid recovery from dilute aqueous solution by emulsion liquid membrane (ELM) technique: Optimization using response surface methodology (RSM) and artificial neural network (ANN) experimental design. Sep. Sci. Technol. 2022, 57, 284–300. [Google Scholar] [CrossRef]
- Bianchin, M.; de Lima, H.H.C.; Monteiro, A.M.; Benassi, M.d.T. Optimization of ultrasonic-assisted extraction of kahweol and cafestol from roasted coffee using response surface methodology. LWT 2020, 117, 108593. [Google Scholar] [CrossRef]
- Yang, Q.; Gan, R.; Zhang, D.; Ge, Y.; Cheng, L.; Corke, H. Optimization of kidney bean antioxidants using RSM & ANN and characterization of antioxidant profile by UPLC-QTOF-MS. LWT 2019, 114, 108321. [Google Scholar] [CrossRef]
- Xu, N.; Sun, Y.H.; Guo, X.L.; Liu, C.; Mao, Q.; Hou, J.M. Optimization of ultrasonic-microwave synergistic extraction of polysaccharides from Morchella conica. J. Food Process. Pres. 2017, 42, e13423. [Google Scholar] [CrossRef]
- Kim, M.; Nam, D.G.; Choe, J.S.; Hwang, K.A.; Choi, A.J. Optimization of pectinase-assisted extraction condition of mulberry (Morus alba L.) fruit using response surface methodology and its effect on anthocyanin synthesis pathway-related metabolites. J. Food Sci. 2021, 86, 3926–3938. [Google Scholar] [CrossRef] [PubMed]
- Dey, S.; Reang, N.M.; Das, P.K.; Deb, M. Comparative study using RSM and ANN modelling for performance-emission prediction of CI engine fuelled with bio-diesohol blends: A fuzzy optimization approach. Fuel 2021, 292, 120356. [Google Scholar] [CrossRef]
- Chouaibi, M.; Rigane, K.; Ferrari, G. Extraction of Citrullus colocynthis L. seed oil by supercritical carbon dioxide process using response surface methodology (RSM) and artificial neural network (ANN) approaches. Ind. Crop. Prod. 2020, 158, 113002. [Google Scholar] [CrossRef]
- Suryawanshi, B.; Mohanty, B. Application of an artificial neural network model for the supercritical fluid extraction of seed oil from Argemone mexicana (L.) seeds. Ind. Crop. Prod. 2018, 123, 64–74. [Google Scholar] [CrossRef]
- Carbone, K.; Amoriello, T.; Iadecola, R. Exploitation of Kiwi Juice Pomace for the Recovery of Natural Antioxidants through Microwave-Assisted Extraction. Agriculture 2020, 10, 435. [Google Scholar] [CrossRef]
- Pradhan, D.; Abdullah, S.; Pradhan, R.C. Chironji (Buchanania lanzan) fruit juice extraction using cellulase enzyme: Modelling and optimization of process by artificial neural network and response surface methodology. J. Food Sci. Technol. 2021, 58, 1051–1060. [Google Scholar] [CrossRef] [PubMed]
- Abdullah, S.; Pradhan, R.C.; Aflah, M.; Mishra, S. Efficiency of tannase enzyme for degradation of tannin from cashew apple juice: Modeling and optimization of process using artificial neural network and response surface methodology. J. Food Process Eng. 2020, 43, 1–10. [Google Scholar] [CrossRef]
- Khawas, P.; Dash, K.K.; Das, A.J.; Deka, S.C. Modeling and optimization of the process parameters in vacuum drying of culinary banana (Musa ABB) slices by application of artificial neural network and genetic algorithm. Drying Technol. 2015, 34, 491–503. [Google Scholar] [CrossRef]
- Paoli, M.; Bighelli, A.; Castola, V.; Tomi, F.; Casanova, J. Quantification of taxanes in a leaf and twig extract from Taxus baccata L. using 13C-NMR spectroscopy. Magn. Reson. Chem. 2013, 51, 756–761. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Gamage, J.; Zhang, Z. Separation of taxanes from Taxus canadensis using dynamic pressurized liquid extraction. Biotechnol. Biopro. E. 2011, 16, 769–776. [Google Scholar] [CrossRef]
- Ruobing, Z.; Nanchen, Z.; Huaiyu, L.; Liming, W. Influencing Factors of Dielectric Breakdown in the PEF Treatment Chamber. IEEE T. Plasma Sci. 2015, 43, 610–616. [Google Scholar] [CrossRef]
- Jayaram, S.H. Sterilization of liquid foods by pulsed electric fields. IEEE Electr. Insul. Mag. 2000, 16, 17–25. [Google Scholar] [CrossRef]
- Lyu, C. Prevention of Bubble Breakdown and Electrolysis in the Pulsed Electric Fields Treatment Chamber Assisted by Ultrasound and Microfluidics. Ph.D. Thesis, Zhejiang University, Hangzhou, China, 2018. [Google Scholar]
- Pataro, G.; Falcone, M.; Donsì, G.; Ferrari, G. Metal release from stainless steel electrodes of a PEF treatment chamber: Effects of electrical parameters and food composition. Innov. Food Sci. Emerg. 2014, 21, 58–65. [Google Scholar] [CrossRef]
- Roodenburg, B.; Morren, J.; Berg, H.E.; de Haan, S.W.H. Metal release in a stainless steel pulsed electric field (PEF) system. Innov. Food Sci. Emerg. 2005, 6, 337–345. [Google Scholar] [CrossRef]
- Meneses, N.; Jaeger, H.; Moritz, J.; Knorr, D. Impact of insulator shape, flow rate and electrical parameters on inactivation of E. coli using a continuous co-linear PEF system. Innov. Food Sci. Emerg. Technol. 2011, 12, 6–12. [Google Scholar] [CrossRef]
- Portillo-Lopez, R.; Morales-Contreras, B.E.; Lozano-Guzman, E.; Basilio-Heredia, J.; Muy-Rangel, M.D.; Ochoa-Martinez, L.A.; Rosas-Flores, W.; Morales-Castro, J. Vegetable oils as green solvents for carotenoid extraction from pumpkin (Cucurbita argyrosperma Huber) byproducts: Optimization of extraction parameters. J. Food Sci. 2021, 86, 3122–3136. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.-Y.; Yan, C.-S.; Cai, J.-M. Optimization of Extraction Parameters for Blueberry Anthocyanins. Curr. Top. Nutraceut. Res. 2019, 17, 388–393. [Google Scholar]
- Pragna, C.H.; Ranjitha Gracy, T.K.; Mahendran, R.; Anandharamakrishnan, C. Effects of Microwave and Cold Plasma Assisted Hydrodistillation on Lemon Peel Oil Extraction. Innov. Food Sci. Emerg. 2019, 15, 1556–3758. [Google Scholar] [CrossRef]
- Shi, M.; Zhang, J.; Liu, C.; Cui, Y.; Li, C.; Liu, Z.; Kang, W. Ionic Liquid-Based Ultrasonic-Assisted Extraction to Analyze Seven Compounds in Psoralea Fructus Coupled with HPLC. Molecules 2019, 24, 1699. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Zhang, M.; Fang, Z. Efficient physical extraction of active constituents from edible fungi and their potential bioactivities: A review. Trends Food Sci. Tech. 2020, 105, 468–482. [Google Scholar] [CrossRef]
- Wen, Q.; Zhang, H.; Zhang, P.; Jiang, X. Improved Artificial Neural Network for Data Analysis and Property Prediction in Slag Glass-Ceramic. J. Am. Ceram. Soc. 2005, 88, 1765–1769. [Google Scholar] [CrossRef]
- Yin, L.; Deng, P.; He, P.; Liu, Y.; Li, L. Optimization of Total Flavonoid Extraction from Lilium brownii Based on Genetic Algorithm-Neural Network and Response Surface Methodology. Food Res. Dev. 2021, 42, 105–113. [Google Scholar] [CrossRef]
No. | A (kV/cm) | B (time) | C (g/mL) | D | E (r/min) | F (mL/min) | G (mesh) | TEF (μg/g) |
---|---|---|---|---|---|---|---|---|
1 | 1 (20) | −1 (1) | −1 (1:50) | −1 (6) | 1 (9000) | −1 (6) | 1 (200) | 620.00 ± 38.24 |
2 | −1 (10) | −1 | −1 | −1 | −1 (7000) | −1 | −1 (120) | 516.67 ± 29.82 |
3 | −1 | −1 | −1 | 1 (10) | −1 | 1 (8) | 1 | 496.64 ± 31.63 |
4 | −1 | 1 (2) | −1 | 1 | 1 | −1 | 1 | 483.35 ± 30.73 |
5 | 1 | 1 | 1 (1:70) | −1 | −1 | −1 | 1 | 623.23 ± 36.55 |
6 | 1 | 1 | −1 | 1 | 1 | 1 | −1 | 556.58 ± 32.72 |
7 | −1 | 1 | 1 | −1 | 1 | 1 | 1 | 543.71 ± 35.95 |
8 | 1 | −1 | 1 | 1 | 1 | −1 | −1 | 540.00 ± 30.45 |
9 | −1 | −1 | 1 | −1 | 1 | 1 | −1 | 513.16 ± 36.84 |
10 | 1 | 1 | −1 | −1 | −1 | 1 | −1 | 580.00 ± 37.16 |
11 | 1 | −1 | 1 | 1 | −1 | 1 | 1 | 576.78 ± 34.57 |
12 | −1 | 1 | 1 | 1 | −1 | −1 | −1 | 490.00 ± 21.28 |
Order | X1 | X2 | X3 | TEF/(μg/g) | ||
---|---|---|---|---|---|---|
Experimental | RSM Predicted | ANN Predicted | ||||
1 | 0 (15) | 1 (10) | −1 (120) | 613.23 ± 38.24 | 598.70 | 613.18 |
2 | −1 (10) | −1 (6) | 0 (160) | 366.68 ± 27.63 | 348.03 | 366.72 |
3 | −1 | 1 | 0 | 513.35 ± 35.94 | 517.92 | 512.91 |
4 | 0 | 0 (8) | 0 | 644.00 ± 49.35 | 653.56 | 651.70 |
5 | 0 | 0 | 0 | 663.52 ± 56.26 | 653.56 | 651.70 |
6 | 1 (20) | 0 | −1 | 553.34 ± 41.54 | 549.22 | 553.41 |
7 | 0 | −1 | 1 (200) | 543.35 ± 39.64 | 557.88 | 542.90 |
8 | 0 | −1 | −1 | 390.00 ± 29.53 | 398.69 | 389.96 |
9 | −1 | 0 | 1 | 426.76 ± 32.63 | 430.88 | 427.06 |
10 | 0 | 0 | 0 | 673.61 ± 56.56 | 653.56 | 651.70 |
11 | 0 | 0 | 0 | 626.68 ± 47.85 | 653.56 | 651.70 |
12 | −1 | 0 | −1 | 380.00 ± 22.92 | 389.96 | 380.08 |
13 | 0 | 0 | 0 | 660.00 ± 54.36 | 653.56 | 651.70 |
14 | 1 | 1 | 0 | 597.00 ± 38.74 | 615.65 | 596.97 |
15 | 0 | 1 | 1 | 556.65 ± 39.24 | 547.96 | 557.50 |
16 | 1 | −1 | 0 | 600.00 ± 42.94 | 595.43 | 600.29 |
17 | 1 | 0 | 1 | 626.70 ± 43.86 | 616.74 | 626.62 |
Methods | Optimum Values | TEF (μg/g) | ||||
---|---|---|---|---|---|---|
X1 | X2 | X3 | Predicted | Experimental | p-Value | |
RSM | 17.419 | 8.435 | 165.041 | 681.282 | 658.15 ± 31.26 | 0.269 |
GA-BP | 15.5265 | 8.2551 | 165.1023 | 703.0565 | 672.13 ± 32.45 | 0.174 |
Methods | Yields (μg/g) | |||||
---|---|---|---|---|---|---|
10-DAB III | Baccatine III | 10-DAT | Cephalomannine | Paclitaxel | TEF | |
Control | 212.39 ± 10.71 | 20.22 ± 1.83 | 50.99 ± 6.09 | 35.96 ± 15.28 | 46.39 ± 12.39 | 365.95 ± 19.68 |
SL | 264.05 ± 15.97 | 36.83 ± 2.04 | 57.30 ± 12.45 | 46.02 ± 15.41 | 85.11 ± 12.83 | 489.31 ± 21.47 |
US | 347.63 ± 17.81 | 45.66 ± 2.25 | 83.28 ± 7.11 | 63.94 ± 16.02 | 86.21 ± 13.10 | 626.72 ± 25.63 |
PEF | 353.85 ± 18.62 | 56.62 ± 7.51 | 90.92 ± 12.24 | 78.97 ± 21.02 | 91.77 ± 15.22 | 672.13 ± 32.45 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Z.; Zhang, Y.; Meng, H.; Li, W.; Wang, S. Identification and Optimization of a Novel Taxanes Extraction Process from Taxus cuspidata Needles by High-Intensity Pulsed Electric Field. Molecules 2022, 27, 3010. https://doi.org/10.3390/molecules27093010
Zhao Z, Zhang Y, Meng H, Li W, Wang S. Identification and Optimization of a Novel Taxanes Extraction Process from Taxus cuspidata Needles by High-Intensity Pulsed Electric Field. Molecules. 2022; 27(9):3010. https://doi.org/10.3390/molecules27093010
Chicago/Turabian StyleZhao, Zirui, Yajing Zhang, Huiwen Meng, Wenlong Li, and Shujie Wang. 2022. "Identification and Optimization of a Novel Taxanes Extraction Process from Taxus cuspidata Needles by High-Intensity Pulsed Electric Field" Molecules 27, no. 9: 3010. https://doi.org/10.3390/molecules27093010
APA StyleZhao, Z., Zhang, Y., Meng, H., Li, W., & Wang, S. (2022). Identification and Optimization of a Novel Taxanes Extraction Process from Taxus cuspidata Needles by High-Intensity Pulsed Electric Field. Molecules, 27(9), 3010. https://doi.org/10.3390/molecules27093010