Development of Gastroretentive Carriers for Curcumin-Loaded Solid Dispersion Based on Expandable Starch/Chitosan Films
Abstract
:1. Introduction
2. Results and Discussion
2.1. Solubility of Curcumin Solid Dispersions
2.2. Dissolution of Curcumin Solid Dispersions
2.3. Fourier Transform Infrared Spectroscopy of Curcumin Solid Dispersions
2.4. X-Ray Powder Diffraction
2.5. Physicochemical Characteristics of Curcumin-loaded Expandable Films
2.6. Determination of Mechanical Properties
2.7. Film Swelling Studies
2.8. Examination of Film Morphology Using Scanning Electron Microscopy (SEM)
2.9. Unfolding Behavior of Curcumin-Loaded Films
2.10. In Vitro Curcumin Release from Expandable Films
2.11. Cytotoxicity and Anti-inflammatory Activities of Curcumin Released from Expandable Films
3. Materials and Methods
3.1. Materials
3.2. Preparation of Curcumin Solid Dispersions
3.3. Investigation of the Physicochemical Properties of Curcumin Solid Dispersions
3.3.1. Solubility Test
3.3.2. In Vitro Dissolution Behavior
3.3.3. Fourier Transform Infrared Spectroscopy Studies
3.3.4. X-Ray Powder Diffraction
3.4. Preparation of Starch/Chitosan Expandable Films Loaded with Curcumin Solid Dispersion
3.5. Evaluation of the Physicochemical Properties of Curcumin-Loaded Expandable Films
3.5.1. Film Weight, Thickness, and Curcumin Loading
3.5.2. Film Tensile Strength
3.5.3. Film Swelling Behavior
3.5.4. Examination of Film Morphology Using Scanning Electron Microscopy (SEM)
3.5.5. Fourier Transform Infrared (FTIR)
3.5.6. Powder X-Ray Diffraction Studies of Curcumin-Loaded Expandable Films
3.5.7. Unfolding Behavior of Curcumin-Loaded Films
3.5.8. In Vitro Release of Curcumin from Expandable Films
3.6. In Vitro Cytotoxicity Assay of Curcumin-Loaded Expandable Films
3.7. Evaluation of Anti-Inflammatory Properties of Curcumin Expandable Films
3.8. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Bagad, A.S.; Joseph, J.A.; Bhaskaran, N.; Agarwal, A. Comparative Evaluation of Anti-Inflammatory Activity of Curcuminoids, Turmerones, and Aqueous Extract of Curcuma longa. Adv. Pharmacol. Sci. 2013, 2013, 805756. [Google Scholar] [PubMed] [Green Version]
- Sharma, O.P. Antioxidant activity of curcumin and related compounds. Biochem. Pharmacol. 1976, 25, 1811–1812. [Google Scholar] [CrossRef] [PubMed]
- Tomeh, M.A.; Hadianamrei, R.; Zhao, X. A Review of Curcumin and Its Derivatives as Anticancer Agents. Int. J. Mol. Sci. 2019, 20, 1033. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahattanadul, S.; Nakamura, T.; Panichayupakaranant, P.; Phdoongsombut, N.; Tungsinmunkong, K.; Bouking, P. Comparative antiulcer effect of Bisdemethoxycurcumin and Curcumin in a gastric ulcer model system. Phytomedicine 2009, 16, 342–351. [Google Scholar] [CrossRef]
- Vetvicka, V.; Vetvickova, J.; Fernandez-Botran, R. Effects of curcumin on Helicobacter pylori infection. Ann. Transl. Med. 2016, 4, 479. [Google Scholar] [CrossRef] [Green Version]
- Akbik, D.; Ghadiri, M.; Chrzanowski, W.; Rohanizadeh, R. Curcumin as a wound healing agent. Life Sci. 2014, 116, 1–7. [Google Scholar] [CrossRef]
- Rajasekaran, S.A. Therapeutic potential of curcumin in gastrointestinal diseases. World J. Gastrointest. Pathophysiol. 2011, 2, 1–14. [Google Scholar] [CrossRef]
- Priyadarsini, K.I. The chemistry of curcumin: From extraction to therapeutic agent. Molecules 2014, 19, 20091–20112. [Google Scholar] [CrossRef] [Green Version]
- Kerdsakundee, N.; Mahattanadul, S.; Wiwattanapatapee, R. Development and evaluation of gastroretentive raft forming systems incorporating curcumin-Eudragit® EPO solid dispersions for gastric ulcer treatment. Eur. J. Pharm. Biopharm. 2015, 94, 513–520. [Google Scholar] [CrossRef]
- Wannasarit, S.; Mahattanadul, S.; Issarachot, O.; Puttarak, P.; Wiwattanapatapee, R. Raft-forming gastro-retentive formulations based on Centella asiatica extract-solid dispersions for gastric ulcer treatment. Eur. J. Pharm. Sci. 2020, 143, 105204. [Google Scholar] [CrossRef]
- Boontawee, R.; Issarachot, O.; Keawkroek, K.; Wiwattanapatapee, R. Foldable/Expandable Gastro-retentive Films Based on Starch and Chitosan as a Carrier For Prolonged Release of Resveratrol. Curr. Pharm. Biotechnol. 2021, 23, 1009–1018. [Google Scholar] [CrossRef] [PubMed]
- Kaewkroek, K.; Petchsomrit, A.; Septama, A.W.; Wiwattanapatapee, R. Development of starch/chitosan expandable films as a gastroretentive carrier for ginger extract-loaded solid dispersion. Saudi Pharm. J. 2022, 30, 120–131. [Google Scholar] [CrossRef] [PubMed]
- Bunlung, S.; Nualnoi, T.; Issarachot, O.; Wiwattanapatapee, R. Development of raft-forming liquid and chewable tablet formulations incorporating quercetin solid dispersions for treatment of gastric ulcers. Saudi Pharm. J. 2021, 29, 1143–1154. [Google Scholar] [CrossRef] [PubMed]
- Prajapati, V.D.; Jani, G.K.; Khutliwala, T.A.; Zala, B.S. Raft forming system—An upcoming approach of gastroretentive drug delivery system. J. Control. Release 2013, 168, 151–165. [Google Scholar] [CrossRef] [PubMed]
- Tripathi, J.; Thapa, P.; Maharjan, R.; Jeong, S.H. Current State and Future Perspectives on Gastroretentive Drug Delivery Systems. Pharmaceutics 2019, 11, 193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ogunsona, E.; Ojogbo, E.; Mekonnen, T. Advanced material applications of starch and its derivatives. Eur. Polym. J. 2018, 108, 570–581. [Google Scholar] [CrossRef]
- Peerapattana, J.; Phuvarit, P.; Srijesdaruk, V.; Preechagoon, D.; Tattawasart, A. Pregelatinized glutinous rice starch as a sustained release agent for tablet preparations. Carbohydr. Polym. 2010, 80, 453–459. [Google Scholar] [CrossRef]
- BeMiller, J.N. Chapter 5—Physical Modification of Starch. In Starch in Food (Second Edition); Sjöö, M., Nilsson, L., Eds.; Woodhead Publishing: Sawston, UK, 2018; pp. 223–253. [Google Scholar]
- Prabha, P.; Karpagam, T.; Varalakshmi, B.; Packiavathy, A.S. Indigenous anti-ulcer activity of Musa sapientum on peptic ulcer. Pharmacogn. Res. 2011, 3, 232–238. [Google Scholar]
- Onasanwo, S.A.; Emikpe, B.O.; Ajah, A.A.; Elufioye, T.O. Anti-ulcer and ulcer healing potentials of Musa sapientum peel extract in the laboratory rodents. Pharmacogn. Res. 2013, 5, 173–178. [Google Scholar] [CrossRef] [Green Version]
- Dhull, S.B.; Malik, T.; Kaur, R.; Kumar, P.; Kaushal, N.; Singh, A. Banana Starch: Properties Illustration and Food Applications—A Review. Starch-Stärke 2021, 73, 2000085. [Google Scholar] [CrossRef]
- Mohamed, J.M.M.; Alqahtani, A.; Ahmad, F.; Krishnaraju, V.; Kalpana, K. Stoichiometrically Governed Curcumin Solid Dispersion and Its Cytotoxic Evaluation on Colorectal Adenocarcinoma Cells. Drug Des. Devel. Ther. 2020, 14, 4639–4658. [Google Scholar] [CrossRef] [PubMed]
- Duyen, T.T.M.; Huong, N.T.M.; Phi, N.T.L.; Van Hung, P. Physicochemical properties and in vitro digestibility of mung-bean starches varying amylose contents under citric acid and hydrothermal treatments. Int. J. Biol. Macromol. 2020, 164, 651–658. [Google Scholar] [CrossRef] [PubMed]
- Nadaf, S.; Jadhav, A.; Killedar, S. Mung bean (Vigna radiata) porous starch for solubility and dissolution enhancement of poorly soluble drug by solid dispersion. Int. J. Biol. Macromol. 2021, 167, 345–357. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Cai, Y.; Jiang, X.; Wu, J.; Le, X. Molecular interactions, characterization and antimicrobial activity of curcumin–chitosan blend films. Food Hydrocoll. 2016, 52, 564–572. [Google Scholar] [CrossRef]
- Sahariah, P.; Másson, M. Antimicrobial Chitosan and Chitosan Derivatives: A Review of the Structure–Activity Relationship. Biomacromolecules 2017, 18, 3846–3868. [Google Scholar] [CrossRef]
- Modasiya, M.M.K.; Patel, V.M. Studies on solubility of curcumin. Int. J. Pharm. Life 2012, 3, 1490–1497. [Google Scholar]
- Li, J.; Lee, I.W.; Shin, G.H.; Chen, X.; Park, H.J. Curcumin-Eudragit® EPO solid dispersion: A simple and potent method to solve the problems of curcumin. Eur. J. Pharm. Biopharm. 2015, 94, 322–332. [Google Scholar] [CrossRef]
- Dhivya, R.; Ranjani, J.; Rajendhran, J.; Mayandi, J.; Annaraj, J. Enhancing the anti-gastric cancer activity of curcumin with biocompatible and pH sensitive PMMA-AA/ZnO nanoparticles. Mater. Sci. Engineering. C Mater. Biol. Appl. 2018, 82, 182–189. [Google Scholar] [CrossRef]
- Wang, X.; Zhu, Y.; Zhao, X.; Zhang, S.; Cao, M.; Wang, X.; Li, W. Development and characterization of an amorphous curcumin-Eudragit®E100 solid dispersions with improved solubility, stability, and pharmacokinetic properties. Pharm. Dev. Technol. 2022, 27, 965–974. [Google Scholar] [CrossRef]
- Fan, N.; Li, J.; Li, J. Advantages of introducing an effective crystalline inhibitor in curcumin amorphous solid dispersions formulated by Eudragit E100. J. Pharm. Pharmacol. 2021, 73, 185–192. [Google Scholar] [CrossRef]
- Wannasarit, S.; Puttarak, P.; Kaewkroek, K.; Wiwattanapatapee, R. Strategies for Improving Healing of the Gastric Epithelium Using Oral Solid Dispersions Loaded with Pentacyclic Triterpene-Rich Centella Extract. AAPS PharmSciTech 2019, 20, 277. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, T.; Kurimoto, I.; Yoshihara, K.; Umejima, H.; Ito, N.; Watanabe, S.; Sako, K.; Kikuchi, A. Aminoalkyl methacrylate copolymers for improving the solubility of tacrolimus. I: Evaluation of solid dispersion formulations. Int. J. Pharm. 2012, 428, 18–24. [Google Scholar] [CrossRef] [PubMed]
- Dantu, A.S.; Devi, D.R.; Hari, B.N.V. Enhancement of Solubility of Nimesulide in the Presence of Polymer with Milling Technique. J. Pharm. Sci. Res. 2012, 4, 1907–1914. [Google Scholar]
- Kumar, S.; Kesharwani, S.S.; Mathur, H.; Tyagi, M.; Bhat, G.J.; Tummala, H. Molecular complexation of curcumin with pH sensitive cationic copolymer enhances the aqueous solubility, stability and bioavailability of curcumin. Eur. J. Pharm. Sci. 2016, 82, 86–96. [Google Scholar] [CrossRef] [PubMed]
- Kaewnopparat, N.; Kaewnopparat, S.; Jangwang, A.; Maneenaun, D.; Chuchome, T.; Panichayupakaranant, P. Increased solubility, dissolution and physicochemical studies of curcumin-polyvinylpyrrolidone K-30 solid dispersions. World Acad. Sci. Eng. Technol. 2009, 31, 225–230. [Google Scholar]
- Paradkar, A.; Ambike, A.A.; Jadhav, B.K.; Mahadik, K.R. Characterization of curcumin–PVP solid dispersion obtained by spray drying. Int. J. Pharm. 2004, 271, 281–286. [Google Scholar] [CrossRef]
- Baghel, S.; Cathcart, H.; O’Reilly, N.J. Polymeric Amorphous Solid Dispersions: A Review of Amorphization, Crystallization, Stabilization, Solid-State Characterization, and Aqueous Solubilization of Biopharmaceutical Classification System Class II Drugs. J. Pharm. Sci. 2016, 105, 2527–2544. [Google Scholar] [CrossRef] [Green Version]
- Seo, S.W.; Han, H.K.; Chun, M.K.; Choi, H.K. Preparation and pharmacokinetic evaluation of curcumin solid dispersion using Solutol® HS15 as a carrier. Int. J. Pharm. 2012, 424, 18–25. [Google Scholar] [CrossRef]
- Zoi, V.; Galani, V.; Lianos, G.D.; Voulgaris, S.; Kyritsis, A.P.; Alexiou, G.A. The Role of Curcumin in Cancer Treatment. Biomedicines 2021, 9, 1086. [Google Scholar] [CrossRef]
- Kerdsakundee, N.; Mahattanadul, S.; Wiwattanapatapee, R. Physicochemical characterization of raft-forming delivery systems for curcumin formulated using polysaccharide hydrogels. Lat. Am. J. Pharm. 2018, 37, 699–707. [Google Scholar]
- Kaewkroek, K.; Tewtrakul, S.; Wiwattanapatapee, R. Development of expandable, gastro-retentive films for delivery of resveratrol and evaluation of cytotoxic and anti-inflammatory activity. Lat. Am. J. Pharm. 2019, 38, 691–700. [Google Scholar]
- Costa, P.; Sousa Lobo, J.M. Modeling and comparison of dissolution profiles. Eur. J. Pharm. Sci. 2001, 13, 123–133. [Google Scholar] [CrossRef] [PubMed]
- Dash, S.; Murthy, P.N.; Nath, L.; Chowdhury, P. Kinetic modeling on drug release from controlled drug delivery systems. Acta Pol. Pharm. 2010, 67, 217–223. [Google Scholar] [PubMed]
- Ghasemi, M.; Turnbull, T.; Sebastian, S.; Kempson, I. The MTT Assay: Utility, Limitations, Pitfalls, and Interpretation in Bulk and Single-Cell Analysis. Int. J. Mol. Sci. 2021, 22, 12827. [Google Scholar] [CrossRef] [PubMed]
- Liang, T.; Zhang, X.; Xue, W.; Zhao, S.; Zhang, X.; Pei, J. Curcumin induced human gastric cancer BGC-823 cells apoptosis by ROS-mediated ASK1-MKK4-JNK stress signaling pathway. Int. J. Mol. Sci. 2014, 15, 15754–15765. [Google Scholar] [CrossRef]
Formulation and Ratio | Solubility of Curcumin (mg/mL) | |
---|---|---|
Curcumin | 0.000527 ± 0.000002 | |
CUR: Eudragit EPO | Solid Dispersion | Physical Mixture |
1:3 | 4.10 ± 0.04 | 0.44 ± 0.02 |
1:5 | 6.38 ± 0.10 | 1.20 ± 0.03 |
1:6 | 3.70 ± 0.05 | 0.79 ± 0.01 |
1:8 | 2.62 ± 0.03 | 0.66 ± 0.01 |
Formulations | Weight of Excipient | Tensile Strength (kg/cm2) | Expansion* (fold) | Drug Content (%) | ||||
---|---|---|---|---|---|---|---|---|
Chitosan (mg) | Starch (mg) | Film Weight (mg) | Film Thickness (mm) | |||||
Banana Starch | CBS2M.1 | 600 | 900 | 416.90 ± 0.75 | 0.789 ± 0.014 | 24.48 ± 0.42 | 1.97 ± 0.02 | 84.85 ± 0.19% |
CBS2M.2 | 500 | 900 | 405.70 ± 1.40 | 0.539 ± 0.007 | 6.36 ± 0.07 | 2.01 ± 0.02 | 81.63 ± 0.05% | |
CBS2M.3 | 400 | 900 | 383.87 ± 0.25 | 0.478 ± 0.007 | 9.07 ± 0.18 | 2.02 ± 0.02 | 85.31 ± 0.04% | |
CBS2M.4 | 400 | 800 | 362.73 ± 1.24 | 0.514 ± 0.009 | 7.13 ± 0.03 | 1.97 ± 0.02 | 84.44 ± 0.17% | |
CBS2M.5 | 400 | 700 | 335.40 ± 1.42 | 0.482 ± 0.006 | 6.82 ± 0.09 | 1.90 ± 0.02 | 88.64 ± 0.15% | |
CBS2M.6 | 400 | 600 | 299.63 ± 0.82 | 0.453 ± 0.008 | 9.47 ± 0.12 | 1.53 ± 0.00 | 87.99 ± 0.04% | |
CBS2M.7 | 400 | 1000 | 392.83 ± 0.45 | 0.588 ± 0.007 | 12.97 ± 0.18 | 1.54 ± 0.01 | 86.46 ± 0.05% | |
Corn Starch | CCS2M.1 | 600 | 900 | 437.00 ± 1.90 | 0.516 ± 0.007 | 35.34 ± 0.02 | 2.57 ± 0.02 | 97.04 ± 0.58% |
CCS2M.2 | 500 | 900 | 426.40 ± 1.71 | 0.492 ± 0.009 | 15.04 ± 0.29 | 2.62 ± 0.02 | 88.27 ± 0.19% | |
CCS2M.3 | 400 | 900 | 414.67 ± 1.80 | 0.456 ± 0.005 | 7.59 ± 0.13 | 2.83 ± 0.02 | 85.00 ± 0.40% | |
CCS2M.4 | 400 | 800 | 363.83 ± 0.29 | 0.535 ± 0.005 | 10.27 ± 0.07 | 3.00 ± 0.02 | 90.98 ± 0.33% | |
CCS2M.5 | 400 | 700 | 351.13 ± 1.62 | 0.506 ± 0.005 | 9.50 ± 0.14 | 2.95 ± 0.02 | 88.30 ± 0.14% | |
CCS2M.6 | 400 | 600 | 314.47 ± 1.47 | 0.480 ± 0.008 | 8.98 ± 0.49 | 2.88 ± 0.02 | 86.74 ± 0.11% | |
CCS2M.7 | 400 | 1000 | 433.87 ± 0.29 | 0.556 ± 0.007 | 8.25 ± 0.12 | 2.97 ± 0.01 | 96.00 ± 0.07% | |
Mung Bean Starch | CMS2M.1 | 600 | 900 | 436.27 ± 1.14 | 0.505 ± 0.005 | 90.43 ± 14.04 | 2.47 ± 0.02 | 81.49 ± 0.01% |
CMS2M.2 | 500 | 900 | 426.20 ± 1.73 | 0.475 ± 0.005 | 28.77 ± 5.71 | 2.75 ± 0.02 | 88.46 ± 0.31% | |
CMS2M.3 | 400 | 900 | 388.60 ± 1.07 | 0.415 ± 0.005 | 14.16 ± 0.59 | 2.53 ± 0.02 | 84.02 ± 0.25% | |
CMS2M.4 | 400 | 800 | 383.30 ± 0.41 | 0.532 ± 0.009 | 13.90 ± 2.26 | 2.82 ± 0.02 | 81.34 ± 0.05% | |
CMS2M.5 | 400 | 700 | 367.73 ± 1.86 | 0.482 ± 0.007 | 11.87 ± 1.05 | 3.32 ± 0.01 | 89.59 ± 0.13% | |
CMS2M.6 | 400 | 600 | 345.00 ± 1.04 | 0.439 ± 0.008 | 9.78 ± 0.27 | 2.91 ± 0.02 | 83.32 ± 0.05% | |
CMS2M.7 | 400 | 1000 | 433.60 ± 1.78 | 0.608 ± 0.012 | 14.12 ± 0.15 | 2.59 ± 0.01 | 87.69 ± 0.07% | |
Pregelatinized starch | CPS2M.1 | 600 | 900 | 427.07 ± 0.56 | 0.680 ± 0.009 | 42.40 ± 0.79 | 1.95 ± 0.02 | 96.97 ± 1.37% |
CPS2M.2 | 500 | 900 | 394.00 ± 0.49 | 0.580 ± 0.010 | 7.84 ± 0.01 | 2.30 ± 0.02 | 81.79 ± 0.52% | |
CPS2M.3 | 400 | 900 | 387.30 ± 1.87 | 0.512 ± 0.004 | 8.45 ± 0.13 | 2.43 ± 0.02 | 81.72 ± 0.06% | |
CPS2M.4 | 400 | 800 | 340.53 ± 1.59 | 0.586 ± 0.005 | 7.70 ± 0.19 | 2.81 ± 0.02 | 85.87 ± 0.05% | |
CPS2M.5 | 400 | 700 | 328.13 ± 0.31 | 0.550 ± 0.008 | 8.72 ± 0.58 | 3.22 ± 0.01 | 85.23 ± 0.07% | |
CPS2M.6 | 400 | 600 | 310.63 ± 1.73 | 0.479 ± 0.008 | 9.25 ± 0.69 | 3.31 ± 0.02 | 84.17 ± 0.13% | |
CPS2M.7 | 400 | 1000 | 405.33 ± 1.10 | 0.606 ± 0.010 | 8.53 ± 0.31 | 2.76 ± 0.02 | 84.40 ± 0.03% |
Formulation | Drug Release Kinetic, Correlation Coefficient (r2) | Release Exponent (n) | |||
---|---|---|---|---|---|
Zero Order | First Order | Higuchi | Korsmeyer–Peppas | ||
Banana starch (CBS2M.3) | 0.8695 | 0.7657 | 0.9785 | 0.8982 | 0.3978 |
Corn starch (CCS2M.3) | 0.8010 | 0.5266 | 0.9313 | 0.8338 | 0.4113 |
Mung bean starch (CMS2M.3) | 0.8612 | 0.3483 | 0.9684 | 0.6713 | 0.7675 |
Pregelatinized starch (CPS2M.3) | 0.5919 | 0.4128 | 0.7964 | 0.8434 | 0.2923 |
Test Sample | Anti-NO Test IC50 (µg/mL) | Cytotoxicity IC50 (µg/mL) |
---|---|---|
Banana-starch-based film (CBS2M.3) | 2.0 ± 0.8 * | 7.8 ± 1.3 |
Blank banana starch (BB) | >12.5 | >100 |
Corn-starch-based film (CCS2M.3) | 2.1 ± 0.9 * | 8.1 ± 1.9 |
Blank corn starch (CB) | >12.5 | >100 |
Mung bean starch-based film (CMS2M.3) | 2.9 ± 0.8 * | 7.3 ± 2.1 |
Blank mung bean starch (MB) | >12.5 | >100 |
SD-CUR | 3.0 ± 1.5 | 9.0 ± 0.9 |
Curcumin | 3.8 ± 1.1 | 15.9 ± 1.6 |
Indomethacin | 20.3 ± 1.8 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Siripruekpong, W.; Issarachot, O.; Kaewkroek, K.; Wiwattanapatapee, R. Development of Gastroretentive Carriers for Curcumin-Loaded Solid Dispersion Based on Expandable Starch/Chitosan Films. Molecules 2023, 28, 361. https://doi.org/10.3390/molecules28010361
Siripruekpong W, Issarachot O, Kaewkroek K, Wiwattanapatapee R. Development of Gastroretentive Carriers for Curcumin-Loaded Solid Dispersion Based on Expandable Starch/Chitosan Films. Molecules. 2023; 28(1):361. https://doi.org/10.3390/molecules28010361
Chicago/Turabian StyleSiripruekpong, Worrawee, Ousanee Issarachot, Kanidta Kaewkroek, and Ruedeekorn Wiwattanapatapee. 2023. "Development of Gastroretentive Carriers for Curcumin-Loaded Solid Dispersion Based on Expandable Starch/Chitosan Films" Molecules 28, no. 1: 361. https://doi.org/10.3390/molecules28010361
APA StyleSiripruekpong, W., Issarachot, O., Kaewkroek, K., & Wiwattanapatapee, R. (2023). Development of Gastroretentive Carriers for Curcumin-Loaded Solid Dispersion Based on Expandable Starch/Chitosan Films. Molecules, 28(1), 361. https://doi.org/10.3390/molecules28010361