Mineral Profile, Antioxidant, Anti-Inflammatory, Antibacterial, Anti-Urease and Anti-α-Amylase Activities of the Unripe Fruit Extracts of Pistacia atlantica
Abstract
:1. Introduction
2. Results
2.1. Mineral Elemental Analysis
2.2. Assessment of Total Bioactive Compounds
2.3. Antioxidant Activity
2.4. Anti-Inflammatory Activity
2.4.1. In Vitro Anti-Inflammatory Activity
2.4.2. In Vivo Anti-Inflammatory Activity
2.5. Antimicrobial Susceptibility Assay
2.6. Assessment of the Urease Inhibitory Activity
2.7. Assessment of α-Amylase Inhibitory Activity
3. Discussion
4. Material and Methods
4.1. Reagents and Materials
4.2. Plant Materials and Secondary Metabolites Extraction
4.3. Mineral Elements and Calculations
4.4. Determination of the Total Phenols and Flavonoids Contents
4.4.1. Total Phenol Content (TPC)
4.4.2. Total Flavonoid Content (TFC)
4.5. Evaluation of Biological Activity
4.5.1. DPPH Scavenging Activity
4.5.2. ABTS Scavenging Activity
4.5.3. Reducing Power (RP) Activity
4.5.4. Anti-Inflammatory Activity
Evaluation of Possible Anti-Inflammatory Activity In Vitro
Evaluation of the Anti-Inflammatory Activity In Vivo
4.5.5. Acute Oral Toxicity Test
4.5.6. Antibacterial Activity
4.5.7. Urease Inhibitory Assay
4.5.8. α-Amylase Inhibition Assay
4.6. Statistical Calculations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Axiotis, E.; Halabalaki, M.; Skaltsounis, L.A. An ethnobotanical study of medicinal plants in the Greek islands of North Aegean region. Front. Pharmacol. 2018, 9, 409. [Google Scholar] [CrossRef]
- Islam, A.T.M.R.; Ferdousi, J.; Shahinozzaman, M. Previously published ethno-pharmacological reports reveal the potentiality of plants and plant-derived products used as traditional home remedies by Bangladeshi COVID-19 patients to combat SARS-CoV-2. Saudi J. Biol. Sci. 2021, 28, 6653–6673. [Google Scholar] [CrossRef]
- Bergman, M.E.; Davis, B.; Phillips, M.A. Medically useful plant terpenoids: Biosynthesis, occurrence, and mechanism of action. Molecules 2019, 24, 3961. [Google Scholar] [CrossRef] [Green Version]
- Zahnit, W.; Smara, O.; Bechki, L.; Bensouici, C.; Messaoudi, M.; Benchikha, N.; Larkem, I.; Awuchi, C.G.; Sawicka, B.; Simal-Gandara, J. Phytochemical Profiling, Mineral Elements, and Biological Activities of Artemisia campestris L. Grown in Algeria. Horticulturae 2022, 8, 914. [Google Scholar] [CrossRef]
- Ramawat, K.G.; Arora, J. Medicinal plants domestication, cultivation, improvement, and alternative technologies for the production of high value therapeutics: An overview. In Medicinal Plants; Springer: Berlin/Heidelberg, Germany, 2021; pp. 1–29. [Google Scholar]
- Silva, E.M.; Souza, J.N.S.; Rogez, H.; Rees, J.-F.; Larondelle, Y. Antioxidant activities and polyphenolic contents of fifteen selected plant species from the Amazonian region. Food Chem. 2007, 101, 1012–1018. [Google Scholar] [CrossRef]
- Cartea, M.E.; Francisco, M.; Soengas, P.; Velasco, P. Phenolic compounds in Brassica vegetables. Molecules 2010, 16, 251–280. [Google Scholar] [CrossRef] [PubMed]
- Larkem, I.; Tarai, N.; Benchikha, N.; Messaoudi, M.; Begaa, S.; Martins, M.; Silva, A.M.S.; Pinto, D.C.G.A. Chemical profile and antioxidant activity of Sesbania bispinosa (Jacq.) W. Wight aerial parts and seeds extracts. J. Food Process. Preserv. 2021, 45, e15468. [Google Scholar] [CrossRef]
- Dikpınar, T.; Süzgeç-Selçuk, S. Antimicrobial activities of medicinal plants containing phenolic compounds. Nat. Prod. J. 2020, 10, 514–534. [Google Scholar] [CrossRef]
- Shahidi, F.; Zhong, Y. Antioxidants: Regulatory status. Bailey’s Ind. Oil Fat Prod. 2005, 1, 491–512. [Google Scholar]
- Cox, S.D.; Jayasinghe, K.C.; Markham, J.L. Antioxidant activity in Australian native sarsaparilla (Smilax glyciphylla). J. Ethnopharmacol. 2005, 101, 162–168. [Google Scholar] [CrossRef]
- Abad-García, B.; Berrueta, L.A.; López-Márquez, D.M.; Crespo-Ferrer, I.; Gallo, B.; Vicente, F. Optimization and validation of a methodology based on solvent extraction and liquid chromatography for the simultaneous determination of several polyphenolic families in fruit juices. J. Chromatogr. A 2007, 1154, 87–96. [Google Scholar] [CrossRef] [PubMed]
- Messaoudi, M.; Rebiai, A.; Sawicka, B.; Atanassova, M.; Ouakouak, H.; Larkem, I.; Egbuna, C.; Awuchi, C.G.; Boubekeur, S.; Ferhat, M.A. Effect of Extraction Methods on Polyphenols, Flavonoids, Mineral Elements, and Biological Activities of Essential Oil and Extracts of Mentha pulegium L. Molecules 2022, 27, 11. [Google Scholar] [CrossRef] [PubMed]
- Benchikha, N.; Chelalba, I.; Debbeche, H.; Messaoudi, M.; Begaa, S.; Larkem, I.; Amara, D.G.; Rebiai, A.; Simal-Gandara, J.; Sawicka, B. Lobularia libyca: Phytochemical Profiling, Antioxidant and Antimicrobial Activity Using In Vitro and In Silico Studies. Molecules 2022, 27, 3744. [Google Scholar] [CrossRef] [PubMed]
- Gairola, S.; Shariff, N.M.; Bhatt, A.; Kala, C.P. Influence of climate change on production of secondary chemicals in high altitude medicinal plants: Issues needs immediate attention. J. Med. Plants Res. 2010, 4, 1825–1829. [Google Scholar]
- SAEB1, K.; KAKOUEI1, A.; Hajati, R.J.; POURSHAMSIAN1, K.; Babakhani, B. Investigating the Effect of Height on Essential Oils of Urtica diocia L.(Case Study: Ramsar, Mazandaran, Iran). Orient. J. Chem. 2011, 27, 1345–1350. [Google Scholar]
- Jančářová, I.; Jančář, L.; Náplavová, A.; Kubáň, V. Changes of organic acids and phenolic compounds contents in grapevine berries during their ripening. Open Chem. 2013, 11, 1575–1582. [Google Scholar] [CrossRef] [Green Version]
- Zheng, H.-Z.; Kim, Y.-I.; Chung, S.-K. A profile of physicochemical and antioxidant changes during fruit growth for the utilisation of unripe apples. Food Chem. 2012, 131, 106–110. [Google Scholar] [CrossRef]
- Jiao, Y.; Chen, D.; Fan, M.; Quek, S.Y. UPLC-QqQ-MS/MS-based phenolic quantification and antioxidant activity assessment for thinned young kiwifruits. Food Chem. 2019, 281, 97–105. [Google Scholar] [CrossRef]
- Labbe, M.; Ulloa, P.A.; Lopez, F.; Saenz, C.; Pena, A.; Salazar, F.N. Characterization of chemical compositions and bioactive compounds in juices from pomegranates (‘wonderful’, ‘chaca’ and ‘codpa’) at different maturity stages. Chil. J. Agric. Res. 2016, 76, 479–486. [Google Scholar] [CrossRef] [Green Version]
- Honisch, C.; Osto, A.; de Matos, A.D.; Vincenzi, S.; Ruzza, P. Isolation of a tyrosinase inhibitor from unripe grapes juice: A spectrophotometric study. Food Chem. 2020, 305, 125506. [Google Scholar] [CrossRef]
- Ksouri, R.; Megdiche, W.; Falleh, H.; Trabelsi, N.; Boulaaba, M.; Smaoui, A.; Abdelly, C. Influence of biological, environmental and technical factors on phenolic content and antioxidant activities of Tunisian halophytes. Comptes Rendus Biol. 2008, 331, 865–873. [Google Scholar] [CrossRef] [PubMed]
- Mecherara-Idjeri, S.; Hassani, A.; Castola, V.; Casanova, J. Composition of leaf, fruit and gall essential oils of Algerian Pistacia atlantica Desf. J. Essent. Oil Res. 2008, 20, 215–219. [Google Scholar] [CrossRef]
- Gourine, N.; Yousfi, M.; Bombarda, I.; Nadjemi, B.; Stocker, P.; Gaydou, E.M. Antioxidant activities and chemical composition of essential oil of Pistacia atlantica from Algeria. Ind. Crops Prod. 2010, 31, 203–208. [Google Scholar] [CrossRef]
- Mahjoub, F.; Rezayat, K.A.; Yousefi, M.; Mohebbi, M.; Salari, R. Pistacia atlantica Desf. A review of its traditional uses, phytochemicals and pharmacology. J. Med. Life 2018, 11, 180. [Google Scholar] [CrossRef]
- Bozorgi, M.; Memariani, Z.; Mobli, M.; Salehi Surmaghi, M.H.; Shams-Ardekani, M.R.; Rahimi, R. Five Pistacia species (P. vera, P. atlantica, P. terebinthus, P. khinjuk, and P. lentiscus): A review of their traditional uses, phytochemistry, and pharmacology. Sci. World J. 2013, 2013, 219815. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmed, Z.B.; Yousfi, M.; Viaene, J.; Dejaegher, B.; Demeyer, K.; Vander Heyden, Y. Four Pistacia atlantica subspecies (atlantica, cabulica, kurdica and mutica): A review of their botany, ethnobotany, phytochemistry and pharmacology. J. Ethnopharmacol. 2021, 265, 113329. [Google Scholar] [CrossRef]
- Soetan, K.O.; Olaiya, C.O.; Oyewole, O.E. The importance of mineral elements for humans, domestic animals and plants: A review. Afr. J. Food Sci. 2010, 4, 200–222. [Google Scholar]
- Gharibzahedi, S.M.T.; Jafari, S.M. The importance of minerals in human nutrition: Bioavailability, food fortification, processing effects and nanoencapsulation. Trends Food Sci. Technol. 2017, 62, 119–132. [Google Scholar] [CrossRef]
- Sawicka, B.; Ziarati, P.; Messaoudi, M.; Agarpanah, J.; Skiba, D.; Bienia, B.; Barbaś, P.; Rebiai, A.; Krochmal-Marczak, B.; Yeganehpoor, F. Role of Herbal Bioactive Compounds as a Potential Bioavailability Enhancer for Active Pharmaceutical Ingredients. In Handbook of Research on Advanced Phytochemicals and Plant-Based Drug Discovery; IGI Global: Hershey, PA, USA, 2022; pp. 450–495. [Google Scholar]
- National Research Council (U.S.). Recommended Dietary Allowances; National Acadamy Press: Washington, DC, USA, 1989. [Google Scholar]
- Begaa, S.; Messaoudi, M.; Benarfa, A. Statistical Approach and Neutron Activation Analysis for Determining Essential and Toxic Elements in Two Kinds of Algerian Artemisia Plant. Biol. Trace Elem. Res. 2021, 199, 2399–2405. [Google Scholar] [CrossRef]
- Speich, M.; Pineau, A.; Ballereau, F. Minerals, trace elements and related biological variables in athletes and during physical activity. Clin. Chim. Acta 2001, 312, 1–11. [Google Scholar] [CrossRef]
- Benmahieddine, A.; Belyagoubi-Benhammou, N.; Belyagoubi, L.; El Zerey-Belaskri, A.; Gismondi, A.; Di Marco, G.; Canini, A.; Bechlaghem, N.; Bekkara, F.A.; Djebli, N. Influence of plant and environment parameters on phytochemical composition and biological properties of Pistacia atlantica Desf. Biochem. Syst. Ecol. 2021, 95, 104231. [Google Scholar] [CrossRef]
- Belyagoubi, L.; Belyagoubi-Benhammou, N.; Atik-Bekkara, F.; Coustard, J.M. Effects of extraction solvents on phenolic content and antioxidant properties of Pistacia atlantica Desf fruits from Algeria. Int. Food Res. J. 2016, 23, 948–953. [Google Scholar]
- Toul, F.; Belyagoubi-Benhammou, N.; Zitouni, A.; Atik-Bekkara, F. Antioxidant activity and phenolic profile of different organs of Pistacia atlantica Desf. subsp. atlantica from Algeria. Nat. Prod. Res. 2017, 31, 718–723. [Google Scholar] [CrossRef]
- Jouki, M.; Khazaei, N. Compare of extraction of phenolic compounds from Pistacia atlantica in different solvents. Adv. Biomed. Res. Proc. 2010, 1, 361–365. [Google Scholar]
- Bakka, C.; Hadjadj, M.; Smara, O.; Dendougui, H.; Mahdjar, S. In vitro antioxidant activities and total phenolic content of extracts from Pistacia atlantica desf. J. Pharm. Sci. Res. 2019, 11, 3634–3637. [Google Scholar]
- Tahir, N.A.; Ahmed, J.O.; Azeez, H.A.; Palani, W.R.M.; Omer, D.A. Phytochemical, antibacterial, antioxidant and phytotoxicity screening of the extracts collected from the fruit and root of wild mt. Atlas mastic tree (Pistacia atlantica subsp. Kurdica). Appl. Ecol. Environ. Res. 2019, 17, 4417–4429. [Google Scholar] [CrossRef]
- Luximon-Ramma, A.; Bahorun, T.; Soobrattee, M.A.; Aruoma, O.I. Antioxidant activities of phenolic, proanthocyanidin, and flavonoid components in extracts of Cassia fistula. J. Agric. Food Chem. 2002, 50, 5042–5047. [Google Scholar] [CrossRef] [PubMed]
- Majhenič, L.; Škerget, M.; Knez, Ž. Antioxidant and antimicrobial activity of guarana seed extracts. Food Chem. 2007, 104, 1258–1268. [Google Scholar] [CrossRef]
- Rigane, G.; Ghazghazi, H.; Aouadhi, C.; Ben Salem, R.; Nasr, Z. Phenolic content, antioxidant capacity and antimicrobial activity of leaf extracts from Pistacia atlantica. Nat. Prod. Res. 2017, 31, 696–699. [Google Scholar] [CrossRef]
- Peksel, A.; Arisan-Atac, I.; Yanardag, R. Evaluation of antioxidant and antiacetylcholinesterase activities of the extracts of Pistacia atlantica Desf. Leaves. J. Food Biochem. 2010, 34, 451–476. [Google Scholar] [CrossRef]
- Katalinic, V.; Milos, M.; Kulisic, T.; Jukic, M. Screening of 70 medicinal plant extracts for antioxidant capacity and total phenols. Food Chem. 2006, 94, 550–557. [Google Scholar] [CrossRef]
- Jayaprakasha, G.K.; Singh, R.P.; Sakariah, K.K. Antioxidant activity of grape seed (Vitis vinifera) extracts on peroxidation models in vitro. Food Chem. 2001, 73, 285–290. [Google Scholar] [CrossRef]
- Hatamnia, A.A.; Abbaspour, N.; Darvishzadeh, R. Antioxidant activity and phenolic profile of different parts of Bene (Pistacia atlantica subsp. kurdica) fruits. Food Chem. 2014, 145, 306–311. [Google Scholar] [CrossRef] [PubMed]
- Belyagoubi-Benhammou, N.; Belyagoubi, L.; El Zerey-Belaskri, A.; Atik-Bekkara, F. In vitro antioxidant properties of flavonoid fractions from Pistacia atlantica Desf. subsp. atlantica fruit using five techniques. J. Mech. Eng. Sci. 2014, 6, 1118–1125. [Google Scholar]
- Zhang, Y.-J.; Gan, R.-Y.; Li, S.; Zhou, Y.; Li, A.-N.; Xu, D.-P.; Li, H.-B. Antioxidant phytochemicals for the prevention and treatment of chronic diseases. Molecules 2015, 20, 21138–21156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huyut, Z.; Beydemir, Ş.; Gülçin, İ. Antioxidant and antiradical properties of selected flavonoids and phenolic compounds. Biochem. Res. Int. 2017, 2017, 7616791. [Google Scholar] [CrossRef] [Green Version]
- Fang, Y.-Z.; Yang, S.; Wu, G. Free radicals, antioxidants, and nutrition. Nutrition 2002, 18, 872–879. [Google Scholar] [CrossRef]
- Shahidi, F. Antioxidant properties of food phenolics. Phenolics Food Nutraceuticals 2004, 1, 403. [Google Scholar]
- Liu, R.H. Health-promoting components of fruits and vegetables in the diet. Adv. Nutr. 2013, 4, 384S–392S. [Google Scholar] [CrossRef] [Green Version]
- Aune, D.; Giovannucci, E.; Boffetta, P.; Fadnes, L.T.; Keum, N.; Norat, T.; Greenwood, D.C.; Riboli, E.; Vatten, L.J.; Tonstad, S. Fruit and vegetable intake and the risk of cardiovascular disease, total cancer and all-cause mortality—A systematic review and dose-response meta-analysis of prospective studies. Int. J. Epidemiol. 2017, 46, 1029–1056. [Google Scholar] [CrossRef] [Green Version]
- Khan, A.W.; Jan, S.; Parveen, S.; Khan, R.A.; Saeed, A.; Tanveer, A.J.; Shad, A.A. Phytochemical analysis and enzyme inhibition assay of Aerva javanica for ulcer. Chem. Cent. J. 2012, 6, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Khan, H.; Ali Khan, M.; Hussan, I. Enzyme inhibition activities of the extracts from rhizomes of Gloriosa superba Linn (Colchicaceae). J. Enzym. Inhib. Med. Chem. 2007, 22, 722–725. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lateef, M.; Iqbal, L.; Fatima, N.; Siddiqui, K.; Afza, N.; Zia-ul-Haq, M.; Ahmad, M. Evaluation of antioxidant and urease inhibition activities of roots of Glycyrrhiza glabra. Pak J. Pharm. Sci. 2012, 25, 99–102. [Google Scholar] [PubMed]
- Khan, M.A.; Khan, H.; Tariq, S.A.; Pervez, S. Urease inhibitory activity of aerial parts of Artemisia scoparia: Exploration in an in vitro study. Ulcers 2014, 2014, 84736. [Google Scholar] [CrossRef] [Green Version]
- Zengin, G.; Sarikurkcu, C.; Aktumsek, A.; Ceylan, R.; Ceylan, O. A comprehensive study on phytochemical characterization of Haplophyllum myrtifolium Boiss. endemic to Turkey and its inhibitory potential against key enzymes involved in Alzheimer, skin diseases and type II diabetes. Ind. Crops Prod. 2014, 53, 244–251. [Google Scholar] [CrossRef]
- Mimori, Y.; Nakamura, S.; Yukawa, M. Abnormalities of acetylcholinesterase in Alzheimer’s disease with special reference to effect of acetylcholinesterase inhibitor. Behav. Brain Res. 1997, 83, 25–30. [Google Scholar] [CrossRef] [PubMed]
- Kasabri, V.; Afifi, F.U.; Hamdan, I. In vitro and in vivo acute antihyperglycemic effects of five selected indigenous plants from Jordan used in traditional medicine. J. Ethnopharmacol. 2011, 133, 888–896. [Google Scholar] [CrossRef]
- Behmanesh, M.A.; Poormoosavi, S.M.; Mahmoodi-kouhi, A.; Najafzadehvarzi, H. Pistacia atlantica’s effect on ovary damage and oxidative stress in streptozotocin-induced diabetic rats. JBRA Assist. Reprod. 2021, 25, 28. [Google Scholar] [CrossRef]
- Ben Ahmed, Z.; Yousfi, M.; Viaene, J.; Dejaegher, B.; Demeyer, K.; Mangelings, D.; Vander Heyden, Y. Seasonal, gender and regional variations in total phenolic, flavonoid, and condensed tannins contents and in antioxidant properties from Pistacia atlantica ssp. leaves. Pharm. Biol. 2017, 55, 1185–1194. [Google Scholar] [CrossRef]
- Geng, S.; Shan, S.; Ma, H.; Liu, B. Antioxidant activity and α-glucosidase inhibitory activities of the polycondensate of catechin with glyoxylic acid. PLoS One 2016, 11, e0150412. [Google Scholar] [CrossRef] [Green Version]
- Gu, C.; Zhang, H.; Putri, C.Y.; Ng, K. Evaluation of α-amylase and α-glucosidase inhibitory activity of flavonoids. Int. J. Food Nutr. Sci. 2015, 2, 174–179. [Google Scholar]
- Messaoudi, M.; Begaa, S.; Benarfa, A.; Ouakouak, H.; Benchikha, N.; Ferhat, M.A. Radiochemical separation by liquid-liquid extraction for the determination of selenium in Mentha pulegium L.: Toxicity monitoring and health study. Appl. Radiat. Isot. 2020, 159, 109099. [Google Scholar] [CrossRef] [PubMed]
- Messaoudi, M.; Begaa, S. Application of INAA technique for analysis of essential trace and toxic elements in medicinal seeds of Carum carvi L. & Foeniculum vul-gare Mill. used in Algeria. J. Appl. Res. Med. Aromat. Plants 2018, 9, 39–45. [Google Scholar] [CrossRef]
- Müller, L.; Gnoyke, S.; Popken, A.M.; Böhm, V. Antioxidant capacity and related parameters of different fruit formulations. LWT-Food Sci. Technol. 2010, 43, 992–999. [Google Scholar] [CrossRef]
- Topçu, G.; Ay, M.; Bilici, A.; Sarıkürkcü, C.; Öztürk, M.; Ulubelen, A. A new flavone from antioxidant extracts of Pistacia terebinthus. Food Chem. 2007, 103, 816–822. [Google Scholar] [CrossRef]
- Blois, M.S. Antioxidant determinations by the use of a stable free radical. Nature 1958, 181, 1199–1200. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Oyaizu, M. Antioxidative activities of browning reaction prepared from glucosamine. Jpn. J. Nutr. 1986, 44, 307–315. [Google Scholar] [CrossRef]
- Karthik, I.; Rathna, B.; Kumar, P.; Venupriya, R.; SunilKumar, K.; Singh, R. Evaluation of anti-inflammatory activity of Canthium parviflorum by in-vitro method. Indian J. Res. Pharm. Biotechnol. 2013, 1, 729–730. [Google Scholar]
- Colot, M. Notions Techniques de Pharmacologie Générale; Masson: Masson, IA, USA, 1972. [Google Scholar]
- OECD. Test No. 423: Acute oral toxicity-acute toxic class method. In OECD Guidelines for the Testing of Chemicals (Section 4: Health Effects); OECD: Paris, France, 2001; Volume 1, p. 14. [Google Scholar]
Standards | ||||||||
---|---|---|---|---|---|---|---|---|
IPE 189 | IPE 172 | |||||||
Measured Values | Certified Values | U- Score | Z- Score | Measured Values | Certified Values | U- Score | Z- Score | |
Ba | 74.52 ± 9.518 | 80.1 ± 5.96 | 0.5 | 0.94 | 17.62 ± 2.37 | 16.4 ± 0.99 | 0.48 | 1.24 |
Br | 48.34 ± 29.64 | 40.6 ± 6.9 | 0.25 | 1.12 | 1.763 ± 0.361 | 2.1 ± 1.265 | 0.26 | 0.27 |
Ca | 6346.5 ± 30.2 | 6730 ± 402 | 0.95 | 0.95 | - | - | - | - |
Co | 0.0775 ± 0.0159 | 0.0789 ± 0.0132 | 0.06 | 0.1 | 17.62 ± 2.37 | 16.4 ± 0.99 | 0.48 | 1.24 |
Cr | 0.919 ± 0.267 | 1.18 ± 0.228 | 0.74 | 1.14 | 1.763 ± 0.361 | 2.1 ± 1.265 | 0.26 | 0.27 |
Cs | 0.0903 ± 0.0236 | 0.089 ± 0.0157 | 0.04 | 0.07 | 17.62 ± 2.37 | 16.4 ± 0.99 | 0.48 | 1.24 |
Fe | 104.4 ± 12.8 | 110 ± 7.4 | 0.38 | 0.76 | 67.84 ± 6.51 | 64.4 ± 6.55 | 0.37 | 0.53 |
K | 36,500.4 ± 4213.1 | 37,100 ± 2160 | 0.13 | 0.28 | - | - | - | - |
Rb | 7.91 ± 0.59 | 7.5 ± 0.501 | 0.52 | 0.82 | 8.763 ± 1.167 | 9.07 ± 0.536 | 0.23 | 0.56 |
Sb | 0.013 ± 0.007 | 0.0095 ± 0.0019 | 0.5 | 1.88 | 0.0372 ± 0.0105 | 0.0482 ± 0.0054 | 0.92 | 2.03 |
Sr | - | - | - | - | 43.77 ± 3.14 | 42.2 ± 2.11 | 0.42 | 0.75 |
Zn | 19.12 ± 1.39 | 20.1±1.32 | 0.51 | 0.74 | 33.21 ± 2.31 | 31.6 ± 2.19 | 0.51 | 0.74 |
Elements | The Unripe Fruits of P. atlantica * | |||||||
---|---|---|---|---|---|---|---|---|
HRC1 | SRC2 | TRC3 | BRC4 | |||||
Mean ± SD ** | V *** | Mean ± SD | V | Mean ± SD | V *** | Mean ± SD | V *** | |
As | 0.0103a,**** ± 0.0004 | 3.88 | 0.0097a ± 0.0003 | 3.09 | 0.0076b ± 0.0004 | 5.26 | 0.0090a ± 0.0002 | 2.22 |
Ba | 0.63 ± 0.01 | 1.59 | 0.22c ± 0.002 | 0.91 | 0.33b ± 0.01 | 3.03 | 0.32b ± 0.01 | 3.13 |
Br | 5.62b ± 0.112 | 1.99 | 6.58b ± 1.32 | 0.20 | 8.34a ± 0.17 | 2.04 | 8.08a ± 1.62 | 0.20 |
Ca | 1 420.40b ± 28,408 | 2.00 | 1 626.51a ± 32.530 | 2.00 | 1 712.38a ± 34.25 | 2.00 | 1 633a.80 ± 32.68 | 2.00 |
Ce * | 0.23a ± 0.003 | 1.30 | 0.22a ± 0.002 | 0.91 | 0.21a0 ± 0.003 | 1.43 | 0.20a ± 0.02 | 5.00 |
Co | 0.051a ± 0.0088 | 1.71 | 0.0449a ± 0.0091 | 2.03 | 0.0194c ± 0.0006 | 3.09 | 0.0324b ± 0.0078 | 2.41 |
Cr | 0.7184a ± 0.0145 | 2.02 | 0.4592b ± 0.00992 | 2.16 | 0.2969c ± 0.0071 | 2.39 | 0.2619c ± 0.00623 | 2.41 |
Cs | 0.041b ± 0.0005 | 1.22 | 0.061a ± 0.004 | 6.56 | 0.064a ± 0.003 | 4.73 | 0.051a ± 0.002 | 3.92 |
Eu * | 0.0009a ± 0.0001 | 11.11 | 0.0025a ± 0.0002 | 8.00 | 0.0008a ± 0.0001 | 12.50 | 0.0007a ± 0.0001 | 14.29 |
Fe | 106.030a ± 2.976 | 2.81 | 69.49b ± 1.87 | 2.69 | 51.83c ± 1.42 | 2.74 | 54.35c ± 1.53 | 2.82 |
Hf * | 0.022a ± 0.002 | 0.91 | 0.025a ± 0.002 | 8.00 | 0.027a ± 0.002 | 7.41 | 0.021a ± 0.001 | 4.76 |
K | 11,460b ± 229 | 2.00 | 12,235b ± 245 | 2.00 | 15,124a ± 302.5 | 2.00 | 14,215a ± 284 | 2.00 |
Na | 104.00a ± 2.08 | 2.00 | 102b ± 2.1 | 2.06 | 88.00b ± 1.76 | 2.00 | 98.00a ± 1.96 | 2.00 |
Rb | 2.440a ± 0.038 | 1.56 | 3.44a ± 0.24 | 6.98 | 0.44b ± 0.02 | 4.55 | 1.44b ± 0.05 | 3.47 |
Sb | 0.0030a ± 0.0001 | 3.33 | 0.0031a ± 0.0001 | 3.23 | 0.0038a ± 0.0001 | 2.63 | 0.0022b ± 0.0001 | 4.55 |
Sc | 0.0036a ± 0.0004 | 1.11 | 0.0034a ± 0.0001 | 3.13 | 0.0043a ± 0.0001 | 2.33 | 0.0032a ± 0.0004 | 12.50 |
Se | 0.0203b ± 0.00044 | 2.17 | 0.0197a ± 0.0013 | 6.60 | 0.0176a ± 0.0004 | 2.27 | 0.0090b ± 0.0011 | 1.22 |
Sm | 0.0076a ± 0.00014 | 1.84 | 0.0074a ± 0.00012 | 1.62 | 0.0073a ± 0.0002 | 2.74 | 0.0072a ± 0.0007 | 9.72 |
Sr | 5.9503b ± 0.4810 | 8.08 | 7.9403a ± 0.4810 | 6.06 | 0.9403a ± 0.0411 | 4.37 | 5.9403b ± 0.2210 | 3.72 |
Yb | 0.670a ± 0.027 | 4.03 | 0.660a ± 0.011 | 1.67 | 0.771a ± 0.021 | 2.72 | 0.555b ± 0.011 | 1.98 |
Zn | 10.108b ± 0.093 | 0.92 | 9.014ab ± 0.090 | 1.00 | 13.198a ± 0.117 | 0.89 | 10.919b ± 0.098 | 0.89 |
Extracts | Total Phenolic Compounds Content (mg GAE/mg) * | Flavonoids Content (mg QE/mg) ** |
---|---|---|
HRC1 *** | 223.4118a ± 1.4705 | 97.5000b ± 2.5043 |
SRC2 *** | 213.7059c ± 0.5882 | 102.4306a ± 0.4419 |
TRC3 *** | 227.0392a ± 1.6198 | 93.7500b ± 0.2946 |
BRC4 *** | 219.2941b ± 1.4705 | 106.4583a ± 1.6204 |
Extracts | DPPH | ABTS | Reducing Power | |||
---|---|---|---|---|---|---|
IC50 (μg/mL) | V *** | IC50 (μg/mL) | V | A0.5 (μg/mL) | V | |
HRC1 * | 16.30b ± 0.24 | 1.47 | 21.99a ± 1.25 | 5.68 | 7.12d ± 0.17 | 2.39 |
SRC2 * | 17.33b ± 0.15 | 0.87 | 21.45a ± 0.55 | 2.56 | 9.48d ± 0.09 | 0.95 |
TRC3 * | 16.28b ± 0.19 | 1.17 | 21.05a ± 0.19 | 0.90 | 28.54b ± 0.99 | 3.47 |
BRC4 * | 16.63b ± 0.53 | 3.19 | 12.13b ± 0.16 | 1.32 | 15.07c ± 0.42 | 2.79 |
BHT ** | 22.32a ± 1.19 | 5.33 | 1.29c ± 0.03 | 2.33 | 50.1a ± 1.53 | 3.05 |
BHA ** | 5.73c ± 0.41 | 7.16 | 1.81c ± 0.10 | 5.52 | 8.41d ± 0.67 | 7.97 |
Ascorbic acid ** | NT **** | = | NT | - | 9.01d ± 0.15 | 1.66 |
Concentration (μg/mL) | HRC1 * | SRC2 * | BRC3 * | TRC4 * | Diclofenac Sodium ** |
---|---|---|---|---|---|
2000 | nt | 58.53 ± 3.06 | 55.00 ± 1.38 | nt | 100 ± 0.18 |
1000 | nt | 42.65 ± 0.81 | 50.65 ± 0.27 | nt | 92 ± 0.15 |
500 | nt | 24.88 ± 0.89 | 36.18 ± 0.44 | nt | 61 ± 0.15 |
250 | nt | 12.24 ± 0.37 | 26.76 ± 0.93 | nt | 37 ±0.18 |
Specification | Average Paw Weight (g) | % Edema | % Edema Reduction | |||
---|---|---|---|---|---|---|
Left | Right | |||||
g | **** V (%) | G | **** V (%) | |||
HRC1 * | 0.190b ± 0.001 | 0.526 | 0.142a ± 0.001 | 0.704 | 32.0% | 26.30% |
SRC2 * | 0.135a ± 0.006 | 4.444 | 0.124b ± 0.003 | 2.419 | 8.9% | 79.50% |
BRC3 * | 0.148a ± 0.009 | 6.081 | 0.129b ± 0.003 | 0.002 | 14.73% | 66.01% |
TRC4 * | 0.155a ± 0.01 | 6.452 | 0.130b ± 0.006 | 4.615 | 19.23% | 55.71% |
Witness ** | 0.109c ± 0.006 | 5.505 | 0.076c ± 0.004 | 5.263 | 43.42% | 0.0% |
Diclofenac sodium *** | 0.171b ± 0.009 | 5.263 | 0.142a ± 0.001 | 0.704 | 20.42% | 52.97% |
Specification | Concentration (µL/disc) | (Diam) Diameter Inhibition (mm) | ||||||
---|---|---|---|---|---|---|---|---|
The Unripe Fruit of P. atlantica | Reference Drug | |||||||
Groups | HRC1 | SRC2 | BRC3 | TRC4 | ||||
Gram-positive | Staphylococcus aureus ATCC 6538 | Diam Mean ± SD (mm) | 9.0a ± 1.15 | 9.0a ± 1.15 | 9.0a ± 1.15 | 9.0a ± 1.15 | fosfomycin 44 ± 0.5 | carbenicillin 37.5 ± 0.4 |
V * | 12.78 | 12.78 | 12.78 | 12.78 | 1.14 | 1.07 | ||
Bacillus subtilis ATCC 6633 | Diam mean ±SD (mm) | 9.0a ± 1.15 | ≥9 | 9.0a ± 1.15 | 9.0a ± 1.15 | erythromycin 32.5 ± 0.3 | cephalexin 31 ± 0.3 | |
V | 12.78 | - | 12.78 | 12.78 | 0.92 | 0.97 | ||
Gram-negative | Pseudomonas aeruginosa ATCC 9027 | Mean ±SD (mm) | 9.0a ± 1.15 | ≥9 | ≥9 | 9.0a ± 1.15 | fosfomycin 31 ± 0.21 | |
V | 12.78 | - | - | 12.78 | 0.45 | |||
Escherichia coli ATCC 8739 | Diam Mean ±SD (mm) | 9.0a ± 1.15 | 9.0a ± 1.15 | 9.0a ± 1.15 | 9.0a ± 1.15 | fosfomycin 44 ± 0.31 | ||
V | 12.78 | 12.78 | 12.78 | 12.78 | 0.70 | |||
yeast | Candida albicans ATCC 10231 | Mean ±SD (mm) | ≥9 | ≥9 | ≥9 | ≥9 | Nd | |
- | - | - | - | - | - |
Extracts | Urease Inhibition (%) | |
---|---|---|
IC50 (µg/mL) | V *** | |
HRC1 * | >100 | - |
SRC2 * | >100 | - |
BRC3 * | 45.25c ± 1.07 | 2.36 |
TRC4 * | 48.48b ± 7.52 | 2.21 |
Thiourea ** | 11.57d ± 0.68 | 5.88 |
Extracts | Anti-α-Amylase | |
---|---|---|
IC50 (µg/mL) | V *** | |
HRC1 * | 110.71b ± 2.99 | 2.70 |
SRC2 * | 69.22b ± 3.13 | 4.52 |
BRC3 * | 67.06b ± 1.74 | 2.59 |
TRC4 * | 32.62bc ± 0.66 | 2.02 |
Acarbose ** | 3650.93a ± 10.70 | 0.29 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benmohamed, M.; Guenane, H.; Messaoudi, M.; Zahnit, W.; Egbuna, C.; Sharifi-Rad, M.; Chouh, A.; Seghir, B.B.; Rebiai, A.; Boubekeur, S.; et al. Mineral Profile, Antioxidant, Anti-Inflammatory, Antibacterial, Anti-Urease and Anti-α-Amylase Activities of the Unripe Fruit Extracts of Pistacia atlantica. Molecules 2023, 28, 349. https://doi.org/10.3390/molecules28010349
Benmohamed M, Guenane H, Messaoudi M, Zahnit W, Egbuna C, Sharifi-Rad M, Chouh A, Seghir BB, Rebiai A, Boubekeur S, et al. Mineral Profile, Antioxidant, Anti-Inflammatory, Antibacterial, Anti-Urease and Anti-α-Amylase Activities of the Unripe Fruit Extracts of Pistacia atlantica. Molecules. 2023; 28(1):349. https://doi.org/10.3390/molecules28010349
Chicago/Turabian StyleBenmohamed, Mokhtar, Hamid Guenane, Mohammed Messaoudi, Wafa Zahnit, Chukwuebuka Egbuna, Majid Sharifi-Rad, Amina Chouh, Bachir Ben Seghir, Abdelkrim Rebiai, Sihem Boubekeur, and et al. 2023. "Mineral Profile, Antioxidant, Anti-Inflammatory, Antibacterial, Anti-Urease and Anti-α-Amylase Activities of the Unripe Fruit Extracts of Pistacia atlantica" Molecules 28, no. 1: 349. https://doi.org/10.3390/molecules28010349
APA StyleBenmohamed, M., Guenane, H., Messaoudi, M., Zahnit, W., Egbuna, C., Sharifi-Rad, M., Chouh, A., Seghir, B. B., Rebiai, A., Boubekeur, S., Azli, T., Harrat, M., Sawicka, B., Atanassova, M., & Yousfi, M. (2023). Mineral Profile, Antioxidant, Anti-Inflammatory, Antibacterial, Anti-Urease and Anti-α-Amylase Activities of the Unripe Fruit Extracts of Pistacia atlantica. Molecules, 28(1), 349. https://doi.org/10.3390/molecules28010349