Monitoring and Exposure Assessment of Fosetyl Aluminium and Other Highly Polar Pesticide Residues in Sweet Cherry
Abstract
:1. Introduction
2. Results and Discussion
2.1. Validation Data
2.2. Pesticide Analysis in Sweet Cherry Samples and Exposure Assessment
3. Materials and Methods
3.1. Chemicals and Materials
3.2. Samples
3.3. Sample Preparation
3.4. LC-MS/MS Analysis
3.5. Validation Studies
3.6. Exposure Analysis and Risk Assessment
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- McCune, L.M.; Kubota, C.; Stendell-Hollis, N.R.; Thomson, C.A. Cherries and health: A review. Crit. Rev. Food Sci. Nutr. 2010, 51, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Blando, F.; Oomah, B.D. Sweet and sour cherries: Origin, distribution, nutritional composition and health benefits. Trends Food Sci. Technol. 2019, 86, 517–529. [Google Scholar] [CrossRef]
- FAO (Food and Agricultural Organization). FAO Statistical Databases and Data Sets; FAO (Food and Agricultural Organization): Rome, Italy, 2022; Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 26 November 2022).
- GAIN (Global Agricultural Information Network). Turkey Stone Fruit Annual 2019. GAIN Report Number TR9021. USDA Foreign Agricultural Service. Available online: https://agfstorage.blob.core.windows.net/misc/FP_com/2019/08/21/TurkStone_Fruit_Annual_Ankara_Turkey_8_15_2019.pdf (accessed on 26 November 2022).
- GTHB (Republic of Turkey Ministry of Food, Agriculture and Livestock). Control of Sweet and Sour Cherries Diseases and Pests. Available online: https://www.tarimorman.gov.tr/GKGM/Belgeler/Uretici_Bilgi_Kosesi/Dokumanlar/kiraz.pdf (accessed on 26 November 2022).
- GTHB (Republic of Turkey Ministry of Food, Agriculture and Livestock). Kiraz Ve Vişne Entegre Mücadele Teknik Talimatı. General Directorate of Agricultural Research and Policies. 2017. Available online: https://www.tarimorman.gov.tr/ (accessed on 26 November 2022).
- Da Silva, H.C.M.P.; Bedor, D.C.G.; Cunha, A.N.; Rodrigues, H.O.S.; Telles, T.L.; Araújo, A.C.P.; Santana, D.P. Ethephon and fosetyl residues in fruits from São Francisco Valley, Brazil. Food Addit. Contam. B 2020, 13, 16–24. [Google Scholar] [CrossRef] [PubMed]
- Anastassiades, M.; Kolberg, D.I.; Benkenstein, A.; Eichhorn, E.; Zechmann, S.; Mack, D. Quick method for the analysis of numerous highly polar pesticides in foods of plant origin via LC-MS/MS involving simultaneous extraction with methanol (QuPPe-method)—version 9.3. In EU Reference Laboratory for Pesticides Requiring Single Residue Methods (EURL-SRM); CVUA: Stuttgart, Germany, 2017. [Google Scholar]
- Lara, F.; Chan, D.; Dickinson, M.; Lloyd, A.S.; Adams, S.J. Evaluation of direct analysis in real time for the determination of highly polar pesticides in lettuce and celery using modified Quick Polar Pesticides Extraction method. J. Chromatogr. A 2017, 1496, 37–44. [Google Scholar] [CrossRef] [PubMed]
- Melton, L.M.; Taylor, M.J.; Flynn, E.E. The utilisation of ion chromatography and tandem mass spectrometry (IC-MS/MS) for the multi-residue simultaneous determination of highly polar anionic pesticides in fruits and vegetables. Food Chem. 2019, 298, 125028. [Google Scholar] [CrossRef] [PubMed]
- Gasparini, M.; Angelone, B.; Ferretti, E. Glyphosate and other highly polar pesticides in fruit, vegetables and honey using ion chromatography coupled with high resolution mass spectrometry: Method validation and its applicability in an official laboratory. J. Mass Spectrom. 2020, 55, 4624. [Google Scholar] [CrossRef] [PubMed]
- Francesquett, J.Z.; Rizzetti, T.M.; Cadaval, T.R.S., Jr.; Perestes, O.D.; Adaime, M.B.; Zanella, R. Simultaneous determination of the quaternary ammonium pesticides paraquat, diquat, chlormequat, and mepiquat in barley and wheat using a modified quick polar pesticides method, diluted standard addition calibration and hydrophilic interaction liquid chromatography coupled to tandem mass spectrometry. J. Chromatogr.A 2019, 10, 101–111. [Google Scholar]
- Herrera López, S.; Dias, J.; de Kok, A. Analysis of highly polar pesticides and their main metabolites in animal origin matrices by hydrophilic interaction liquid chromatography and mass spectrometry. Food Control 2020, 115, 107289. [Google Scholar] [CrossRef]
- Herrera López, S.; Dias, J.; Mol, H.; de Kok, A. Selective multiresidue determination of highly polar anionic pesticides in plant-based milk, wine and beer using hydrophilic interaction liquid chromatography combined with tandem mass spectrometry. J. Chromatogr. A 2020, 1625, 461226. [Google Scholar] [CrossRef] [PubMed]
- López Ruiz, R.; Romero-González, R.; Frenich, A.G. Simultaneous determination of polar pesticides in human blood serum by liquid chromatography coupled to triple quadrupole mass spectrometer. J. Pharm. Biomed. Anal. 2020, 190, 113492. [Google Scholar] [CrossRef] [PubMed]
- EFSA (European Food Safety Authority). The 2015 European Union report on pesticide residues in food. EFSA J. 2017, 15, 4791. [Google Scholar]
- CVUA Stuttgart (Chemisches und Veterinäruntersuchungsamt). Residues and Contaminants in Fresh Fruit from Conventional Cultivation. 2018. Available online: https://www.ua-bw.de/pesticides/beitrag_en.asp?subid=1&Thema_ID=5&ID=2931&Pdf=No&lang=EN (accessed on 26 November 2022).
- Golge, O. Validation of quick polar pesticides (QuPPe) method for determination of eight polar pesticides in cherries by LC-MS/MS. Food Anal. Methods 2021, 14, 1432–1437. [Google Scholar] [CrossRef]
- Petersen, A.; Jensen, B.H.; Andersen, J.H.; Poulsen, M.E.; Christensen, T.; Nielsen, E. Pesticide Residues. Results from the Period 2004–2011; National Food Institute, Technical University of Denmark: Kongens Lyngby, Denmark, 2013; p. 138. [Google Scholar]
- FAO (Food and Agricultural Organization). Fosetyl-Aluminium, Aluminium Tris (Ethylphosphonate). FAO Specifications and Evaluations for Agricultural Pesticides. Available online: http://www.fao.org/agriculture/crops/core-themes/theme/pests/jmps/ps-new/en/ (accessed on 26 November 2022).
- EFSA (European Food Safety Authority). Conclusion on the peer review of the pesticide risk assessment of the active substance potassium phosphonates. EFSA J. 2012, 10, 2963. [Google Scholar]
- European Commission. Guidance Document on Analytical Quality Control and Method Validation Procedures for Pesticides Residues and Analysis in Food and Feed; Document No. SANTE/11813/2017; EC Directorate-General for Health and Food Safety: Brussels, Belgium, 2017. [Google Scholar]
- Golge, O.; Hepsag, F.; Kabak, B. Health risk assessment of selected pesticide residues in green pepper and cucumber. Food Chem. Toxicol. 2018, 121, 51–64. [Google Scholar] [CrossRef]
- IPCS (International Programme on Chemical Safety). Principle and Methods for the Risk Assessment of Chemicals in Food. Environmental Health Criteria 240; World Health Organization: Stuttgart, Germany, 2009. [Google Scholar]
- EFSA (European Food Safety Authority). Management of left-censored data in dietary exposure assessment of chemical substances. EFSA J. 2010, 8, 1557. [Google Scholar]
- EFSA (European Food Safety Authority). Guidance on the use of EFSA pesticide residue intake model (EFSA PRIMO revision 3). EFSA J. 2018, 16, 5147. [Google Scholar]
- Reffstrup, T.K.; Larsen, C.J.; Meyer, O. Risk assessment of mixtures of pesticides. Current approaches and future strategies. Regul. Toxicol. Pharmacol. 2010, 56, 174–192. [Google Scholar] [CrossRef] [PubMed]
Analyte | LOQ (μg kg−1) | EU MRL (mg kg−1) | Linearity (Range: 5–250 μg kg−1) | Residual (%) | |
---|---|---|---|---|---|
Equation | R2 | ||||
AMPA | 1.76 | None | y = 4618x − 4087 | 0.999 | <12 |
N-acetyl-AMPA | 2.19 | None | y = 21,781x − 19,397 | 0.994 | <16 |
Chlorate | 1.46 | 0.05 | y = 30,155x − 14 | 0.994 | <16 |
Ethephon | 1.10 | 5.0 | y = 43,871x − 54,173 | 0.996 | <14 |
HEPA | 1.26 | None | y = 39,407x − 102,623 | 0.999 | <12 |
Fosetyl-Al | 1.18 | 2.0 b | y = 77,048x − 103,586 | 0.999 | <13 |
Glyphosate | 2.55 | 0.1 | y = 9506x − 11,750 | 0.998 | <11 |
Glufosinate | 2.23 | 0.15 a | y = 3071x − 5666 | 0.995 | <20 |
N-acetyl-glufosinate | 1.21 | Part of glufosinate | y = 13,979x − 29,314 | 0.999 | <12 |
Maleic hydrazide | 2.14 | 0.2 | y = 2430x + 1373 | 0.998 | <18 |
MPPA | 1.40 | Part of glufosinate | y = 26,002x − 26,203 | 0.995 | <13 |
Phosphonic acid | 1.08 | Part of fosetyl-Al | y = 28,624x − 68,551 | 0.998 | <14 |
Analyte | Recovery (%) | Repeatability (%RSD, n = 5) | Reproducibility (%RSD, n = 10) | Uexp (%) | |||
---|---|---|---|---|---|---|---|
0.01 (mg kg−1) | 0.05 (mg kg−1) | 0.01 (mg kg−1) | 0.05 (mg kg−1) | 0.01 (mg kg−1) | 0.05 (mg kg−1) | ||
AMPA | 98.0 | 95.3 | 3.94 | 2.98 | 5.04 | 3.74 | 16 |
N-acetyl-AMPA | 92.2 | 95.7 | 3.36 | 2.38 | 2.47 | 1.77 | 17 |
Chlorate | 101.1 | 102.9 | 1.53 | 1.35 | 2.31 | 1.68 | 7 |
Ethephon | 94.7 | 96.0 | 3.58 | 2.21 | 1.97 | 2.30 | 14 |
HEPA | 106.3 | 94.5 | 2.90 | 1.12 | 3.11 | 2.36 | 12 |
Fosetyl-Al | 102.4 | 97.9 | 0.94 | 0.47 | 2.47 | 1.83 | 7 |
Glyphosate | 89.4 | 95.7 | 5.12 | 2.00 | 3.90 | 3.42 | 27 |
Glufosinate | 99.8 | 87.4 | 4.19 | 2.39 | 2.25 | 2.17 | 19 |
N-acetyl-glufosinate | 100.6 | 92.3 | 4.08 | 2.05 | 2.77 | 2.13 | 16 |
Maleic hydrazide | 103.2 | 111.4 | 3.25 | 2.37 | 3.55 | 2.49 | 20 |
MPPA | 95.0 | 99.5 | 1.81 | 2.09 | 3.47 | 2.19 | 11 |
Phosphonic acid | 96.8 | 90.6 | 2.69 | 3.05 | 3.39 | 2.27 | 17 |
Analyte | Type of Pesticide a | Molecular Formula | tR (min) | Quantifier (m/z) | CE b (V) | Qualifier (m/z) | CE (V) | Fragmentor (V) |
---|---|---|---|---|---|---|---|---|
AMPA | HB | CH6NO3P | 3.04 | 110 → 63 | 21 | 110 → 79 | 35 | 116 |
N-acetyl-AMPA | HB | C3H8NO4P | 6.81 | 152 → 110 | 10 | 152 → 63 | 35 | 94 |
Chlorate | HB | ClNaO3 | 5.75 | 85 → 69 | 21 | 83 → 67 | 21 | 74 |
Ethephon | PG | C2H6ClO3P | 7.87 | 143 → 107 | 10 | 143 → 79 | 10 | 72 |
HEPA | PG | C2H7O4P | 6.20 | 125 → 95 | 14 | 125 → 79 | 28 | 98 |
Fosetyl-Al | FU | C6H18AlO9P3 | 3.24 | 109 → 81 | 12 | 109 → 63 | 34 | 90 |
Glyphosate | HB | C3H8NO5P | 8.96 | 168 → 150 | 8 | 168 → 124 | 10 | 96 |
Glufosinate | HB | C5H15N2O4P | 3.18 | 180 → 136 | 16 | 180 → 63 | 48 | 108 |
N-acetyl-glufosinate | HB | C7H14NO5P | 7.86 | 222 → 136 | 23 | 222 → 59 | 13 | 116 |
Maleic hydrazide | PG | C4H4N2O2 | 3.64 | 111 → 83 | 12 | 111 → 82 | 18 | 114 |
MPPA | HB | C4H9O4P | 8.40 | 151 → 133 | 12 | 151 → 107 | 14 | 104 |
Phosphonic acid | FU | H3PO3 | 11.68 | 81 → 79 | 15 | 81 → 63 | 35 | 54 |
Ethephon D4 (ILIS) | C2H2ClO3PD4 | 7.87 | 147 → 111 | 4 | 60 | |||
Fosetyl-Al D15 (ILIS) | 3C2D5HO3P.Al | 3.20 | 114 → 82 | 14 | 66 | |||
Glyhosate-13C2, 15N (ILIS) | C13C2H815NO5P | 17.9 | 171 → 63 | 33 | 102 | |||
18O3-Phosphonic acid (ILIS) | H3P18O3 | 7.88 | 87 → 85 | 19 | 60 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gormez, E.; Golge, O.; González-Curbelo, M.Á.; Kabak, B. Monitoring and Exposure Assessment of Fosetyl Aluminium and Other Highly Polar Pesticide Residues in Sweet Cherry. Molecules 2023, 28, 252. https://doi.org/10.3390/molecules28010252
Gormez E, Golge O, González-Curbelo MÁ, Kabak B. Monitoring and Exposure Assessment of Fosetyl Aluminium and Other Highly Polar Pesticide Residues in Sweet Cherry. Molecules. 2023; 28(1):252. https://doi.org/10.3390/molecules28010252
Chicago/Turabian StyleGormez, Emrah, Ozgur Golge, Miguel Ángel González-Curbelo, and Bulent Kabak. 2023. "Monitoring and Exposure Assessment of Fosetyl Aluminium and Other Highly Polar Pesticide Residues in Sweet Cherry" Molecules 28, no. 1: 252. https://doi.org/10.3390/molecules28010252
APA StyleGormez, E., Golge, O., González-Curbelo, M. Á., & Kabak, B. (2023). Monitoring and Exposure Assessment of Fosetyl Aluminium and Other Highly Polar Pesticide Residues in Sweet Cherry. Molecules, 28(1), 252. https://doi.org/10.3390/molecules28010252