Initial Maximum Overlap Method Embedded with Extremely Localized Molecular Orbitals for Core-Ionized States of Large Systems
Abstract
:1. Introduction
2. Theory
2.1. Initial Maximum Overlap Method
2.2. QM/ELMO Technique
3. Computational Details
3.1. Test Calculations of Decane and 2-Decanone
3.2. Test Calculations of Small Biomimetic Molecules
3.3. Test Calculations on Alanine Polypeptides
3.4. Application to the Protein Crambin
3.5. ELMO Calculations and Transfer
4. Results and Discussion
4.1. Decane and 2-Decanone
4.2. Small Biomimetic Molecules
4.3. Alanine Polypeptides
4.4. Protein Crambin
5. Conclusions and Perspectives
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jolly, W.L.; Bomben, K.D.; Eyermann, C.J. Core-electron binding energies for gaseous atoms and molecules. At. Data Nucl. Data Tables 1984, 31, 433–493. [Google Scholar] [CrossRef]
- Sæthre, L.J.; Berrah, N.; Bazek, J.D.; Børve, K.J.; Carroll, T.X.; Kukk, V.; Gard, G.L.; Winter, R.; Thomas, T.D. Chemical Insights from High-Resolution X-ray Photoelectron Spectroscopy and ab Initio Theory: Propyne, Trifluoropropyne, and Ethynylsulfur Pentafluoride. J. Am. Chem. Soc. 2001, 123, 10729–10737. [Google Scholar] [CrossRef] [PubMed]
- Kaznacheyev, K.; Osanna, A.; Jacobsen, C.; Plashkevych, O.; Vahtras, O.; Ågren, H.; Carravetta, V.; Hitchcock, A.P. Innershell Absorption Spectroscopy of Amino Acids. J. Phys. Chem. A 2002, 106, 3153–3168. [Google Scholar] [CrossRef]
- Ilakovac, V.; Carniato, S.; Gallet, J.-J.; Kukk, E.; Horvatić, D.; Ilakovac, A. Vibrations of acrylonitrile in N 1s excited states. Phys. Rev. A 2008, 77, 012516. [Google Scholar] [CrossRef]
- Feyer, V.; Plekan, O.; Richter, R.; Coreno, M.; Prince, K.C.; Carracetta, V. Core Level Study of Alanine and Threonine. J. Phys. Chem. A 2008, 112, 7806–7815. [Google Scholar] [CrossRef]
- Feyer, V.; Plekan, O.; Richter, R.; Coreno, M.; Vall-Llosera, G.; Prince, K.C.; Trofimov, A.B.; Zaytseva, I.L.; Moskovskaya, T.E.; Gromov, E.V.; et al. Tautomerism in Cytosine and Uracil: An Experimental and Theoretical Core Level Spectroscopic Study. J. Phys. Chem. A 2009, 113, 5736–5742. [Google Scholar] [CrossRef]
- Ilakovac, V.; Houari, Y.; Carniato, S.; Gallet, J.-J.; Kukk, E.; Horvatić, D. Vibrationally resolved N 1s absorption spectra of the acrylonitrile molecule. Phys. Rev. A 2012, 85, 062521. [Google Scholar] [CrossRef]
- Stöhr, J. NEXAFS Spectroscopy, 1st ed.; Springer: Berlin/Heidelberg, Germany, 1992. [Google Scholar]
- Stewart-Ornstein, J.; Hitchcock, A.P.; Hernández Cruz, D.; Henklein, P.; Overhage, J.; Hilpert, K.; Hale, J.D.; Hancock, R.E.W. Using Intrinsic X-ray Absorption Spectral Differences To Identify and Map Peptides and Proteins. J. Phys. Chem. B 2007, 111, 7691–7699. [Google Scholar] [CrossRef] [Green Version]
- Boese, J.; Osanna, A.; Jacobsen, C.; Kirz, J. Carbon edge XANES spectroscopy of amino acids and peptides. J. Electron Spectrosc. Relat. Phenom. 1997, 85, 9–15. [Google Scholar] [CrossRef]
- Gordon, M.L.; Cooper, G.; Morin, C.; Araki, T.; Turci, C.C.; Kaznatcheev, K.; Hitchcock, A.P. Inner-Shell Excitation Spectroscopy of the Peptide Bond: Comparison of the C 1s, N 1s, and O 1s Spectra of Glycine, Glycyl-Glycine, and Glycyl-Glycyl-Glycine. J. Phys. Chem. A 2003, 107, 6144–6159. [Google Scholar] [CrossRef]
- Ferré, N.; Assfeld, X. Application of the local self-consistent-field method to core-ionized and core-excited molecules, polymers, and proteins: True orthogonality between ground and excited states. J. Chem. Phys. 2002, 117, 4119–4125. [Google Scholar] [CrossRef]
- Zubavichus, Y.; Shaporenko, A.; Grunze, M.; Zharnikov, M. Solid-State Near-Edge X-ray Absorption Fine Structure Spectra of Glycine in Various Charge States. J. Phys. Chem. B 2006, 110, 3420–3427. [Google Scholar] [CrossRef] [PubMed]
- Nolting, D.; Aziz, E.F.; Ottosson, N.; Faubel, M.; Hertel, I.V.; Winter, B. pH-Induced Protonation of Lysine in Aqueous Solution Causes Chemical Shifts in X-ray Photoelectron Spectroscopy. J. Am. Chem. Soc. 2007, 129, 14068–14073. [Google Scholar] [CrossRef]
- Niskanen, J.; Murugan, N.A.; Rinkevicius, Z.; Vahtras, O.; Li, C.; Monti, S.; Carravetta, V.; Ågren, H. Hybrid density functional-molecular mechanics calculations for core-electron binding energies of glycine in water solution. Phys. Chem. Chem. Phys. 2013, 15, 244–254. [Google Scholar] [CrossRef] [PubMed]
- Sheldrick, G.M. A short history of SHELX. Acta Cryst. A 2008, 64, 112–122. [Google Scholar]
- Jensen, H.J.; Jørgensen, P.; Ågren, H. Efficient optimization of large MCSCF wave functions with a restricted step algorithm. J. Chem. Phys. 1987, 87, 451–466. [Google Scholar] [CrossRef]
- Koch, A.; Peyerimhoff, S.D. Multireference configuration interaction calculation of the vertical K-shell excitation spectrum of di-fluoro-silane. Chem. Phys. 1993, 172, 21–32. [Google Scholar] [CrossRef]
- Liu, Z.F.; Bancroft, G.M.; Tse, J.S.; Ågren, H. Multiconfiguration self-consistent-field ab initio and local-density-functional studies on the vibrational structure of core-level photoelectron spectra of SiH4 and GeH4. Phys. Rev. A 1995, 51, 439–446. [Google Scholar] [CrossRef]
- Vidal, M.L.; Feng, X.; Epifanovsky, E.; Krylov, A.I.; Coriani, S. New and Efficient Equation-of-Motion Coupled Cluster Framework for Core-Excited and Core-Ionized States. J. Chem Theory Comput. 2019, 15, 3117–3133. [Google Scholar] [CrossRef] [Green Version]
- Vidal, M.L.; Pokhilko, P.; Krylov, A.I.; Coriani, S. Equation-of-Motion Coupled-Cluster Theory to Model L-Edge X-ray Absorption and Photoelectron Spectra. J. Phys. Chem. Lett. 2020, 19, 8314–8321. [Google Scholar] [CrossRef]
- Koopmans, T. Ordering of Wave Functions and Eigenenergies to the Individual Electrons of an Atom. Physica 1933, 1, 104–113. [Google Scholar] [CrossRef]
- Nakamura, M.; Sasanuma, M.; Sato, S.; Watanabe, M.; Yamashita, H.; Iguchi, Y.; Ejiri, A.; Nakai, S.; Yamaguchi, S.; Sagawa, T.; et al. Absorption Structure Near the K Edge of the Nitrogen Molecule. Phys. Rev. 1969, 178, 80–82. [Google Scholar] [CrossRef]
- Schwarz, W.H.E.; Buenker, R.J. Use of the Z+1=core analogy model: Examples from the core-excitation spectra of CO2 and N2O. Chem. Phys. 1976, 13, 153–160. [Google Scholar] [CrossRef]
- Bagus, P.S. Self-Consistent-Field Wave Functions for Hole States of Some Ne-Like and Ar-Like Ions. Phys. Rev. 1965, 619, A619–A634. [Google Scholar] [CrossRef]
- Bagus, P.S.; Schaefer, H.F., III. Direct Near-Hartree-Fock Calculations on the 1s Hole States of NO+. J. Chem. Phys. 1971, 55, 1474–1475. [Google Scholar]
- Bagus, P.S.; Schaefer, H.F., III. Localized and Delocalized 1s Hole States of the Molecular Ion. J. Chem. Phys. 1972, 56, 224–226. [Google Scholar]
- Jones, R.O.; Gunnarsson, O. The density functional formalism, its applications and prospects. Rev. Mod. Phys. 1989, 61, 689–746. [Google Scholar] [CrossRef]
- Hellman, A.; Razaznejad, B.; Lundqvist, B.I. Potential-energy surfaces for excited states in extended systems. J. Chem. Phys. 2004, 120, 4593–4602. [Google Scholar] [CrossRef]
- Gavnholt, J.; Olsen, T.; Engelund, M.; Schiøtz, J. Δ self-consistent field method to obtain potential energy surfaces of excited molecules on surfaces. Phys. Rev. B 2008, 78, 075441. [Google Scholar] [CrossRef] [Green Version]
- Triguero, L.; Plashkevych, O.; Petterson, L.G.M.; Ågren, H. Separate state vs. transition state Kohn-Sham calculations of X-ray photoelectron binding energies and chemical shifts. J. Electron. Spectrosc. Relat. Phenom. 1999, 104, 195–207. [Google Scholar] [CrossRef]
- Shapley, W.A.; Chong, D.P. PW86-PW91 Density Functional Calculation of Vertical Ionization Potentials: Some Implications for Present-Day Functionals. Int. J. Quantum Chem. 2001, 81, 34–52. [Google Scholar] [CrossRef]
- Norman, P.; Ågren, H. Geometry optimization of core electron excited molecules. J. Mol. Struct. 1997, 401, 107–115. [Google Scholar] [CrossRef]
- Gilbert, A.T.B.; Besley, N.A.; Gill, P.M.W. Self-Consistent Field Calculations of Excited States Using the Maximum Overlap Method (MOM). J. Phys. Chem. A 2008, 112, 13164–13171. [Google Scholar] [CrossRef] [PubMed]
- Besley, N.A.; Gilbert, A.T.B.; Gill, P.M.W. Self-Consistent calculations of core excited states. J. Chem. Phys. 2009, 130, 124308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barca, G.M.J.; Gilbert, A.T.B.; Gill, P.M.W. Hartree-Fock description of excited states of H2. J. Chem. Phys. 2014, 141, 111104. [Google Scholar] [CrossRef] [Green Version]
- Barca, G.M.J.; Gilbert, A.T.B.; Gill, P.M.W. Simple Models for Difficult Electronic Excitations. J. Chem. Theory Comput. 2018, 14, 1501–1509. [Google Scholar] [CrossRef]
- Barca, G.M.J.; Gilbert, A.T.B.; Gill, P.M.W. Excitation Number: Characterizing Multiply Excited States. J. Chem. Theory Comput. 2018, 14, 9–13. [Google Scholar] [CrossRef]
- Hait, D.; Head-Gordon, M. Orbital Optimized Density Functional Theory for Electronic Excited States. J. Phys. Chem. Lett. 2021, 12, 4517–4529. [Google Scholar] [CrossRef]
- Levi, G.; Ivanov, A.V.; Jónsson, H. Variational calculations of excited states via direct optimization of the orbitals in DFT. Faraday Discuss. 2020, 224, 448. [Google Scholar] [CrossRef]
- Levi, G.; Ivanov, A.V.; Jónsson, H. Variational Density Functional Calculations of Excited States via Direct Optimization. J. Chem. Theory Comput. 2020, 16, 6968–6982. [Google Scholar] [CrossRef]
- Hait, D.; Head-Gordon, M. Excited State Orbital Optimization via Minimizing the Square of the Gradient: General Approach and Application to Singly and Doubly Excited States via Density Functional Theory. J. Chem. Theory Comput. 2020, 16, 1699–1710. [Google Scholar] [CrossRef] [PubMed]
- Carter-Fenk, K.; Herbert, J.M. State-Targeted Energy Projection: A Simple and Robust Approach to Orbital Relaxation of Non-Aufbau Self-Consistent Field Solutions. J. Chem. Theory Comput. 2020, 16, 5067–5082. [Google Scholar] [CrossRef] [PubMed]
- Assfeld, X.; Rivail, J.-L. Quantum Chemical Computations on Parts of Large Molecules: The Ab Initio Local Self Consistent Field Method. Chem. Phys. Lett. 1996, 263, 100–106. [Google Scholar] [CrossRef]
- Ferré, N.; Assfeld, A.; Rivail, J.-L. Specific Force Field Parameters Determination for the Hybrid Ab Initio QM/MM LSCF Method. J. Comput. Chem. 2002, 23, 610–624. [Google Scholar] [CrossRef] [PubMed]
- Monari, A.; Rivail, J.-L.; Assfeld, X. Theoretical Modeling of Large Molecular Systems. Advances in the Local Self Consistent Field Method for Mixed Quantum Mechanics/Molecular Mechanics Calculations. Acc. Chem. Res. 2013, 46, 596–603. [Google Scholar] [CrossRef]
- Glushkov, V.N. Asymptotic method of building restricted open-shell wavefunctions satisfying the generalized Brillouin’s theorem. Chem. Phys. Lett. 1997, 273, 122–128. [Google Scholar] [CrossRef]
- Glushkov, V.N. Open-shell Møller-Plesset perturbation theory based on the asymptotic method of obtaining SCF orbitals. Chem. Phys. Lett. 1998, 287, 189–194. [Google Scholar] [CrossRef]
- Glushkov, V.N. Spin-unrestricted formalism for a partially restricted Hartree-Fock approach. J. Math. Chem. 2002, 31, 91–103. [Google Scholar] [CrossRef]
- Loos, P.-F.; Assfeld, X. Core-Ionized and Core-Excited States of Macromolecules. Int. J. Quantum Chem. 2007, 107, 2243–2252. [Google Scholar] [CrossRef]
- Laurent, A.D.; Glushkov, V.N.; Very, T.; Assfeld, X. Towards the Understanding of the Environmental Effects on Core Ionizations. J. Comp. Chem. 2014, 35, 1131–1139. [Google Scholar] [CrossRef]
- Glushkov, V.N.; Levy, M. Optimized effective potential method for individual low-lying excited states. J. Chem. Phys. 2007, 126, 174106. [Google Scholar] [CrossRef] [PubMed]
- Staroverov, V.N.; Glushkov, V.N. Effective local potentials for excited states. J. Chem. Phys. 2010, 133, 244104. [Google Scholar] [CrossRef] [PubMed]
- Glushkov, V.N. Excited and Core-Ionized State Calculations with a Local Potential Expressed in Terms of the External Potential. Int. J. Quantum Chem. 2013, 113, 637–642. [Google Scholar] [CrossRef]
- Glushkov, V.N.; Assfeld, X. Doubly, triply, and multiply excited states from a constrained optimized effective potential method. J. Chem. Phys. 2010, 132, 204106. [Google Scholar] [CrossRef] [PubMed]
- Glushkov, V.N.; Assfeld, X. On Orthogonality Constrained Multiple Core-Hole States and Optimized Effective Potential Method. J. Comp. Chem. 2012, 33, 2058–2066. [Google Scholar] [CrossRef]
- Yamaguchi, K.; Jensen, F.; Dorigo, A.; Houk, K. A spin correction procedure for unrestricted Hartree-Fock and Møller-Plesset wavefunctions for single diradicals and polyradicals. Chem. Phys. Lett. 1988, 149, 537–542. [Google Scholar] [CrossRef]
- Jones, L.O.; Mosquera, M.A.; Schatz, G.C.; Ratner, M.A. Embedding Methods for Quantum Chemistry: Applications form Materials to Life Sciences. J. Am. Chem. Soc. 2020, 142, 3281–3295. [Google Scholar] [CrossRef]
- Warshel, A.; Levitt, M. Theoretical Studies of Enzymic Reactions: Dielectric, Electrostatic and Steric Stabilization of the Carbonium ion in the Reaction of Lysozyme. J. Mol. Biol. 1976, 103, 227–249. [Google Scholar] [CrossRef]
- Field, M.J.; Bash, P.A.; Karplus, M. A Combined Quantum Mechanical and Molecular Mechanical Potential for Molecular Dynamics Simulations. J. Comput Chem. 1990, 11, 700–733. [Google Scholar] [CrossRef]
- Gao, J. Hybrid Quantum and Molecular Mechanical Simulations: An Alternative Avenue to Solvent Effects in Organic Chemistry. Acc. Chem. Res. 1996, 29, 298–305. [Google Scholar] [CrossRef]
- Senn, H.M.; Thiel, W. QM/MM Methods for Biomolecular Systems. Angew. Chem. Int. Ed. 2009, 48, 1198–1229. [Google Scholar] [CrossRef] [PubMed]
- Knizia, G.; Chan, G.K.-L. Density matrix embedding: A strong coupling quantum embedding theory. J. Chem. Theory Comput. 2013, 9, 1428–1432. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bulik, I.W.; Chen, W.; Scuseria, G.E. Electron correlation in solids via density embedding theory. J. Chem. Phys. 2014, 141, 035140. [Google Scholar] [CrossRef] [PubMed]
- Fornace, M.E.; Lee, J.; Miyamoto, K.; Manby, F.R.; Miller, T.F., III. Embedded mean-field theory. J. Chem. Theory Comput. 2015, 11, 568–580. [Google Scholar] [CrossRef] [PubMed]
- Ye, H.-Z.; Van Voorhis, T. Atom-Based Bootstrap Embedding For Molecules. J. Phys. Chem. Lett. 2019, 10, 6368–6374. [Google Scholar] [CrossRef] [PubMed]
- Cortona, P. Self-consistently determined properties of solids without band-structure calculations. Phys. Rev. B 1991, 44, 8454–8458. [Google Scholar] [CrossRef]
- Wesolowski, T.A.; Shedge, S.; Zhou, X. Frozen-Density Embedding Strategy for Multilevel Simulations of Electronic Structure. Chem. Rev. 2015, 115, 5891–5928. [Google Scholar] [CrossRef] [Green Version]
- Henderson, T.M. Embedding wave function theory in density functional theory. J. Chem. Phys. 2006, 125, 014105. [Google Scholar] [CrossRef]
- Jacob, C.R.; Neugebauer, J.; Visscher, L. Software news and update: A flexible implementation of frozen-density embedding for use in multilevel simulations. J. Comput. Chem. 2008, 29, 1011–1018. [Google Scholar] [CrossRef]
- Huang, C.; Pavone, M.; Carter, E.A. Quantum mechanical embedding theory based on a unique embedding potential. J. Chem. Phys. 2011, 134, 154110. [Google Scholar] [CrossRef]
- Elliott, P.; Cohen, M.H.; Wasserman, A.; Burke, K. Density functional partition theory with fractional occupations. J. Chem. Theory Comput. 2009, 5, 827–833. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Genova, A.; Ceresoli, D.; Pavanello, M. Periodic subsystem density-functional theory. J. Chem. Phys. 2014, 141, 174101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mi, W.; Pavanello, M. Nonlocal Subsystem Density Functional Theory. J. Phys. Chem. Lett. 2020, 11, 272–279. [Google Scholar] [CrossRef] [PubMed]
- Goodpaster, J.D.; Barnes, T.A.; Miller, T.F., III. Embedded density functional theory for covalently bonded and strongly interacting subsystems. J. Chem. Phys. 2011, 134, 164108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manby, F.R.; Stella, M.; Goodpaster, J.D.; Miller, T.F., III. A simple, exact density-functional theory embedding scheme. J. Chem. Theory Comput. 2012, 8, 2564–2568. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.J.R.; Welborn, M.; Manby, F.R.; Miller, T.F., III. Projection-Based Wavefunction-in-DFT Embedding. Acc. Chem. Res. 2019, 52, 1359–1368. [Google Scholar] [CrossRef] [Green Version]
- Culpitt, T.; Brorsen, K.R.; Hammes-Schiffer, S. Density functional theory embedding with the orthogonality constrained basis-set expansion procedure. J. Chem. Phys. 2017, 146, 211101. [Google Scholar] [CrossRef] [Green Version]
- Chulhai, D.V.; Goodpaster, J.D. Improved Accuracy and Efficiency in Quantum Embedding through Absolute Localization. J. Chem. Theory Comput. 2017, 13, 1503–1508. [Google Scholar] [CrossRef]
- Claudino, D.; Mayhall, N.J. Automatic Partition of Orbital Spaces Based on Singular Value Decomposition in the Context of Embedding Theories. J. Chem. Theory Comput. 2019, 15, 1053–1064. [Google Scholar] [CrossRef] [Green Version]
- Sæther, S.; Kjærgaard, T.; Koch, H.; Høyvik, I.-M. Density-Based Multilevel Hartree-Fock Model. J. Chem. Theory Comput. 2017, 13, 5282–5290. [Google Scholar] [CrossRef]
- Marrazzini, G.; Giovannini, T.; Scavino, M.; Egidi, F.; Cappelli, C.; Koch, H. Multilevel Density Functional Theory. J. Chem. Theory Comput. 2021, 17, 791–803. [Google Scholar] [CrossRef] [PubMed]
- Macetti, G.; Genoni, A. Initial Maximum Overlap Method for Large Systems by the Quantum Mechanics/Extremely Localized Molecular Orbital Embedding Technique. J. Chem. Theory Comput. 2021, 17, 4169–4182. [Google Scholar] [CrossRef] [PubMed]
- Macetti, G.; Genoni, A. Quantum Mechanics/Extremely Localized Molecular Orbital Method: A Fully Quantum Mechanical Embedding Approach for Macromolecules. J. Phys. Chem. A 2019, 123, 9420–9428. [Google Scholar] [CrossRef] [PubMed]
- Macetti, G.; Wieduwilt, E.K.; Assfeld, X.; Genoni. A. Localized Molecular Orbital-Based Embedding Scheme for Correlated Methods. J. Chem. Theory Comput. 2020, 16, 3578–3596. [Google Scholar] [CrossRef] [PubMed]
- Macetti, G.; Genoni, A. Quantum Mechanics/Extremely Localized Molecular Orbital Embedding Strategy for Excited States: Coupling to Time-Dependent Density Functional Theory and Equation-of-Motion Coupled Cluster. J. Chem. Theory Comput. 2020, 16, 7490–7506. [Google Scholar] [CrossRef] [PubMed]
- Wieduwilt, E.K.; Macetti, G.; Genoni, A. Climbing Jacob’s Ladder of Structural Refinement: Introduction of a Localized Molecular Orbital-Based Embedding for Accurate X-ray Determinations of Hydrogen Atom Positions. J. Phys. Chem. Lett. 2021, 12, 463–471. [Google Scholar] [CrossRef]
- Macetti, G.; Wieduwilt, E.K.; Genoni, A. QM/ELMO a Multi-Purpose Fully Quantum Mechanical Embedding Scheme Based on Extremely Localized Molecular Orbitals. J. Phys. Chem. A 2021, 125, 2709–2726. [Google Scholar] [CrossRef]
- Macetti, G.; Genoni, A. Quantum Mechanics/Extremely Localized Molecular Orbital Embedding Technique: Theoretical Foundations and Further Validation. Adv. Quantum Chem. 2021, 83, 269–285. [Google Scholar]
- Macetti, G.; Genoni, A. Three-Layer Multiscale Approach Based on Extremely Localized Molecular Orbitals to Investigate Enzyme Reactions. J. Phys. Chem. A 2021, 125, 6013–6027. [Google Scholar] [CrossRef]
- Stoll, H.; Wagenblast, G.; Preuss, H. On the Use of Local Basis Sets for Localized Molecular Orbitals. Theor. Chim. Acta 1980, 57, 169–178. [Google Scholar] [CrossRef]
- Fornili, A.; Sironi, M.; Raimondi, M. Determination of Extremely Localized Molecular Orbitals and Their Application to Quantum Mechanics/Molecular Mechanics Methods and to the Study of Intramolecular Hydrogen Bonding. J. Mol. Struct. 2003, 632, 157–172. [Google Scholar] [CrossRef]
- Sironi, M.; Genoni, A.; Civera, M.; Pieraccini, S.; Ghitti, M. Extremely Localized Molecular Orbitals: Theory and Applications. Theor. Chem. Acc. 2007, 117, 685–698. [Google Scholar] [CrossRef]
- Meyer, B.; Guillot, B.; Ruiz-Lopez, M.F.; Genoni, A. Libraries of Extremely Localized Molecular Orbitals. 1. Model Molecules Approximation and Molecular Orbitals Transferability. J. Chem. Theory. Comput. 2016, 12, 1052–1067. [Google Scholar] [CrossRef] [PubMed]
- Meyer, B.; Guillot, B.; Ruiz-Lopez, M.F.; Jelsch, C.; Genoni, A. Libraries of Extremely Localized Molecular Orbitals. 2. Comparison with the Pseudoatoms Transferability. J. Chem. Theory. Comput. 2016, 12, 1068–1081. [Google Scholar] [CrossRef] [PubMed]
- Meyer, B.; Genoni, A. Libraries of Extremely Localized Molecular Orbitals. 3. Construction and Preliminary Assessment of the New Databanks. J. Phys. Chem. A 2018, 122, 8965–8981. [Google Scholar] [CrossRef] [PubMed]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09, Revision D.01; Gaussian, Inc.: Wallingford, CT, USA, 2009. [Google Scholar]
- Genoni, A.; Sironi, M. A Novel Approach to Relax Extremely Localized Molecular Orbitals: The Extremely Localized Molecular Orbital-Valence Bond Method. Theor. Chem. Acc. 2004, 112, 254–262. [Google Scholar] [CrossRef]
- Genoni, A.; Fornili, A.; Sironi, M. Optimal Virtual Orbitals to Relax Wave Functions Built Up with Transferred Extremely Localized Molecular Orbitals. J. Comput. Chem. 2005, 26, 827–835. [Google Scholar] [CrossRef]
- Genoni, A.; Ghitti, M.; Pieraccini, S.; Sironi, M. A novel extremely localized molecular orbitals based technique for the one-electron density matrix computation. Chem. Phys. Lett. 2005, 415, 256–260. [Google Scholar] [CrossRef]
- Genoni, A.; Merz, K.M., Jr.; Sironi, M. A Hylleras functional based perturbative technique to relax extremely localized molecular orbitals. J. Chem. Phys. 2008, 129, 054101. [Google Scholar] [CrossRef]
- Sironi, M.; Ghitti, M.; Genoni, A.; Saladino, G.; Pieraccini, S. DENPOL: A new program to determine electron densities of polypeptides using extremely localized molecular orbitals. J. Mol. Struct. 2009, 898, 8–16. [Google Scholar] [CrossRef]
- Case, D.A.; Ben-Shalom, I.Y.; Brozell, S.R.; Cerutti, D.S.; Cheatham, T.E., III; Cruzeiro, V.W.; Darden, T.A.; Duke, R.E.; Ghoreishi, D.; Gilson, M.K.; et al. AMBER 2018; University of California San Francisco: San Francisco, CA, USA, 2018. [Google Scholar]
- Guest, M.F.; Bush, I.J.; van Dam, H.J.J.; Sherwood, P.; Thomas, J.M.H.; van Lenthe, J.H.; Havenith, R.W.A.; Kendrick, J. The GAMESS-UK Electronic Structure Package: Algorithms, Developments and Applications. Mol. Phys. 2005, 103, 719–747. [Google Scholar] [CrossRef]
- Philipp, D.M.; Friesner, R.A. Mixed Ab Initio QM/MM Modeling Using Frozen Orbitals and Tests with Alanine Dipeptide and Tetrapeptide. J. Comput. Chem. 1999, 20, 1468–1494. [Google Scholar] [CrossRef]
No. of Carbon Atoms | IMOM/ELMO Relative Discrepancies for Core-Ionization Energies (%) | |||
---|---|---|---|---|
6-31G(d) | 6-311G(d) | 6-31+G(d) | 6-311+G(d) | |
3 | 0.078 | 0.081 | 0.081 | 0.087 |
4 | 0.038 | 0.040 | 0.040 | 0.043 |
5 | 0.022 | 0.024 | 0.024 | 0.026 |
6 | 0.010 | 0.012 | 0.012 | 0.014 |
7 | 0.004 | 0.004 | 0.005 | 0.006 |
8 | −0.001 | −0.001 | 0.000 | 0.000 |
No. of Carbon Atoms | IMOM/ELMO Relative Discrepancies for Core-Ionization Energies (%) | |||
---|---|---|---|---|
6-31G(d) | 6-311G(d) | 6-31+G(d) | 6-311+G(d) | |
3 | 0.161 | 0.157 | 0.174 | 0.174 |
4 | 0.085 | 0.086 | 0.091 | 0.092 |
5 | 0.050 | 0.051 | 0.053 | 0.055 |
6 | 0.028 | 0.029 | 0.030 | 0.032 |
7 | 0.016 | 0.017 | 0.017 | 0.019 |
8 | 0.009 | 0.010 | 0.010 | 0.011 |
Molecule | Carbonyl Carbon | Carbonyl Oxygen | ||||
---|---|---|---|---|---|---|
Fully IMOM Value (eV) | Absolute Discrepancy (eV) | Relative Discrepancy (%) | Fully IMOM Value (eV) | Absolute Discrepancy (eV) | Relative Discrepancy (%) | |
Trans-N-methylformamide | 293.57 | 0.88 | 0.299 | 536.30 | 0.63 | 0.117 |
Cis-N-methylformamide | 293.54 | 0.89 | 0.304 | 536.32 | 0.60 | 0.113 |
N,N-dimethylformamide | 293.17 | 1.25 | 0.426 | 536.03 | 0.83 | 0.155 |
Acetamide | 293.78 | 0.72 | 0.245 | 536.20 | 0.61 | 0.114 |
Trans-N-methylacetamide | 293.35 | 1.27 | 0.433 | 535.88 | 0.90 | 0.168 |
Cis-N-methylacetamide | 293.36 | 1.22 | 0.415 | 535.86 | 0.93 | 0.173 |
N,N-dimethylacetamide | 293.06 | 1.61 | 0.549 | 535.62 | 1.09 | 0.204 |
Conformation/Atom | 1s Core-Ionization Energy (eV) | Absolute Discrepancy (eV) | |||
---|---|---|---|---|---|
Ala | Ala3 | Ala15 | Ala3 | Ala15 | |
-helix | |||||
292.41 | 292.28 | 291.65 | −0.13 | −0.76 | |
292.79 | 293.03 | 292.97 | 0.24 | 0.18 | |
291.25 | 290.99 | 290.58 | −0.26 | −0.67 | |
-sheet | |||||
292.28 | 292.07 | −0.13 | −0.34 | ||
293.36 | 293.70 | 0.57 | 0.91 | ||
290.71 | 290.59 | −0.54 | −0.66 |
Atom | 1s Core-Ionization Energies (eV) | Absolute Deviations with Respect to IMOM/ELMO (Glu23) (eV) | |||
---|---|---|---|---|---|
IMOM/ELMO (Crambin) | IMOM/ELMO (Glu23) | Fully IMOM (Glu23) | IMOM/ELMO (Crambin) | Fully IMOM (Glu23) | |
293.38 | 288.37 | 288.24 | 5.01 | −0.13 | |
291.47 | 286.62 | 286.60 | 4.85 | −0.02 | |
290.71 | 285.81 | 285.81 | 4.90 | 0.00 | |
292.22 | 287.42 | 287.43 | 4.80 | 0.01 | |
534.52 | 529.72 | 529.73 | 4.80 | 0.01 | |
534.17 | 529.41 | 529.41 | 4.76 | 0.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Macetti, G.; Genoni, A. Initial Maximum Overlap Method Embedded with Extremely Localized Molecular Orbitals for Core-Ionized States of Large Systems. Molecules 2023, 28, 136. https://doi.org/10.3390/molecules28010136
Macetti G, Genoni A. Initial Maximum Overlap Method Embedded with Extremely Localized Molecular Orbitals for Core-Ionized States of Large Systems. Molecules. 2023; 28(1):136. https://doi.org/10.3390/molecules28010136
Chicago/Turabian StyleMacetti, Giovanni, and Alessandro Genoni. 2023. "Initial Maximum Overlap Method Embedded with Extremely Localized Molecular Orbitals for Core-Ionized States of Large Systems" Molecules 28, no. 1: 136. https://doi.org/10.3390/molecules28010136
APA StyleMacetti, G., & Genoni, A. (2023). Initial Maximum Overlap Method Embedded with Extremely Localized Molecular Orbitals for Core-Ionized States of Large Systems. Molecules, 28(1), 136. https://doi.org/10.3390/molecules28010136