Effect of Collagen Types, Bacterial Strains and Storage Duration on the Quality of Probiotic Fermented Sheep’s Milk
Abstract
:1. Introduction
2. Results
2.1. Physicochemical Properties of Fermented Milk
2.2. Microbiological Analysis
2.3. Organoleptic Evaluation
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Fermented Milk Production
4.3. Methods of Analyses
4.3.1. Milk Analysis
4.3.2. Physicochemical Properties of Fermented Milk
Acidity and pH Measurement
Evaluation of Color
Syneresis
Texture Profile
4.3.3. Microbiological Analysis
4.3.4. Organoleptic Evaluation
4.4. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Szajnar, K.; Znamirowska, A.; Kuźniar, P. Sensory and textural properties of fermented milk with viability of Lactobacillus rhamnosus and Bifidobacterium animalis ssp. lactis Bb-12 and increased calcium concentration. Int. J. Food Prop. 2020, 23, 582–598. [Google Scholar] [CrossRef] [Green Version]
- Tunick, M.H.; Van Hekken, D.L. Dairy Products and health: Recent Insights. J. Agric. Food Chem. 2015, 63, 9381–9388. [Google Scholar] [CrossRef] [PubMed]
- Kubiszewska, I.; Januszewska, M.; Rybka, J.; Gackowska, L. Bakterie kwasu mlekowego i zdrowie: Czy probiotyki są bezpieczne dla człowieka? Lactic acid bacteria and health: Are probiotics safe for human? Postępy Hig. Med. Dośw. 2014, 68, 1325–1334. (In Polish) [Google Scholar] [CrossRef] [PubMed]
- Kuśmierska, A.; Fol, M. Właściwości immunomodulacyjne i terapeutyczne drobnoustrojów probiotycznych. Immunomodulatory and therapeutic properties of probiotic microorganisms. Probl. Hig. Epidemiol. 2014, 95, 529–540. (In Polish) [Google Scholar]
- Zommiti, M.; Feuilloley, M.G.J.; Connil, N. Update of Probiotics in Human World: A nonstop source of benefactions till the end of time. Microorganisms 2020, 8, 1907. [Google Scholar] [CrossRef]
- Shiby, V.K.; Mishra, H.N. Fermented Milks and Milk Products as Functional Foods—A Review. Crit. Rev. Food Sci. Nutr. 2013, 53, 482–496. [Google Scholar] [CrossRef]
- Gibson, G.R.; Hutkins, R.; Sanders, M.E.; Prescott, S.L.; Reimera, R.A.; Salminen, S.J.; Scott, K.; Stanton, C.; Swanson, K.S.; Cani, P.D. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat. Rev. Gastroenterol. Hepatol. 2017, 14, 491–502. [Google Scholar] [CrossRef] [Green Version]
- Quinto, E.; Jiménez, P.; Caro, I.; Tejero, J.; Mateo, J.; Girbés, T. Probiotic Lactic Acid Bacteria: A Review. Food Nutr. Sci. 2014, 5, 1765–1775. [Google Scholar] [CrossRef] [Green Version]
- Lopez-Santamarina, A.; Lamas, A.; del Carmen Mondragón, A.; Cardelle-Cobas, A.; Regal, P.; Rodriguez-Avila, J.A.; Miranda, J.M.; Franco, C.M.; Cepeda, A. Probiotic Effects against Virus Infections: New Weapons for an Old War. Foods 2021, 10, 130. [Google Scholar] [CrossRef]
- Alvarez-Vieites, E.; López-Santamarina, A.; Miranda, J.M.; Mondragón, A.D.C.; Lamas, A.; Cardelle-Cobas, A.; Nebot, C.; Franco, C.M.; Cepeda, A. Influence of the intestinal microbiota on diabetes management. Curr. Pharm. Biotechnol. 2020, 21, 1603–1615. [Google Scholar] [CrossRef]
- Roca-Saavedra, P.; Mendez-Vilabrille, V.; Miranda, J.M.; Nebot, C.; Cardelle-Cobas, A.; Franco, C.M.; Cepeda, A. Food additives, contaminants and other minor components: Effects on human gut microbiota—A review. J. Physiol. Biochem. 2018, 74, 69–83. [Google Scholar] [CrossRef] [PubMed]
- Ou, Y.C.; Fu, H.C.; Tseng, C.W. The influence of probiotics on genital high-risk human papilloma virus clearance and quality of cervical smear: A randomized placebo-controlled trial. BMC Women Health 2019, 19, 103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ranadheera, R.D.C.S.; Vidanarachchi, J.K.; Rocha, R.S.; Cruz, A.G.; Ajlouni, S. Probiotic Delivery through Fermentation: Dairy vs. Non-Dairy Beverages. Fermentation 2017, 3, 67. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.; Michelle Luo, T.; Jobin, C.; Young, H.A. Gut microbiota and probiotics in colon tumorigenesis. Cancer Lett. 2011, 309, 119–127. [Google Scholar] [CrossRef] [Green Version]
- Szajnar, K.; Pawlos, M.; Znamirowska, A. The Effect of the Addition of Chokeberry Fiber on the Quality of Sheep’s Milk Fermented by Lactobacillus rhamnosus and Lact. Acidophilus. Int. J. Food Sci. 2021, 2021, 7928745. [Google Scholar] [CrossRef]
- Cook, E. Agriculture, Forestry and Fishery Statistics—2020 Edition; Eurostat (European Commission), European Union: Luxembourg, 2020; pp. 57–64. [Google Scholar] [CrossRef]
- Cook, E. Key Figures on the European Food Chain–2021 Edition; Eurostat (European Commission), European Union: Luxembourg, 2021; pp. 36–37. [Google Scholar] [CrossRef]
- FAOSTAT. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 18 December 2021).
- Watkins, P.J.; Jaborek, J.R.; Teng, F.; Day, L.; Castada, H.Z.; Baringer, S.; Wick, M. Branched chain fatty acids in the flavour of sheep and goat milk and meat: A review. Small Rumin. Res. 2021, 200, 106398. [Google Scholar] [CrossRef]
- Pulina, G.; Milán, M.J.; Lavín, M.P.; Theodoridis, A.; Morin, E.; Capote, J.; Thomas, D.L.; Francesconi, A.H.D.; Caja, G. Invited review: Current production trends, farm structures, and economics of the dairy sheep and goat sectors. J. Dairy Sci 2018, 101, 6715–6729. [Google Scholar] [CrossRef] [Green Version]
- Ribeiro, A.C.; Ribeiro, S.D.A. Specialty products made from goat milk. Small Rumin. Res. 2010, 89, 225–233. [Google Scholar] [CrossRef]
- Mituniewicz-Małek, A.; Ziarno, M.; Dmytrów, I.; Balejko, J. Short communication: Effect of the addition of Bifidobacterium monocultures on the physical, chemical, and sensory characteristics of fermented goat milk. J. Dairy Sci. 2017, 100, 6972–6979. [Google Scholar] [CrossRef] [Green Version]
- Teng, F.; Reis, M.G.; Yang, L.; Ma, Y.; Day, L. Structural characteristics of triacylglycerols contribute to the distinct in vitro gastric digestibility of sheep and cow milk fat prior to and after homogenization. Food Res Int. 2020, 130, 108911. [Google Scholar] [CrossRef]
- Kowalczyk, M.; Znamirowska, A.; Buniowska, M. Probiotic Sheep Milk Ice Cream with Inulin and Apple Fiber. Foods 2021, 10, 678. [Google Scholar] [CrossRef] [PubMed]
- Mohapatraa, A.; Shindeb, A.K.; Singh, R. Sheep milk: A pertinent functional food. Small Rumin. Res. 2019, 181, 6–11. [Google Scholar] [CrossRef]
- Proksch, E.; Segger, D.; Degwert, J.; Schunck, M.; Zague, V.; Oesser, S. Oral supplementation of specific collagen peptides has beneficial effects on human skin physiology: A double-blind, placebo-controlled study. Ski. Pharmacol. Physiol. 2014, 27, 47–55. [Google Scholar] [CrossRef] [PubMed]
- Czajka, A.; Kania, E.M.; Genovese, L.; Corbo, A.; Merone, G.; Luci, C.; Sibilla, S. Daily oral supplementation with collagen peptides combined with vitamins and other bioactive compounds improves skin elasticity and has a beneficial effect on joint and general wellbeing. Nutr. Res. 2018, 57, 97–108. [Google Scholar] [CrossRef]
- Praet, S.F.E.; Purdam, C.R.; Welvaert, M.; Vlahovich, N.; Lovell, G.; Burke, L.M.; Gaida, J.E.; Manzanero, S.; Hughes, D.; Waddington, G. Oral supplementation of specific collagen peptides combined with calf-strengthening exercises enhances function and reduces pain in Achilles tendinopathy patients. Nutrients 2019, 11, 76. [Google Scholar] [CrossRef] [Green Version]
- König, D.; Oesser, S.; Scharla, S.; Zdzieblik, D.; Gollhofer, A. Specific Collagen Peptides Improve Bone Mineral Density and Bone Markers in Postmenopausal Women-A Randomized Controlled Study. Nutrients 2018, 10, 97. [Google Scholar] [CrossRef] [Green Version]
- Znamirowska, A.; Szajnar, K.; Pawlos, M. Probiotic Fermented Milk with Collagen. Dairy 2020, 1, 126–134. [Google Scholar] [CrossRef]
- Reilly, D.M.; Lozano, J. Skin collagen through the lifestages: Importance for skin health and beauty. Plast. Aesthet. Res. 2021, 8, 2. [Google Scholar] [CrossRef]
- Varani, J.; Dame, M.K.; Rittie, L.; Fligiel, S.E.; Kang, S.; Fisher, G.J.; Voorhees, J.J. Decreased collagen production in chronologically aged skin: Roles of age-dependent alteration in fibroblast function and defective mechanical stimulation. Am. J. Pathol. 2006, 168, 1861–1868. [Google Scholar] [CrossRef] [Green Version]
- Owczarzy, A.; Kurasiński, R.; Kulig, K.; Rogóż, W.; Szkudlarek, A.; Maciążek-Jurczyk, M. Collagen—Structure, properties and application. Eng. Biomater. 2020, 156, 17–23. [Google Scholar] [CrossRef]
- León-López, A.; Morales-Peñaloza, A.; Martínez-Juárez, V.M.; Vargas-Torres, A.; Zeugolis, D.I.; Aguirre-Álvarez, G. Hydrolyzed Collagen-Sources and Applications. Molecules 2019, 24, 4031. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gustaw, W.; Kozioł, J.; Waśko, A.; Skrzypczak, K.; Michalak-Majewska, M.; Nastaj, M. Physicochemical properties and survival of Lactobacillus casei in fermented milk beverages produced with addition of selected milk protein preparations. Zywnosc-Nauka Technol. Jakosc 2015, 6, 129–139. [Google Scholar] [CrossRef]
- Gajewska, J.; Błaszczyk, M.K. Probiotyczne bakterie fermentacji mlekowej (LAB). Probiotic lactic acid bacteria (LAB). Postep. Mikrobiol. 2012, 51, 55–65. (In Polish) [Google Scholar]
- Wu, S.C.; Wang, F.J.; Pan, C.L. Growth and survival of lactic acid bacteria during the fermentation and storage of seaweed oligosaccharides solution. J. Mar. Sci. Technol. 2007, 15, 104–114. [Google Scholar] [CrossRef]
- Śliżewska, K.; Chlebicz-Wójcik, A. Growth Kinetics of Probiotic Lactobacillus Strains in the Alternative, Cost-Efficient Semi-Solid Fermentation Medium. Biology 2020, 9, 423. [Google Scholar] [CrossRef]
- Chr. Hansen: Our Probiotic Strains. Available online: https://www.chr-hansen.com/en/human-health-and-probiotics/our-probiotic-strains/l-casei (accessed on 4 January 2022).
- Yerlikaya, O.; Ender, G.; Torunoglu, F.A.; Akbulut, N. Production of probiotic milk drink containing Lactobacillus acidophilus, Bifidobacterium animalis subsp. lactis and Lactobacillus casei. Agrofood Ind. 2013, 24, 49–52. [Google Scholar]
- Da Mata Rigoto, J.; Ribeiro, T.H.S.; Stevanato, N.; Sampaio, A.R.; Ruiz, S.P.; Bolanho, B.C. Effect of açaí pulp, cheese whey, and hydrolysate collagen on the characteristics of dairy beverages containing probiotic bacteria. J. Food Process. Eng. 2019, 42, e12953. [Google Scholar] [CrossRef] [Green Version]
- Vianna, F.S.; Canto, A.C.V.C.S.; Costa-Lima, B.R.C.; Salim, A.P.A.A.; Costa, M.P.; Balthazar, C.F.; Franco, R.M.; Conte-Junior, C.A.; Silva, A.C.O. Development of new probiotic yoghurt with a mixture of cow and sheep milk: Effects on physicochemical, textural and sensory analysis. Small Rumin. Res. 2017, 149, 154–162. [Google Scholar] [CrossRef]
- Goto, H. Fermented Milk Containing Collagen and Method for Producing the Same. J. Patent 6194304 B2, 6 September 2017. Available online: https://worldwide.espacenet.com/patent/search/family/049160699/publication/JP6194304B2?q=pn%3DJP6194304B2 and https://patents.google.com/patent/JP6194304B2/en (accessed on 2 January 2022).
- Shori, A.B.; Baba, A.S.; Chuah, P.F. The effects of fish collagen on the proteolysis of milk proteins, ACE inhibitory activity and sensory evaluation of plain- and Allium sativum-yogurt. J. Taiwan Inst. Chem. Eng. 2013, 44, 701–706. [Google Scholar] [CrossRef]
- Lourens-Hattingh, A.; Viljoen, B.C. Yogurt as probiotic carrier food. Int. Dairy J. 2001, 11, 1–17. [Google Scholar] [CrossRef]
- Kavaz, A.; Bakirci, I. Influence of inulin and demineralised whey powder addition on the organic acid profiles of probiotic yoghurts. Int. J. Dairy Technol. 2014, 67, 577–583. [Google Scholar] [CrossRef]
- Panesar, P.S.; Shinde, C. Effect of Storage on Syneresis, pH, Lactobacillus acidophilus Count, Bifidobacterium bifidum Count of Aloe vera Fortified Probiotic Yoghurt. Curr. Res. Dairy Sci. 2012, 4, 17–23. [Google Scholar] [CrossRef]
- Ocak, E.; Köse, Ş. The effects of fortifying milk with Cu, Fe and Zn minerals on the production and texture of yoghurt. J. Food Agric. 2010, 8, 122–125. [Google Scholar]
- Gerhardt, Â.; Monteiro, B.W.; Gennari, A.; Lehn, D.N.; De Souza, C.F.V. Características físico-químicas e sensoriais de bebidas lácteas fermentadas utilizando soro de ricota e colágeno hidrolisado. Physicochemical and sensory characteristics of fermented dairy drink using ricotta cheese whey and hydrolyzed collagen. Rev. Inst. Laticinios Candido Tostes 2013, 68, 41–50. [Google Scholar] [CrossRef]
- Tribst, A.A.L.; Falcade, L.T.P.; Carvalho, N.S.; de Castro Leite Júnior, B.R.; de Oliveira, M.M. Using stirring and homogenization to improve the fermentation profile and physicochemical characteristics of set yogurt from fresh, refrigerated and frozen/thawed sheep milk. LWT Food Sci. Technol. 2020, 130, 109557. [Google Scholar] [CrossRef]
- Khorshidi, M.; Heshmati, A.; Taheri, M.; Karami, M.; Mahjub, R. Effect of whey protein- and xanthan-based coating on the viability of microencapsulated Lactobacillus acidophilus and physiochemical, textural, and sensorial properties of yogurt. Food Sci. Nutr. 2021, 9, 3942–3953. [Google Scholar] [CrossRef]
- Zhang, W.; Yu, D.; Sun, Z.; Wu, R.; Chen, X.; Chen, W.; Meng, H.; Hu, S.; Zhang, H. Complete genome sequence of Lactobacillus casei Zhang, a new probiotic strain isolated from traditional homemade koumiss in Inner Mongolia, China. J. Bacteriol. 2010, 192, 5268–5269. [Google Scholar] [CrossRef] [Green Version]
- Badel, S.; Bernardi, T.; Michaud, P. New perspectives for Lactobacilli exopolysaccharides. Biotechnol. Adv. 2011, 29, 54–66. [Google Scholar] [CrossRef]
- Ruas-Madiedo, P.; de los Reyes-Gavilán, C.G. Invited review: Methods for the screening, isolation, and characterization of exopolysaccharides produced by lactic acid bacteria. J. Dairy Sci. 2005, 88, 843–856. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hassan, A.N.; Frank, J.F.; Qvist, K.B. Direct observation of bacterial exopolysaccharides in dairy products using confocal scanning laser microscopy. J. Dairy Sci. 2002, 85, 1705–1708. [Google Scholar] [CrossRef]
- Li, C.; Song, J.; Kwok, L.; Wang, J.; Dong, Y.; Yu, H.; Hou, O.; Zhang, H.; Chen, Y. Influence of Lactobacillus plantarum on yogurt fermentation properties and subsequent changes during post fermentation storage. J. Dairy Sci. 2017, 100, 2512–2525. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nguyen, H.T.H.; Ong, L.; Lefevre, C.; Kentish, S.E.; Gras, S.L. The microstructure and physicochemical properties of probiotic buffalo yoghurt during fermentation and storage: A comparison with bovine yoghurt. Food Bioproc. Technol. 2014, 7, 937–953. [Google Scholar] [CrossRef]
- Mani-López, E.; Palou, E.; López-Malo, A. Probiotic viability and storage stability of yogurts and fermented milks prepared with several mixtures of lactic acid bacteria. J. Dairy Sci. 2014, 97, 2578–2590. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nyanzi, R.; Jooste, P.J.; Buys, E.M. Invited review: Probiotic yogurt quality criteria, regulatory framework, clinical evidence, and analytical aspects. J. Dairy Sci. 2021, 104, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Peng, C.; Wang, J.; Guo, S.; Sun, Z.; Zhang, H. Mesopic fermentation contributes more to the formation of important flavor compounds and increased growth of Lactobacillus casei Zhang than does high temperature during milk fermentation and storage. J. Dairy Sci. 2022. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H. Volatile flavor compounds in yogurt: A review. Crit. Rev. Food Sci. Nutr. 2010, 50, 938–950. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.C.; Guo, Z.; Qi-Mu, G.S.D.; Zang, H.P.; Meng-He, B.L.G. Effects of probiotic Lactobacillus casei Zhang on sensory properties of set fermented milk. Zhongguo Nong Ye Ke Xue 2013, 46, 575–585. [Google Scholar]
- Comasio, A.; Harth, H.; Weckx, S.; De Vuyst, L. The addition of citrate stimulates the production of acetoin and diacetyl by a citrate-positive Lactobacillus crustorum strain during wheat sourdough fermentation. Int. J. Food Microbiol. 2019, 289, 88–105. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Li, X.; Zhang, G.; Sadiq, F.A.; Simal-Gandara, J.; Xiao, J.; Sang, Y. Probiotics in the dairy industry-Advances and opportunities. Compr. Rev. Food Sci. Food Saf. 2021, 20, 3937–3982. [Google Scholar] [CrossRef]
- Soomro, A.H.; Dars, A.G.; Sheikh, S.A.; Khaskheli, G.S.; Magsi, A.S.; Panhwar, A.A.; Talpur, A. Effect of milk source and stabilizers on the compositional and sensorial quality of yoghurt. Pure Appl. Biol. 2016, 5, 1316–1322. [Google Scholar] [CrossRef]
- Karim, A.A.; Bhat, R. Gelatin alternatives for the food industry: Recent developments, challenges and prospects. Trends Food Sci Technol. 2008, 19, 644–656. [Google Scholar] [CrossRef]
- Shori, A.B.; Yong, Y.S.; Baba, A.S. Effects of herbal yogurt with fish collagen on bioactive peptides with angiotensin-I converting enzyme inhibitory activity. Food Sci. Technol. 2020, 41, 902–907. [Google Scholar] [CrossRef]
- Wang, W.; Wu, Z.; Dai, Z.; Yang, Y.; Wang, J.; Wu, G. Glycine metabolism in animals and humans: Implications for nutrition and health. Amino Acids. 2013, 45, 463–477. [Google Scholar] [CrossRef] [PubMed]
- Razak, M.A.; Begum, P.S.; Viswanath, B.; Rajagopal, S. Multifarious beneficial effect of nonessential amino acid, glycine: A review. Oxid. Med. Cell. Longev. 2017, 2017, 1716701. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Zhang, M. Non-volatile taste active compounds in the meat of Chinese mitten crab (Eriocheir sinensis). Food Chem. 2007, 104, 1200–1205. [Google Scholar] [CrossRef]
- Delompré, T.; Guichard, E.; Briand, L.; Salles, C. Taste Perception of Nutrients Found in Nutritional Supplements: A Review. Nutrients 2019, 11, 2050. [Google Scholar] [CrossRef] [Green Version]
- Ramasubramanian, L.; Webb, R.; Arcy, R.B.; Deeth, H. Characteristic of calcium-milk coagulum. J. Food Eng. 2013, 114, 147–152. [Google Scholar] [CrossRef]
- Commission Regulation (EC) No 1662/2006 of 6 November 2006 amending Regulation (EC) No 853/2004 of the European Parliament and of the Council laying down specific hygiene rules for food of animal origin (Text with EEA relevance). Off. J. Eur. Union 2006, L320, 1–10. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32006R1662&from=EN (accessed on 26 May 2021).
- Ratu, R.N.; Usturoi, M.G.; Avarvarei, B.V. Quality of Raw Cow Milk Utilised in Cheese Processing. Sci. Pap. Anim. Sci. Ser. Lucr. Stiintifice Ser. Zooteh. 2015, 63, 128–130. [Google Scholar]
- Szajnar, K.; Znamirowska, A.; Kalicka, D.; Kuźniar, P. Fortification of yoghurts with various magnesium compounds. J. Elem. 2017, 22, 559–568. [Google Scholar] [CrossRef]
- Jemaa, M.B.; Falleh, H.; Neves, M.A.; Isoda, H.; Nakajima, M.; Ksouri, R. Quality preservation of deliberately contaminated milk using thyme free and nanoemulsified essential oils. Food Chem. 2017, 217, 726–734. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lima, K.G.D.; Kruger, M.F.; Behrens, J.; Destro, M.T.; Landgraf, M.; Franco, B.D.G.M. Evaluation of culture media for enumeration of Lactobacillus acidophilus, Lactobacillus casei and Bifidobacterium animalis in the presence of Lactobacillus delbrueckii subsp. Bulgaricus and Streptococcus thermophilus. LWT Food Sci. Technol. 2009, 42, 491–495. [Google Scholar] [CrossRef]
- Santillan-Urquiza, E.; Mendez-Rojas, M.; Valez-Ruiz, J.F. Fortification of yogurt with nano and micro sized calcium, iron and zinc, effect on the physicochemical and rheological properties. LWT Food Sci. Technol. 2017, 80, 462–469. [Google Scholar] [CrossRef]
- Znamirowska, A.; Szajnar, K.; Pawlos, M. Organic magnesium salts fortification in fermented goat’s milk. Int. J. Food Prop. 2019, 22, 1615–1625. [Google Scholar] [CrossRef] [Green Version]
- PN-ISO 22935-2:2013-07; In Milk and Milk Products—Sensory Analysis—Part. 2: Recommended Methods for Sensory Evaluation. Polish Committee for Standardization: Warsaw, Poland, 2013. (In Polish)
- Znamirowska, A.; Szajnar, K.; Pawlos, M. Effect of Vitamin C Source on Its Stability during Storage and the Properties of Milk Fermented by Lactobacillus rhamnosus. Molecules 2021, 26, 6187. [Google Scholar] [CrossRef]
Properties | Storage Time (Days) | LC | LC1.5W | LC3.0W | LC1.5H | LC3.0H | |
---|---|---|---|---|---|---|---|
pH | 1 | 4.45 a ± 0.09 | 4.56 a ± 0.02 | 4.54 a ± 0.01 | 4.52 a ± 0.04 | 4.60 b ± 0.01 | |
21 | 4.11 a ± 0.00 | 4.11 a ± 0.01 | 4.10 a ± 0.01 | 4.11 a ± 0.01 | 4.13 b ± 0.01 | ||
Lactic acid, g L−1 | 1 | 1.21 a ± 0.01 | 1.26 b ± 0.20 | 1.27 b ± 0.04 | 1.20 a ± 0.01 | 1.30 b ± 0.04 | |
21 | 1.22 a ± 0.01 | 1.56 b ± 0.02 | 1.58 b ± 0.03 | 1.53 b ± 0.08 | 1.58 b ± 0.01 | ||
Syneresis, % | 1 | 25.74 b ± 0.61 | 26.45 b ± 0.80 | 25.73 b ± 0.51 | 9.82 a ± 1.52 | 8.00 a ± 1.23 | |
21 | 22.61 c ± 1.08 | 25.62 d ± 0.63 | 27.59 d ± 1.64 | 13.52 b ± 1.49 | 5.97 a ± 1.21 | ||
Color | L* | 1 | 93.70 a ± 1.81 | 93.19 a ± 2.03 | 92.29 a ± 0.98 | 93.12 a ± 1.00 | 93.26 a ± 0.77 |
21 | 93.04 b ± 0.72 | 92.02 b ± 0.77 | 90.90 a ± 0.50 | 92.68 b ± 0.29 | 92.82 b ± 0.73 | ||
a* | 1 | −2.50 a ± 0.70 | −2.13 a ± 0.07 | −1.67 b ± 0.14 | −1.47 bc ± 0.19 | −1.30 c ± 0.25 | |
21 | −2.53 c ± 0.14 | −2.27 c ± 0.21 | −1.93 a ± 0.14 | −2.07 b ± 0.09 | −2.04 b ± 0.22 | ||
b* | 1 | 11.12 c ± 0.37 | 9.59 b ± 1.12 | 8.62 a ± 0.58 | 11.51 c ± 0.35 | 11.42 c ± 0.10 | |
21 | 11.73 b ± 0.53 | 12.29 bc ± 0.26 | 12.86 c ± 0.30 | 10.44 a ± 0.15 | 10.31 a ± 0.35 | ||
C | 1 | 11.42 c ± 0.25 | 9.83 b ± 1.09 | 8.78 a ± 0.59 | 11.61 c ± 0.37 | 11.48 c ± 0.09 | |
21 | 11.99 b ± 0.49 | 12.50 bc ± 0.29 | 13.01 c ± 0.28 | 10.64 a ± 0.15 | 10.51 a ± 0.37 | ||
h0 | 1 | 102.73 b ± 3.76 | 102.66 b ± 1.30 | 100.96 b ± 0.26 | 97.29 a ± 0.82 | 96.61 a ± 1.34 | |
21 | 102.16 c ± 1.23 | 100.45 b ± 0.79 | 98.55 a ± 0.83 | 101.22 c ± 0.48 | 101.15 c ± 1.00 | ||
Hardness, N | 1 | 0.58 a ± 0.10 | 0.68 a ± 0.02 | 0.75 b ± 0.01 | 1.28 c ± 0.05 | 1.35 c ± 0.05 | |
21 | 1.01 a ± 0.10 | 1.13 a ± 0.19 | 1.13 a ± 0.14 | 1.78 b ± 0.02 | 2.05 b ± 0.18 | ||
Cohesiveness | 1 | 0.84 b ± 0.10 | 0.87 b ± 0.02 | 0.82 b ± 0.01 | 0.53 a ± 0.03 | 0.51 a ± 0.03 | |
21 | 0.73 b ± 0.06 | 0.81 b ± 0.06 | 0.76 b ± 0.02 | 0.48 a ± 0.03 | 0.46 a ± 0.03 | ||
Springiness, mm | 1 | 14.08 a ± 1.19 | 14.57 a ± 0.43 | 14.53 a ± 0.09 | 14.42 a ± 0.44 | 15.36 a ± 0.80 | |
21 | 14.14 a ± 0.94 | 14.24 a ± 0.83 | 14.12 a ± 0.44 | 14.69 a ± 0.44 | 15.45 a ± 0.20 |
Properties | Storage Time (Days) | LA | LA1.5W | LA3.0W | LA1.5H | LA3.0 H | |
---|---|---|---|---|---|---|---|
pH | 1 | 4.28 a ± 0.02 | 4.35 b ± 0.01 | 4.44 c ± 0.00 | 4.49 d ± 0.02 | 4.74 e ± 0.01 | |
21 | 4.23 a ± 0.01 | 4.30 b ± 0.01 | 4.39 c ± 0.03 | 4.52 d ± 0.01 | 4.77 e ± 0.03 | ||
Lactic acid, g L−1 | 1 | 1.29 c ± 0.00 | 1.31 d ± 0.01 | 1.34 e ± 0.01 | 1.23 b ± 0.01 | 1.19 a ± 0.01 | |
21 | 1.48 d ± 0.01 | 1.37 c ± 0.03 | 1.44 d ± 0.03 | 1.31 b ± 0.01 | 1.22 a ± 0.01 | ||
Syneresis, % | 1 | 30.12 c ± 0.61 | 32.21 d ± 0.39 | 34.07 d ± 1.00 | 27.97 b ± 0.66 | 23.33 a ± 1.31 | |
21 | 30.80 c ± 0.21 | 31.16 c ± 0.67 | 31.85 c ± 0.53 | 23.94 b ± 0.61 | 21.19 a ± 0.22 | ||
Color | L* | 1 | 94.46 c ± 0.35 | 91.69 a ± 0.45 | 90.75 a ± 0.90 | 92.22 b ± 0.44 | 92.48 b ± 0.65 |
21 | 93.99 c ± 0.43 | 90.88 a ± 0.98 | 89.51 a ± 0.95 | 91.60 ab ± 1.15 | 92.01 b ± 0.33 | ||
a* | 1 | −2.20 a ± 0.06 | −2.33 b ± 0.05 | −2.13 a ± 0.06 | −2.15 a ± 0.09 | −2.14 a ± 0.20 | |
21 | −1.94 b ± 0.07 | −1.94 b ± 0.11 | −2.04 a ± 0.11 | −2.07 a ± 0.18 | −1.86 c ± 0.08 | ||
b* | 1 | 10.61 a ± 0.06 | 12.08 b ± 0.58 | 12.33 c ± 0.17 | 11.59 b ± 0.26 | 11.08 a ± 0.40 | |
21 | 11.45 a ± 0.08 | 12.04 ab ± 0.36 | 13.06 b ± 0.70 | 11.90 a ± 0.45 | 11.45 a ± 0.16 | ||
C | 1 | 10.84 a ± 0.06 | 12.30 c ± 0.27 | 12.51 c ± 0.16 | 11.79 b ± 0.25 | 11.28 b ± 0.36 | |
21 | 11.62 a ± 0.08 | 12.20 b ± 0.35 | 13.23 c ± 0.68 | 12.06 b ± 0.42 | 11.68 a ± 0.51 | ||
h0 | 1 | 101.70 b ± 0.37 | 100.95 b ± 0.52 | 99.79 a ± 0.36 | 100.51 b ± 0.55 | 100.95 b ± 1.36 | |
21 | 99.63 b ± 0.39 | 99.20 ab ± 0.73 | 98.88 a ± 0.67 | 99.66 b ± 0.58 | 99.30 ab ± 0.49 | ||
Hardness, N | 1 | 1.03 c ± 0.01 | 0.84 b ± 0.05 | 0.84 b ± 0.03 | 0.76 a ± 0.04 | 0.83 b ± 0.15 | |
21 | 1.31 d ± 0.04 | 1.00 c ± 0.11 | 0.65 a ± 0.21 | 0.88 bc ± 0.03 | 0.82 b ± 0.03 | ||
Cohesiveness | 1 | 0.52 a ± 0.02 | 0.86 c ± 0.02 | 0.94 d ± 0.04 | 0.52 ab ± 0.06 | 0.48 a ± 0.04 | |
21 | 0.43 a ± 0.01 | 0.84 c ± 0.01 | 1.01 d ± 0.06 | 0.57 ab ± 0.03 | 0.47 a ± 0.07 | ||
Springiness, mm | 1 | 14.75 b ± 0.07 | 14.75 b ± 0.69 | 14.56 b ± 0.33 | 13.84 ab ± 0.20 | 12.48 a ± 0.72 | |
21 | 12.83 a ± 0.83 | 13.79 b ± 0.34 | 14.64 c ± 0.42 | 13.59 ab ± 0.19 | 12.72 a ± 0.62 |
Properties | Storage Time (days) | LP | LP1.5W | LP3.0W | LP1.5H | LP3.0H | |
---|---|---|---|---|---|---|---|
pH | 1 | 4.15 a ± 0.02 | 4.42 b ± 0.01 | 4.54 c ± 0.01 | 4.53 c ± 0.02 | 4.59 d ± 0.01 | |
21 | 3.85 a ± 0.01 | 3.94 b ± 0.03 | 4.05 c ± 0.02 | 3.99 b ± 0.04 | 4.09 c ± 0.01 | ||
Lactic acid, g L−1 | 1 | 1.40 c ± 0.01 | 1.29 a ± 0.01 | 1.40 c ± 0.01 | 1.28 a ± 0.01 | 1.37 b ± 0.01 | |
21 | 1.64 a ± 0.02 | 1.68 b ± 0.02 | 1.74 c ± 0.04 | 1.72 c ± 0.02 | 1.68 b ± 0.02 | ||
Syneresis, % | 1 | 17.93 d ± 0.55 | 14.79 c ± 1.17 | 8.66 a ± 1.50 | 12.77 b ± 1.67 | 11.91 b ± 0.43 | |
21 | 15.71 c ± 1.19 | 15.54 c ± 1.99 | 7.57 a ± 1.46 | 11.70 b ± 1.85 | 11.56 b ± 1.72 | ||
Color | L* | 1 | 94.36 b ± 0.22 | 93.71 a ± 0.34 | 93.77 a ± 0.28 | 92.92 a ± 0.58 | 93.26 a ± 0.23 |
21 | 93.42 b ± 0.20 | 92.56 a ± 0.22 | 92.84 a ± 0.39 | 92.81 a ± 0.33 | 92.59 a ± 0.98 | ||
a* | 1 | −0.87 b ± 0.05 | −0.81 ab ± 0.03 | −0.82 ab ± 0.11 | −0.75 a ± 0.05 | −0.86 b ± 0.05 | |
21 | −1.98 a ± 0.05 | −2.01 a ± 0.12 | −1.96 a ± 0.19 | −2.09 a ± 0.16 | −2.06 a ± 0.12 | ||
b* | 1 | 10.97 a ± 0.08 | 11.04 a ± 0.09 | 11.06 a ± 0.03 | 11.23 b ± 0.04 | 11.20 b ± 0.04 | |
21 | 11.71 a ± 0.17 | 11.74 a ± 0.18 | 11.39 a ± 0.19 | 12.04 b ± 0.33 | 12.31 b ± 0.46 | ||
C | 1 | 11.00 a ± 0.08 | 11.23 ab ± 0.17 | 11.10 a ± 0.10 | 11.26 b ± 0.04 | 11.24 b ± 0.03 | |
21 | 11.88 a ± 0.17 | 11.91 a ± 0.19 | 11.56 a ± 0.21 | 12.23 b ± 0.13 | 12.66 b ± 0.21 | ||
h0 | 1 | 94.55 b ± 0.07 | 94.94 b ± 0.24 | 94.24 a ± 0.74 | 93.82 a ± 0.29 | 94.23 a ± 0.03 | |
21 | 99.57 b ± 0.25 | 99.70 b ± 0.48 | 99.84 b ± 0.57 | 99.90 b ± 0.79 | 99.04 a ± 0.03 | ||
Hardness, N | 1 | 1.52 b ± 0.14 | 1.04 b ± 0.04 | 0.93 a ± 0.03 | 0.87 a ± 0.05 | 1.03 ab ± 0.12 | |
21 | 1.87 d ± 0.03 | 1.46 c ± 0.04 | 1.13 b ± 0.01 | 1.07 a ± 0.03 | 1.36 c ± 0.07 | ||
Cohesiveness | 1 | 0.47 a ± 0.02 | 0.58 b ± 0.02 | 0.60 b ± 0.07 | 0.58 b ± 0.01 | 0.62 b ± 0.06 | |
21 | 0.50 a ± 0.02 | 0.49 a ± 0.05 | 0.59 b ± 0.03 | 0.58 b ± 0.03 | 0.50 ab ± 0.08 | ||
Springiness, mm | 1 | 14.62 ab ± 0.16 | 14.80 b ± 0.13 | 14.38 a ± 0.31 | 14.51 a ± 0.14 | 15.21 b ± 0.37 | |
21 | 15.03 a ± 0.17 | 14.81 a ± 0.84 | 15.14 a ± 0.47 | 14.41 a ± 0.56 | 14.36 a ± 0.88 |
Properties | Storage Time (Days) | LR | LR1.5W | LR3.0W | LR1.5H | LR3.0H | |
---|---|---|---|---|---|---|---|
pH | 1 | 4.27 a ± 0.03 | 4.52 b ± 0.02 | 4.58 c ± 0.04 | 4.59 c ± 0.04 | 4.64 c ± 0.02 | |
21 | 4.11 a ± 0.05 | 4.16 a ± 0.03 | 4.40 c ± 0.06 | 4.35 bc ± 0.05 | 4.31 b ± 0.02 | ||
Lactic acid, g L−1 | 1 | 1.35 c ± 0.02 | 1.27 b ± 0.01 | 1.30 bc ± 0.02 | 1.22 a ± 0.05 | 1.31 c ± 0.02 | |
21 | 1.46 b ± 0.04 | 1.45 b ± 0.07 | 1.31 a ± 0.02 | 1.30 a ± 0.05 | 1.42 b ± 0.01 | ||
Syneresis, % | 1 | 29.80 d ± 0.35 | 26.17 c ± 0.72 | 13.02 a ± 0.41 | 16.46 b ± 1.23 | 12.38 a ± 1.36 | |
21 | 21.45 d ± 0.27 | 18.46 c ± 0.70 | 16.14 b ± 0.43 | 16.74 b ± 1.01 | 5.19 a ± 1.13 | ||
Color | L* | 1 | 93.43 b ± 0.84 | 91.11 a ± 0.86 | 91.31 a ± 0.67 | 90.54 a ± 4.84 | 92.58 b ± 0.48 |
21 | 92.88 b ± 0.28 | 91.10 a ± 1.07 | 90.99 a ± 0.34 | 90.38 a ± 0.44 | 92.18 a ± 0.92 | ||
a* | 1 | −0.45 b ± 0.24 | −0.38 b ± 0.50 | −0.68 b ± 0.13 | −0.90 a ± 0.34 | −1.02 a ± 0.44 | |
21 | −2.00 a ± 0.13 | −2.00 a ± 0.15 | −1.98 a ± 0.16 | −1.89 a ± 0.21 | −2.08 a ± 0.15 | ||
b* | 1 | 10.75 a ± 0.53 | 11.54 ab ± 0.47 | 12.17 b ± 0.24 | 12.08 b ± 0.21 | 12.05 b ± 0.82 | |
21 | 11.97 b ± 0.15 | 12.32 b ± 0.37 | 12.20 b ± 0.22 | 12.09 b ± 0.31 | 12.21 a ± 0.25 | ||
C | 1 | 10.77 a ± 0.52 | 11.55 ab ± 0.48 | 12.19 b ± 0.24 | 12.12 b ± 0.21 | 12.11 b± 0.79 | |
21 | 12.14 a ± 0.14 | 12.19 a ± 0.35 | 12.26 a ± 0.23 | 12.13 a ± 0.31 | 12.19 a ± 0.23 | ||
h0 | 1 | 92.43 b ± 1.36 | 88.52 a ± 1.72 | 86.79 a ± 0.63 | 85.70 a ± 1.50 | 94.98 b ± 2.35 | |
21 | 99.42 a ± 0.63 | 99.22 a ± 0.87 | 99.30 a ± 0.65 | 98.97 a ± 1.03 | 99.74 b ± 0.97 | ||
Hardness, N | 1 | 1.40 c ± 0.02 | 0.94 b ± 0.04 | 0.85 a ± 0.01 | 0.93 b ± 0.01 | 1.40 c ± 0.06 | |
21 | 1.54 d ± 0.08 | 1.19 c ± 0.01 | 1.01 a ± 0.01 | 1.11 b ± 0.02 | 1.82 e ± 0.06 | ||
Cohesiveness | 1 | 0.47 a ± 0.01 | 0.59 b ± 0.02 | 0.68 c ± 0.07 | 0.59 b ± 0.08 | 0.50 a ± 0.03 | |
21 | 0.44 a ± 0.06 | 0.59 b ± 0.03 | 0.66 c ± 0.07 | 0.64 c ± 0.02 | 0.49 a ± 0.05 | ||
Springiness, mm | 1 | 13.90 a ± 0.10 | 14.20 a ± 0.12 | 13.80 a ± 0.41 | 14.35 a ± 0.54 | 14.34 a ± 0.53 | |
21 | 13.99 a ± 0.49 | 14.20 a ± 0.58 | 14.16 a ± 0.52 | 14.63 a ± 0.23 | 14.13 a ± 0.37 |
Probiotic Strains; p-Values | Storage Time; p-Values | Type of Collagen; p-Values | Probiotic Strains * Storage Time; p-Values | Probiotic Strains * Type of Collagen; p-Values | Storage Time * Type of Collagen; p-Values | Probiotic Strains * Storage Time * Type of Collagen; p-Values | |
---|---|---|---|---|---|---|---|
pH | ↑0.0000 | ↑0.0000 | ↑0.0000 | ↑0.0000 | ↑0.0000 | ↑0.0421 | ↑0.0230 |
Lactic acid | ↑0.0052 | ↑0.0037 | ↑0.0039 | ↑0.0007 | ↑0.0012 | ↑0.0014 | ↑0.0030 |
Syneresis | ↑0.0000 | n.s.0.1558 | ↑0.0000 | ↑0.0026 | ↑0.0000 | ↑0.0472 | ↑0.0039 |
L* | ↑0.0011 | ↑0.0095 | ↑0.0000 | ↑0.0000 | ↑0.0000 | n.s.0.8062 | n.s.0.2964 |
a* | ↑0.0000 | ↑0.0000 | ↑0.0036 | ↑0.0000 | ↑0.0000 | n.s.0.4772 | ↑0.0000 |
b* | ↑0.0000 | ↑0.0000 | ↑0.0001 | ↑0.0017 | ↑0.0000 | ↑0.0000 | ↑0.0000 |
C | ↑0.0000 | ↑0.0000 | ↑0.0002 | ↑0.0018 | ↑0.0000 | ↑0.0000 | ↑0.0000 |
h0 | ↑0.0000 | ↑0.0000 | ↑0.0000 | ↑0.0000 | ↑0.0000 | ↑0.0008 | ↑0.0000 |
Hardness | ↑0.0000 | ↑0.0000 | ↑0.0000 | ↑0.0059 | ↑0.0000 | ↑0.0063 | ↑0.0041 |
Cohesiveness | ↑0.0000 | ↑0.0144 | ↑0.0000 | n.s.0.1459 | ↑0.0000 | n.s.0.6091 | n.s.0.3344 |
Springiness | ↑0.0000 | n.s.0.1372 | ↑0.0433 | ↑0.0184 | ↑0.0003 | n.s.0.6045 | ↑0.0282 |
Bacterial cell count | ↑0.0000 | ↑0.0000 | ↑0.0000 | ↑0.0000 | ↑0.0000 | ↑0.0000 | ↑0.0000 |
Milky-creamy taste | n.s.0.5893 | ↑0.0259 | ↑0.0002 | n.s.0.2530 | ↑0.0018 | n.s.0.7884 | n.s.0.9988 |
Sour taste | ↑0.0000 | ↑0.0103 | ↑0.0000 | n.s.0.3790 | n.s.0.7685 | n.s.0.8963 | n.s.0.6830 |
Sweet taste | ↑0.0166 | ↑0.0001 | ↑0.0000 | n.s.0.5663 | n.s.0.8543 | n.s.0.8146 | n.s.0.4515 |
Taste of the additive | n.s.0.1513 | ↑0.0017 | ↑0.0000 | ↑0.0006 | ↑0.0049 | ↑0.0000 | n.s.0.7753 |
Off-taste | ↑0.0001 | ↑0.0002 | ↑0.0000 | ↑0.0384 | n.s.0.1807 | n.s.0.1107 | n.s.0.9891 |
Fermentation odor | n.s.0.1570 | n.s.0.4774 | n.s.0.4658 | n.s.0.8571 | n.s.0.9230 | n.s.0.6640 | n.s.0.9884 |
Odor of additives | n.s.0.4596 | n.s.0.7174 | ↑0.0002 | n.s.0.3737 | n.s.0.9158 | n.s.0.7707 | n.s.0.8445 |
Off-odor | n.s.0.4393 | n.s.0.4441 | ↑0.0013 | ↑0.0096 | n.s.0.6507 | n.s.0.9352 | n.s.0.7159 |
Fermented Milk Group | Storage Time (Days) | |
---|---|---|
1 | 21 | |
LP | 11.70 cB ± 0.75 | 9.40 aA ± 0.72 |
LP1.5W | 9.71 abA ± 0.57 | 9.39 aA ± 0.90 |
LP3.0W | 10.07 bA ± 0.27 | 9.74 aA ± 0.34 |
LP1.5H | 11.14 cB ± 0.15 | 9.32 aA ± 0.51 |
LP3.0H | 9.16 aA ± 0.57 | 9.17 aA ± 0.65 |
LR | 11.13 cB ± 0.22 | 9.43 aA ± 0.97 |
LR1.5W | 9.47 aA ± 0.40 | 9.23 aA ± 0.60 |
LR3.0W | 10.83 bcB ± 0.45 | 9.55 aA ± 0.41 |
LR1.5H | 10.20 bB ± 0.10 | 9.18 aA ± 0.54 |
LR3.0H | 10.29 bB ± 0.51 | 9.44 aA ± 0.46 |
LC | 8.99 aA ± 0.12 | 10.00 bB ± 0.75 |
LC1.5W | 9.46 aA ± 0.15 | 9.18 aA ± 0.21 |
LC3.0W | 9.14 aA ± 0.59 | 9.05 aA ± 0.23 |
LC1.5H | 9.14 aA ± 0.14 | 10.09 bB ± 0.44 |
LC3.0H | 9.23 aA ± 0.54 | 10.24 bB ± 0.45 |
LA | 9.18 aA ± 0.53 | 9.11 aA ± 0.26 |
LA1.5W | 9.36 aA ± 0.22 | 8.99 aA ± 0.86 |
LA3.0W | 9.23 aA ± 0.30 | 9.18 aA ± 0.93 |
LA1.5H | 9.40 aA ± 0.24 | 9.13 aA ± 0.60 |
LA3.0H | 9.32 aA ± 0.21 | 9.12 aA ± 0.50 |
Bacterial Strain | Control Group, without Collagen | Type of Collagen | Group with 1.5% Collagen | Group with 3.0% Collagen |
---|---|---|---|---|
Lacticaseibacillus casei | LC | Collagen | LC1.5W | LC3.0W |
Collagen hydrolysate | LC1.5H | LC3.0H | ||
Lactobacillus acidophilus | LA | Collagen | LA1.5W | LA3.0W |
Collagen hydrolysate | LA1.5H | LA3.0H | ||
Lacticaseibacillus paracasei | LP | Collagen | LP1.5W | LP3.0W |
Collagen hydrolysate | LP1.5H | LP3.0H | ||
Lacticaseibacillus rhamnosus | LR | Collagen | LR1.5W | LR3.0W |
Collagen hydrolysate | LR1.5H | LR3.0H |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szopa, K.; Znamirowska-Piotrowska, A.; Szajnar, K.; Pawlos, M. Effect of Collagen Types, Bacterial Strains and Storage Duration on the Quality of Probiotic Fermented Sheep’s Milk. Molecules 2022, 27, 3028. https://doi.org/10.3390/molecules27093028
Szopa K, Znamirowska-Piotrowska A, Szajnar K, Pawlos M. Effect of Collagen Types, Bacterial Strains and Storage Duration on the Quality of Probiotic Fermented Sheep’s Milk. Molecules. 2022; 27(9):3028. https://doi.org/10.3390/molecules27093028
Chicago/Turabian StyleSzopa, Kamil, Agata Znamirowska-Piotrowska, Katarzyna Szajnar, and Małgorzata Pawlos. 2022. "Effect of Collagen Types, Bacterial Strains and Storage Duration on the Quality of Probiotic Fermented Sheep’s Milk" Molecules 27, no. 9: 3028. https://doi.org/10.3390/molecules27093028
APA StyleSzopa, K., Znamirowska-Piotrowska, A., Szajnar, K., & Pawlos, M. (2022). Effect of Collagen Types, Bacterial Strains and Storage Duration on the Quality of Probiotic Fermented Sheep’s Milk. Molecules, 27(9), 3028. https://doi.org/10.3390/molecules27093028