Biological Activity of Amidino-Substituted Imidazo [4,5-b]pyridines
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. Biological Activity
2.2.1. Antiproliferative Activity In Vitro
2.2.2. Antibacterial Activity In Vitro
2.2.3. Cytotoxicity and Antiviral Activity In Vitro
3. Conclusions
4. Materials and Methods
4.1. General Methods
4.2. Synthesis
4.2.1. General Procedure for Preparation of Compounds 5–8
2-Phenyl-1H-imidazo[4:5-b]pyridine 5
4-(1H-Imidazo[4,5-b]pyridin-2-yl)benzonitrile 6
6-Bromo-2-phenyl-1H-imidazo[4,5-b]pyridine 7
4-(6-Bromo-1H-imidazo[4,5-b]pyridin-2-yl)benzonitrile 8
4.2.2. General Method for Preparation of Compounds 9–10
4-(1H-Imidazo[4,5-b]pyridin-2-yl)benzimidamide Hydrochloride 9
4-(6-Bromo-1H-imidazo[4,5-b]pyridin-2-yl)benzimidamide Hydrochloride 10
4.2.3. General Method for Preparation of Compounds 11–16
2-(4-(4,5-Dihydro-1H-imidazol-2-yl)phenyl)-1H-imidazo[4,5-b]pyridine Hydrochloride 11
2-(4-(1H-Imidazo[4,5-b]pyridin-2-yl)phenyl)-3,4,5,6-tetrahydropyrimidin-1-ium Chloride 12
4-(1H-Imidazo[4,5-b]pyridin-2-yl)-N-isopropylbenzimidamide Hydrochloride 13
6-Bromo-2-(4-(4,5-dihydro-1H-imidazol-2-yl)phenyl)-1H-imidazo[4,5-b]pyridine Hydrochloride 14
6-Bromo-2-(4-(1,4,5,6-tetrahydropyrimidin-2-yl)phenyl)-1H-imidazo[4,5-b]pyridine Hydrochloride 15
4-(6-Bromo-1H-imidazo[4,5-b]pyridin-2-yl)-N-isopropylbenzimidamide Hydrochloride 16
4.2.4. General Procedure for Synthesis of Compounds 17–19
4-(3-Methyl-3H-imidazo[4,5-b]pyridin-2-yl)benzonitrile 17
6-Bromo-3-methyl-2-phenyl-3H-imidazo[4,5-b]pyridine 18
4-(6-Bromo-3-methyl-3H-imidazo[4,5-b]pyridin-2-yl)benzonitrile 19
4.3. Biological Activity
4.3.1. Antiproliferative Activity In Vitro
Cancer Cell Lines
Proliferation Assays
4.3.2. Antibacterial Activity In Vitro
Materials
Methods
4.3.3. Antiviral Activity In Vitro
Host Cell Lines
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Gomtsyan, A. Heterocycles in drugs and drug discovery. Chem. Het. Compd. 2012, 48, 7. [Google Scholar] [CrossRef]
- Jampilek, J. Heterocycles in Medicinal Chemistry. Molecules 2019, 24, 3839. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eicher, T.; Hauptmann, S. The Chemistry of Heterocycles: Structure, Reactions, Syntheses and Applications, 2nd ed.; Wiley-VCH: Weinheim, Germany, 2003. [Google Scholar]
- Joule, J.A.; Mills, K. Heterocyclic Chemistry, 5th ed.; Wiley-VCH: Weinheim, Germany, 2010. [Google Scholar]
- Martins, P.; Jesus, J.; Santos, S.; Raposo, L.R.; Roma-Rodrigues, C.; Viana Baptista, P.; Fernandes, A.R. Heterocyclic Anticancer Compounds: Recent Advances and the Paradigm Shift towards the Use of Nanomedicine’s Tool Box. Molecules 2015, 20, 16852. [Google Scholar] [CrossRef]
- Nehra, B.; Mathew, B.; Chawla, P.A. A Medicinal Chemist’s Perspective Towards Structure Activity Relationship of Heterocycle Based Anticancer Agents. Curr. Top. Med. Chem. 2022, 22, 493. [Google Scholar] [CrossRef] [PubMed]
- Lang, D.K.; Kaur, R.; Arora, R.; Saini, B.; Arora, S. Nitrogen-Containing Heterocycles as Anticancer Agents: An Overview. Anti-Cancer Agents Med. Chem. 2020, 20, 2150. [Google Scholar] [CrossRef]
- Mohammad, A. A mini review: Biological significances of nitrogen hetero atom containing heterocyclic compounds. Int. J. Bioorg. Chem. 2017, 2, 146. [Google Scholar]
- Akhtar, J.; Khan, A.A.; Ali, Z.; Haider, R.; Shahar Yar, M. Structure-activity relationship (SAR) study and design strategies of nitrogen-containing heterocyclic moieties for their anticancer activities. Eur. J. Med. Chem. 2017, 125, 143. [Google Scholar] [CrossRef]
- Kerru, N.; Gummidi, L.; Maddila, S.; Gangu, K.K.; Jonnalagadda, S.B. A Review on Recent Advances in Nitrogen-Containing Molecules and Their Biological Applications. Molecules 2020, 25, 1909. [Google Scholar] [CrossRef] [Green Version]
- Kishbaugh, T.L.S. Pyridines and Imidazopyridines with Medicinal Significance. Curr. Top Med. Chem. 2016, 16, 3274. [Google Scholar] [CrossRef]
- Klingsberg, E. Pyridines and Its Derivatives, Part 1. In The Chemistry of Heterocyclic Compounds; Wiley: New York, NY, USA, 2009; Volume 14. [Google Scholar]
- Krause, M.; Foks, H.; Gobis, K. Pharmacological Potential and Synthetic Approaches of Imidazo[4,5-b]pyridine and Imidazo[4,5-c]pyridine Derivatives. Molecules 2017, 22, 399. [Google Scholar] [CrossRef] [Green Version]
- Taha, M.; Ismail, N.H.; Imran, S.; Rashwan, H.; Jamil, W.; Ali, S.; Kashif, S.M.; Rahim, F.; Salar, U.; Khan, K.M. Synthesis of 6-chloro-2-aryl-1H-imidazo[4,5-b]pyridine derivatives: Antidiabetic, antioxidant, β-glucuronidase inhibiton and their molecular docking studies. Bioorg. Chem. 2016, 65, 48–56. [Google Scholar] [CrossRef]
- Newhouse, B.J.; Wenglowsky, S.; Grina, J.; Laird, E.R.; Voegtli, W.C.; Ren, L.; Ahrendt, K.; Buckmelter, A.; Gloor, S.L.; Klopfenstein, N.; et al. Imidazo[4,5-b]pyridine inhibitors of B-Raf kinase. Bioorg. Med. Chem. Lett. 2013, 23, 5896–5899. [Google Scholar] [CrossRef]
- Dahan-Farkas, N.; Langley, C.; Rousseau, A.L.; Yadav, D.B.; Davids, H.; de Koning, C.B. 6-Substituted imidazo[1,2-a]pyridines: Synthesis and biological activity against colon cancer cell lines HT-29 and Caco-2. Eur. J. Med. Chem. 2011, 46, 4573–4583. [Google Scholar] [CrossRef] [PubMed]
- Vasbinder, M.M.; Alimzhanov, M.; Augustin, M.; Bebernitz, G.; Bell, K.; Chuaqui, C.; Deegan, T.; Ferguson, A.D.; Goodwin, K.; Huszar, D.; et al. Identification of azabenzimidazoles as potent JAK1 selective inhibitors. Bioorg. Med. Chem. Lett. 2016, 26, 60–67. [Google Scholar] [CrossRef] [PubMed]
- Baladi, T.; Aziz, J.; Dufour, F.; Abet, V.; Stoven, V.; Radvanyi, F.; Poyer, F.; Wu, T.D.; Guerquin-Kern, J.L.; Bernard-Pierrot, I.; et al. Design, synthesis, biological evaluation and cellular imaging of imidazo[4,5-b]pyridine derivatives as potent and selective TAM inhibitors. Bioorg. Med. Chem. 2018, 26, 5510. [Google Scholar] [CrossRef] [PubMed]
- Al-Tel, T.H.; Al-Qawasmeh, R.A.; Zaarour, R. Design, synthesis and in vitro antimicrobial evaluation of novel imidazo[1,2-a]pyridine and imidazo[2,1-b][1,3]benzothiazole motifs. Eur. J. Med. Chem. 2011, 46, 1874. [Google Scholar] [CrossRef]
- Starr, J.T.; Sciotti, R.J.; Hanna, D.L.; Huband, M.D.; Mullins, L.M.; Cai, H.; Gage, J.W.; Lockard, M.; Rauckhorst, M.R.; Owen, R.M.; et al. 5-(2-Pyrimidinyl)-imidazo[1,2-a]pyridines are antibacterial agents targeting the ATPase domains of DNA gyrase and topoisomerase IV. Bioorg. Med. Chem. Lett. 2009, 19, 5302. [Google Scholar] [CrossRef]
- Cannalire, R.; Barreca, M.L.; Manfroni, G.; Cecchetti, V.A. Journey around the Medicinal Chemistry of Hepatitis C Virus Inhibitors Targeting NS4B: From Target to Preclinical Drug Candidates. J. Med. Chem. 2016, 59, 16. [Google Scholar] [CrossRef]
- Qian, Y.; Zhang, Y.; Zhong, P.; Peng, K.; Xu, Z.; Chen, X.; Lu, K.; Chen, G.; Li, X.; Liang, G. Inhibition of inflammation and oxidative stress by an imidazopyridine derivative X22 prevents heart injury from obesity. J. Cell. Mol. Med. 2016, 20, 1427. [Google Scholar] [CrossRef]
- Boček, I.; Hranjec, M.; Vianello, R. Imidazo[4,5-b]pyridine derived iminocoumarins as potential pH probes: Synthesis, spectroscopic and computational studies of their protonation equilibria. J. Mol. Liq. 2022, 355, 118982. [Google Scholar] [CrossRef]
- Boček, I.; Starčević, K.; Novak Jovanović, I.; Vianello, R.; Hranjec, M. Novel imidazo[4,5-b]pyridine derived acrylonitriles: A combined experimental and computational study of their antioxidative potential. J. Mol. Liq. 2021, 342, 117527. [Google Scholar] [CrossRef]
- Boček, I.; Hok, L.; Persoons, L.; Daelemans, D.; Vianello, R.; Hranjec, M. Imidazo[4,5-b]pyridine derived tubulin polymerization inhibitors: Design, synthesis, biological activity in vitro and computational analysis. Bioorg. Chem. 2022, 127, 106032. [Google Scholar] [CrossRef] [PubMed]
- Hranjec, M.; Lučić, B.; Ratkaj, I.; Kraljević Pavelić, S.; Piantanida, I.; Pavelić, K.; Karminski-Zamola, G. Novel Imidazo[4,5-b]Pyridine and Triaza-Benzo[c]Fluorene Derivatives: Synthesis, Antiproliferative Activity and DNA Binding Studies. Eur. J. Med. Chem. 2011, 46, 2748. [Google Scholar] [CrossRef] [PubMed]
- Abou-Elkhair, R.A.I.; Hassan, A.E.A.; Boykin, D.W.; Wilson, W.D. Lithium hexamethyldisilazane transformation of transiently protected 4-Aza/benzimidazole nitriles to amidines and their dimethyl sulfoxide mediated imidazole ring formation. Org Lett. 2016, 18, 4714. [Google Scholar] [CrossRef] [Green Version]
- Khanna, I.K.; Weier, R.M.; Lentz, K.T.; Swenton, L.; Lankin, D.C. Facile, Regioselective Syntheses of N-Alkylated 2,3-Diaminopyridines and Imidazo[4,5-b]pyridine. J. Org. Chem. 1995, 60, 960–965. [Google Scholar] [CrossRef]
- Goker, H.; Ozden, S. Regioselective N-alkylation of 2-(3,4-dimethoxyphenyl)imidazo[4,5-b] and [4,5-c]pyridine oxide derivatives: Synthesis and structure elucidation by NMR. J. Mol. Struct. 2019, 1197, 183–195. [Google Scholar] [CrossRef]
- Hranjec, M.; Kralj, M.; Piantanida, I.; Sedić, M.; Šuman, L.; Pavelić, K.; Karminski-Zamola, G. Novel Cyano- and Amidino-Substituted Derivatives of Styryl-2-Benzimidazoles and Benzimidazo[1,2-a]quinolines. Synthesis, Photochemical Synthesis, DNA binding and Antitumor Evaluation, Part 3. J. Med. Chem. 2007, 50, 569. [Google Scholar] [CrossRef]
- Hranjec, M.; Pavlović, G.; Marjanović, M.; Karminski-Zamola, G. Benzimidazole derivatives related to 2,3-acrylonitriles, benzimidazo[1,2-a]quinolines and fluorenes: Synthesis, Antitumor Evaluation in vitro and Crystal Structure Determination. Eur. J. Med. Chem. 2010, 45, 2405. [Google Scholar] [CrossRef]
- Liu, L.; Wang, F.; Tong, Y.; Li, L.F.; Liu, Y.; Gao, W.Q. Pentamidine inhibits prostate cancer progression via selectively inducing mitochondrial DNA depletion and dysfunction. Cell Prolif. 2020, 53, e12718. [Google Scholar] [CrossRef] [Green Version]
- Poje, G.; Marinović, M.; Pavić, K.; Mioč, M.; Kralj, M.; Pessanha de Carvalho, L.; Held, J.; Perković, I.; Rajić, Z. Harmicens, Novel Harmine and Ferrocene Hybrids: Design, Synthesis and Biological Activity. Int. J. Mol. Sci. 2022, 23, 9315. [Google Scholar] [CrossRef]
- Grgičević, I.; Mikulandra, I.; Bukvić, M.; Banjanac, M.; Radovanović, V.; Habinovec, I.; Bertoša, B.; Novak, P. Discovery of macrozones, new antimicrobial thiosemicarbazone-based azithromycin conjugates: Design, synthesis and in vitro biological evaluation. Int. J. Antimicrobl. Agents 2020, 56, 106147. [Google Scholar] [CrossRef] [PubMed]
Cpd | IC50 (μM) | |||||||
---|---|---|---|---|---|---|---|---|
Cell Lines | ||||||||
LN-229 | Capan-1 | HCT-116 | NCI-H460 | DND-41 | HL-60 | K-562 | Z-138 | |
5 | >100 | 98.0 ± 2.9 | >100 | >100 | >100 | 81.7±26 | >100 | >100 |
6 | >100 | >100 | >100 | >100 | >100 | >100 | >100 | >100 |
8 | >100 | >100 | >100 | >100 | >100 | >100 | >100 | >100 |
9 | >100 | >100 | >100 | >100 | >100 | >100 | >100 | >100 |
10 | >100 | >100 | >100 | >100 | >100 | >100 | >100 | >100 |
11 | 81.7 ± 17.4 | 74.5 ± 36.1 | >100 | 84.9 ± 21.4 | 48.8 ± 12.5 | >100 | >100 | 76.4 ± 33.4 |
12 | >100 | >100 | >100 | >100 | >100 | >100 | >100 | >100 |
13 | >100 | >100 | >100 | >100 | >100 | >100 | >100 | >100 |
14 | 8.0 ± 1.8 | 9.4 ± 0.4 | 13.6 ± 2.8 | 13.0 ± 7.6 | 10.8 ± 0.4 | 9.5 ± 1.3 | 49.7 ± 3.1 | 8.5 ± 2.0 |
15 | 73.5 ± 0.8 | >100 | >100 | >100 | 17.0 ± 1.3 | >100 | >100 | 29.1 ± 16.5 |
16 | 52.4 ± 8.1 | 52.7 ± 2.9 | 77.2 ± 19.1 | >100 | 11.9 ± 0.1 | 91.4 ± 5.1 | 53.6 ± 2.8 | 12.1 ± 0.8 |
17 | >100 | >100 | >100 | >100 | >100 | >100 | >100 | >100 |
18 | >100 | >100 | >100 | >100 | >100 | >100 | >100 | >100 |
19 | >100 | >100 | >100 | >100 | >100 | >100 | >100 | >100 |
DTX | 0.0041 ± 0.003 | 0.0038 ± 0.003 | 0.0025 ± 0.000 | 0.0034 ± 0.000 | 0.0025 ± 0.000 | 0.0022 ± 0.000 | 0.0085 ± 0.001 | 0.0023 ± 0.000 |
STS | 0.0668 ± 0.016 | 0.0519 ± 0.021 | 0.0701 ± 0.006 | 0.0448 ± 0.004 | 0.0548 ± 0.001 | 0.0586 ± 0.018 | 0.0374 ± 0.006 | 0.0484 ± 0.007 |
Cpd | IC50 (μM) | ||
---|---|---|---|
Cell Lines | |||
PC3 | HeLa | SW 620 | |
5 | >100 | 13.6 ± 3.4 | >100 |
6 | >100 | 28.9 ± 7.2 | >100 |
8 | 3.2 ± 0.7 | 1.8 ± 0.02 | 2.0 ± 0.2 |
9 | >100 | >100 | >100 |
10 | ≥ 100 | 1.3 ± 0.26 | 0.4 ± 0.1 |
11 | ≥ 100 | 11.1 ± 3.5 | 12.1 ± 3.7 |
12 | >100 | >100 | >100 |
13 | >100 | >100 | >100 |
14 | 1.5 ± 0.5 | 4.3 ± 2.6 | 0.7 ± 0.3 |
15 | 8.6 ± 0.7 | 7.3 ± 0.4 | 3.5 ± 0.2 |
16 | 13.3 ± 2.6 | 13.3 ± 4.3 | 7.4 ± 1.1 |
17 | >100 | >100 | >100 |
18 | >100 | 48.0 ± 0.2 | >100 |
19 | 28.8 ± 15.0 | 26.1 ± 0.01 | 63.8 ± 7.4 |
etoposide | 11.6 ± 1.9 | 0.004 ± 0.001 | 0.63 ± 0.1 |
doxorubicine | 0.13 ± 0.02 | 0.16 ± 0.05 | 0.02 ± 0.1 |
Cpd | MIC (μM) | |||
---|---|---|---|---|
S. aureus ATCC 29213 | E. coli ATCC 25922 | E. coli Efflux Del | S. Pneumoniae ATCC 49619 | |
5 | >64 | >64 | >64 | >64 |
6 | >64 | >64 | >64 | >64 |
7 | >64 | >64 | >64 | >64 |
8 | >64 | >64 | >64 | >64 |
9 | >64 | >64 | >64 | >64 |
10 | >64 | >64 | >64 | >64 |
11 | >64 | >64 | >64 | >64 |
12 | >64 | >64 | >64 | >64 |
13 | >64 | >64 | >64 | >64 |
14 | >64 | >64 | 32 | >64 |
15 | >64 | >64 | >64 | >64 |
16 | >64 | >64 | >64 | >64 |
17 | >64 | >64 | >64 | >64 |
18 | >64 | >64 | >64 | >64 |
19 | >64 | >64 | >64 | >64 |
Ampicillin | 1 | 1 | 2 | <0.125 |
Ceftazidime | 16 | 0.25 | 0.25 | 0.25 |
Ciprofloxacin | 0.25 | <0.125 | <0.125 | 0.25 |
Meropenem | <0.125 | <0.125 | <0.125 | <0.125 |
Cpd | CC50 µM | ||
---|---|---|---|
HEL 299 | Huh7 | MDCK | |
5 | 72.8 ± 38.5 | >100 | 79.2 ± 29.4 |
6 | >100 | >100 | >100 |
7 | >100 | >100 | >100 |
8 | >100 | >100 | >100 |
9 | >100 | >100 | >100 |
10 | >100 | >100 | >100 |
11 | >100 | 34.9 ± 6.7 | >100 |
12 | >100 | >100 | >100 |
13 | 81.1 ± 26.8 | >100 | >100 |
14 | 9.3 ± 2.3 | <0.8 | 33.9 ± 0.1 |
15 | >100 | 50.3 | >100 |
16 | >100 | 3.0 ± 2.1 | 71.2 ± 40.8 |
17 | >100 | >100 | >100 |
18 | >100 | >100 | >100 |
19 | >100 | >100 | >100 |
Remdesivir | >10 | >10 | - |
Ribavirin | >250 | 10.7 ± 2.6 | 80.2 ± 18.6 |
Zanamivir | - | - | >100 |
Rimantadine | - | - | >100 |
BVDU | - | - | >100 |
Cpd | EC50 (μM) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Viruses | |||||||||||
HCoV 229E HEL 299 | HCoV OC43 HEL 299 | HCoV NL63 Huh7 | Influenza H1N1 MDCK | Influenza H3N2 MDCK | Influenza B MDCK | RSV A Long HEL 299 | HSV-1 KOS HSV-1 | YFV 17D Huh7 | Zika mr766 Huh7 | Sindbis Huh7 | |
7 | >100 | >100 | >100 | >100 | >100 | >100 | 21.0 ± 5.9 | >100 | >100 | >100 | >100 |
8 | >100 | >100 | >100 | 72.35 ± 8.0 | 35.85 ± 12.4 | 56.7 ± 10.2 | >100 | >100 | >100 | >100 | >100 |
10 | >100 | >100 | >100 | 71.35 ± 24.3 | 79.2 ± 14.7 | 93.95 ± 5.2 | 86.9 ± 18.6 | >100 | >100 | >100 | >100 |
17 | >100 | >100 | >100 | >100 | >100 | >100 | 79.0 ± 29.7 | >100 | >100 | >100 | >100 |
Remdesivir | 0.06 | 0.06 | 0.03 | - | - | - | 0.03 ± 0.01 | - | 6.2 | 0.7 | >10 |
Ribavirin | 82.6 | 170.1 | >250 | 10.5 ± 3.8 | 4 ± 2.7 | 2.8 ± 1.8 | 10.8 ± 2.1 | - | >250 | >250 | 148.1 |
Zanamivir | - | - | - | 0.13 ± 0.04 | 16.8 ± 6.8 | 0.05 ± 0.03 | - | - | - | - | - |
Rimantadine | - | - | - | 4.4 ± 4.2 | 0.05 ± 0.05 | >100 | - | - | - | - | - |
BVDU | - | - | - | - | - | - | - | 0.05 | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pavlinac, I.B.; Zlatić, K.; Persoons, L.; Daelemans, D.; Banjanac, M.; Radovanović, V.; Butković, K.; Kralj, M.; Hranjec, M. Biological Activity of Amidino-Substituted Imidazo [4,5-b]pyridines. Molecules 2023, 28, 34. https://doi.org/10.3390/molecules28010034
Pavlinac IB, Zlatić K, Persoons L, Daelemans D, Banjanac M, Radovanović V, Butković K, Kralj M, Hranjec M. Biological Activity of Amidino-Substituted Imidazo [4,5-b]pyridines. Molecules. 2023; 28(1):34. https://doi.org/10.3390/molecules28010034
Chicago/Turabian StylePavlinac, Ida Boček, Katarina Zlatić, Leentje Persoons, Dirk Daelemans, Mihajlo Banjanac, Vedrana Radovanović, Kristina Butković, Marijeta Kralj, and Marijana Hranjec. 2023. "Biological Activity of Amidino-Substituted Imidazo [4,5-b]pyridines" Molecules 28, no. 1: 34. https://doi.org/10.3390/molecules28010034
APA StylePavlinac, I. B., Zlatić, K., Persoons, L., Daelemans, D., Banjanac, M., Radovanović, V., Butković, K., Kralj, M., & Hranjec, M. (2023). Biological Activity of Amidino-Substituted Imidazo [4,5-b]pyridines. Molecules, 28(1), 34. https://doi.org/10.3390/molecules28010034