Silymarin Encapsulated Liposomal Formulation: An Effective Treatment Modality against Copper Toxicity Associated Liver Dysfunction and Neurobehavioral Abnormalities in Wistar Rats
Abstract
:1. Introduction
2. Results
2.1. Characterization of SLNPs and BLNPs
2.1.1. Ultraviolet–Visible (UV-VIS) Absorption Spectroscopy
2.1.2. Fourier Transform Infrared Spectroscopy (FTIR) Analysis
2.1.3. Particle Size
2.1.4. Zeta Potential
2.1.5. Drug Encapsulation Efficiency and Drug Loading Capacity
2.1.6. Drug Release Kinetics
2.2. Treatment of Copper Toxicity
2.2.1. Forced Swim Test
2.2.2. Y Maze Test
2.2.3. Body and Liver Weights
2.2.4. Serological Analysis (Liver Function Tests)
2.2.5. Hepatic and Brain Histopathology
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Synthesis of PEGylated Liposome Nanoparticles
4.3. Characterization of Nanoparticles
4.3.1. U.V-Vis Absorption Spectroscopy
4.3.2. Fourier Transform Infrared Spectroscopy (FTIR) Analysis
4.3.3. Particle Size
4.3.4. Zeta Potential
4.3.5. Drug Encapsulation Efficiency
4.3.6. Drug Release Efficiency
4.4. Development of Copper Toxicity Model
4.4.1. Animals
4.4.2. Copper Toxicity Induction
4.5. Treatment Design
4.5.1. Forced Swim Test
4.5.2. Y Maze Test
4.5.3. Body and Liver Weights
4.5.4. Serological Indices
4.5.5. Histological Examination
4.5.6. Statistical Analysis
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Behari, M.; Pardasani, V. Genetics of Wilsons Disease. Park. Relat. Disord. 2010, 16, 639–644. [Google Scholar] [CrossRef]
- Scheiber, I.F.; Brůha, R.; Dušek, P. Pathogenesis of Wilson Disease. In Handbook of Clinical Neurology; Elsevier B.V.: Amsterdam, The Netherlands, 2017; Volume 142, pp. 43–55. [Google Scholar]
- Ala, A.; Walker, A.P.; Ashkan, K.; Dooley, J.S.; Schilsky, M.L. Wilson’s Disease. Lancet 2007, 369, 397–408. [Google Scholar] [PubMed]
- Litwin, T.; Gromadzka, G.; Szpak, G.M.; Jabłonka-Salach, K.; Bulska, E.; Członkowska, A. Brain Metal Accumulation in Wilson’s Disease. J. Neurol. Sci. 2013, 329, 55–58. [Google Scholar] [CrossRef] [PubMed]
- Vulpe, C.; Levinson, B.; Whitney, S.; Packman, S.; Gitschier, J. Isolation of a Candidate Gene for Menkes Disease and Evidence That It Encodes a Copper-Transporting ATPase. Nat. Genet. 1993, 3, 7–13. [Google Scholar] [CrossRef]
- Yang, X.L.; Miura, N.; Kawarada, Y.; Terada, K.; Petrukhin, K.; Gilliam, T.C.; Sugiyama, T. Two Forms of Wilson Disease Protein Produced by Alternative Splicing Are Localized in Distinct Cellular Compartments. Biochem. J. 1997, 326, 897–902. [Google Scholar] [CrossRef]
- Harris, E.D. Cellular Copper Transport and Metabolism. Annu. Rev. Nutr. 2000, 20, 291–310. [Google Scholar] [CrossRef]
- Schilsky, M.L. Wilson Disease: Diagnosis, Treatment, and Follow-Up. Clin. Liver Dis. 2017, 21, 755–767. [Google Scholar] [CrossRef]
- Sherlock, S.; Dooley, J. Diseases of the Liver and Biliary System. Blackwell Science: Hoboken, NJ, USA, 2008; 724p. [Google Scholar]
- Myers, B.M.; Prendergast, F.G.; Holman, R.; Kuntz, S.M.; Larusso, N.F. Alterations in Hepatocytes Lysosomes in Experimental Hepatic Copper Overload in Rats. Gastroenterology 1993, 105, 1814–1823. [Google Scholar]
- Winge, D.R.; Mehra, R.K. Host Defenses against Copper Toxicity. Int. Rev. Exp. Pathol. 1990, 31, 47–83. [Google Scholar] [CrossRef]
- Gaetke, L.M.; Chow, C.K. Copper Toxicity, Oxidative Stress, and Antioxidant Nutrients. Toxicology 2003, 189, 147–163. [Google Scholar] [CrossRef]
- Powell, S.R. The Antioxidant Properties of Zinc. J. Nutr. 2000, 130, 1447S–1454S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kadiiska, M.B.; Hanna, P.M.; Jordan, S.J.; Mason, R.P. Electron Spin Resonance Evidence for Free Radical Generation in Copper- Treated Vitamin E- and Selenium-Deficient Rats: In Vivo Spin-Trapping Investigation. Mol. Pharmacol. 1993, 44, 222–227. [Google Scholar] [PubMed]
- Chow, C.K. Nutritional Influence on Cellular Antioxidant Defense Systems. Am. J. Clin. Nutr. 1979, 32, 1066–1091. [Google Scholar] [CrossRef] [PubMed]
- Brewer, G.J.; Dick, R.D.; Johnson, V.D.; Fink, J.K.; Kluin, K.J.; Daniels, S. Treatment of Wilson’s Disease with Zinc XVI: Treatment during the Pediatric Years. J. Lab. Clin. Med. 2001, 137, 191–198. [Google Scholar] [CrossRef] [PubMed]
- Schilsky, M.L. Treatment of Wilson’s Disease: What Are the Relative Roles of Penicillamine, Trientine, and Zinc Supplementation? Curr. Gastroenterol. Rep. 2001, 3, 54–59. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Luan, J.; Zhou, X.; Cui, Y.; Han, J. Epidemiology, Diagnosis, and Treatment of Wilson’s Disease. Intractable Rare Dis. Res. 2017, 6, 249–255. [Google Scholar] [CrossRef]
- Karimi, G.; Vahabzadeh, M.; Lari, P.; Rashedinia, M.; Moshiri, M. “Silymarin”, a Promising Pharmacological Agent for Treatment of Diseases. Iran. J. Basic Med. Sci. 2011, 14, 308–317. [Google Scholar]
- Federico, A.; Dallio, M.; Loguercio, C. Silymarin/Silybin and Chronic Liver Disease: A Marriage of Many Years. Molecules 2017, 22, 191. [Google Scholar] [CrossRef]
- Fraschini, F.; Demartini, G.; Esposti, D. Pharmacology of Silymarin. Clin. Drug Investig. 2002, 22, 51–65. [Google Scholar] [CrossRef]
- Vargas-Mendoza, N.; Madrigal-Santillán, E.; Morales-González, Á.; Esquivel-Soto, J.; Esquivel-Chirino, C.; García-Luna y González-Rubio, M.; Gayosso-de-Lucio, J.A.; Morales-González, J.A. Hepatoprotective Effect of Silymarin. World J. Hepatol. 2014, 6, 144–149. [Google Scholar] [CrossRef]
- Valenzuela, A.; Vial, S.; Guerra, R. Selectivity of Silymarin on the Increase of the Glutathione Content in Different Tissues of the Rat. Planta Med. 1989, 55, 420–422. [Google Scholar] [PubMed]
- Bergheim, I.; McClain, C.J.; Arteel, G.E. Treatment of Alcoholic Liver Disease. Dig. Dis. 2006, 23, 275–284. [Google Scholar] [CrossRef] [Green Version]
- Davila, J.C.; Lenherr, A.; Acosta, D. Protective Effect of Flavonoids on Drug-Induced Hepatotoxicity In Vitro. Toxicology 1989, 57, 267–286. [Google Scholar] [PubMed]
- Carnpos, R.; Guerra, A.G.R.; Valenzuela, A. Silybin Dihemisuccinate Protects Against Glutathione Depletion and Lipid Peroxidation Induced by Acetaminophen on Rat Liver. Planta Med. 1989, 55, 417–419. [Google Scholar]
- Fiebrich, F.; Koch, H. Silymarin, an Inhibitor of Lipoxygenase. Experientia 1979, 35, 434. [Google Scholar]
- Bindoli Cavalln, A.L.; Siliprandi, N. Inhibitory Action of Silymarin of Lipid Peroxide Formation in Rat Liver Mitochondria and Microsomes. Biochem. Pharmacol. 1977, 26, 2405–2409. [Google Scholar] [CrossRef]
- Bahmani, M.; Shirzad, H.; Rafieian, S.; Rafieian-Kopaei, M. Silybum Marianum: Beyond Hepatoprotection. J. Evid.-Based Complement. Altern. Med. 2015, 20, 292–301. [Google Scholar] [CrossRef]
- Luper, S. A Review of Plants Used in the Treatment of Liver Disease: Part 1. Altern. Med. Rev. 1998, 3, 410–421. [Google Scholar]
- Valenzuela, A.; Garrido, A. Biochemical Bases of the Pharmacological Action of the Flavonoid Silymarin and of Its Structural Isomer Silibinin. Biol. Res. 1994, 27, 105–112. [Google Scholar]
- Nguyen, T.H.T.; Trinh, N.T.; Tran, H.N.; Tran, H.T.; Le, P.Q.; Ngo, D.N.; Tran-Van, H.; Van Vo, T.; Vong, L.B.; Nagasaki, Y. Improving Silymarin Oral Bioavailability Using Silica-Installed Redox Nanoparticle to Suppress Inflammatory Bowel Disease. J. Control. Release 2021, 331, 515–524. [Google Scholar] [CrossRef]
- Di Costanzo, A.; Angelico, R. Formulation Strategies for Enhancing the Bioavailability of Silymarin: The State of the Art. Molecules 2019, 24, 2155. [Google Scholar] [CrossRef] [PubMed]
- Baboci, L.; Capolla, S.; Di Cintio, F.; Colombo, F.; Mauro, P.; Dal Bo, M.; Argenziano, M.; Cavalli, R.; Toffoli, G.; Macor, P. The Dual Role of the Liver in Nanomedicine as an Actor in the Elimination of Nanostructures or a Therapeutic Target. J. Oncol. 2020, 2020, 4638192. [Google Scholar] [CrossRef] [PubMed]
- Vieira, D.B.; Gamarra, L.F. Getting into the Brain: Liposome-Based Strategies for Effective Drug Delivery across the Blood–Brain Barrier. Int. J. Nanomed. 2016, 11, 5381. [Google Scholar] [CrossRef]
- Arif, W.; Rana, N.F.; Saleem, I.; Tanweer, T.; Khan, M.J.; Alshareef, S.A.; Sheikh, H.M.; Alaryani, F.S.; AL-Kattan, M.O.; Alatawi, H.A.; et al. Antibacterial Activity of Dental Composite with Ciprofloxacin Loaded Silver Nanoparticles. Molecules 2022, 27, 7182. [Google Scholar] [CrossRef]
- Cacciapuoti, F.; Scognamiglio, A.; Palumbo, R.; Forte, R.; Cacciapuoti, F. Silymarin in Non Alcoholic Fatty Liver Disease. World J. Hepatol. 2013, 5, 109–113. [Google Scholar] [CrossRef]
- Immordino, M.L.; Dosio, F.; Cattel, L. Stealth Liposomes: Review of the Basic Science, Rationale, and Clinical Applications, Existing and Potential. Int. J. Nanomed. 2006, 1, 297. [Google Scholar]
- Farooq, A.; Iqbal, A.; Rana, N.F.; Fatima, M.; Maryam, T.; Batool, F.; Rehman, Z.; Menaa, F.; Azhar, S.; Nawaz, A.; et al. A Novel Sprague-Dawley Rat Model Presents Improved NASH/NAFLD Symptoms with PEG Coated Vitexin Liposomes. Int. J. Mol. Sci. 2022, 23, 3131. [Google Scholar] [CrossRef]
- Gumustas, M.; Sengel-Turk, C.T.; Gumustas, A.; Ozkan, S.A.; Uslu, B. Effect of Polymer-Based Nanoparticles on the Assay of Antimicrobial Drug Delivery Systems. In Multifunctional Systems for Combined Delivery, Biosensing and Diagnostics; Elsevier: Amsterdam, The Netherlands, 2017; pp. 67–108. [Google Scholar] [CrossRef]
- Kumar, V.; Kalita, J.; Misra, U.K.; Bora, H.K. A Study of Dose Response and Organ Susceptibility of Copper Toxicity in a Rat Model. J. Trace Elem. Med. Biol. 2015, 29, 269–274. [Google Scholar] [CrossRef]
- Sokol, R.J.; Deverbaux, M.; Mierau, G.W.; Hambidge, K.M.; Shikes, R.H. Shikes Oxidant Injury to Hepatic Mitochondrial Lipids in Rats with Dietary Copper Overload. Gastroenterology 1990, 90, 1061–1071. [Google Scholar] [CrossRef]
- Lamtai, M.; Zghari, O.; Ouakki, S.; Marmouzi, I.; Mesfioui, A.; El Hessni, A.; Ouichou, A. Chronic Copper Exposure Leads to Hippocampus Oxidative Stress and Impaired Learning and Memory in Male and Female Rats. Toxicol. Res. 2020, 36, 359–366. [Google Scholar] [CrossRef]
- Ishihara, K.; Kawashita, E.; Shimizu, R.; Nagasawa, K.; Yasui, H.; Sago, H.; Yamakawa, K.; Akiba, S. Copper Accumulation in the Brain Causes the Elevation of Oxidative Stress and Less Anxious Behavior in Ts1Cje Mice, a Model of Down Syndrome. Free Radic. Biol. Med. 2019, 134, 248–259. [Google Scholar] [CrossRef]
- Quamar, S.; Kumar, J.; Mishra, A.; Flora, S. Oxidative Stress and Neurobehavioural Changes in Rats Following Copper Exposure and Their Response to MiADMSA and d -Penicillamine. Toxicol. Res. Appl. 2019, 3, 239784731984478. [Google Scholar] [CrossRef]
- Kalita, J.; Kumar, V.; Misra, U.K.; Bora, H.K. Memory and Learning Dysfunction Following Copper Toxicity: Biochemical and Immunohistochemical Basis. Mol. Neurobiol. 2018, 55, 3800–3811. [Google Scholar] [CrossRef] [PubMed]
- Sokol, R.J.; Devereaux, M.W.; Traber, M.G.; Shikes, R.H. Copper Toxicity and Lipid Peroxidation in Isolated Rat Hepatocytes: Effect of Vitamin E. Pediatr. Res. 1989, 25, 55–62. [Google Scholar] [CrossRef]
- Haywood, S.; Simpson, D.M.; Ross, G.; Beynon, R.J. The Greater Susceptibility of North Ronaldsay Sheep Compared with Cambridge Sheep to Copper-Induced Oxidative Stress, Mitochondrial Damage and Hepatic Stellate Cell Activation. J. Comp. Pathol. 2005, 133, 114–127. [Google Scholar] [CrossRef] [PubMed]
- Dillard, C.J.; Tappel, A.L. Lipid Peroxidation and Copper Toxicity in Rats. Drug Chem. Toxicol. 2008, 7, 477–487. [Google Scholar] [CrossRef]
- Pal, A.; Badyal, R.K.; Vasishta, R.K.; Attri, S.V.; Thapa, B.R.; Prasad, R. Biochemical, Histological, and Memory Impairment Effects of Chronic Copper Toxicity: A Model for Non-Wilsonian Brain Copper Toxicosis in Wistar Rat. Biol. Trace Elem. Res. 2013, 153, 257–268. [Google Scholar] [CrossRef]
- Owen, C.A.; Hazelrig, J.B. Copper Deficiency and Copper Toxicity in the Rat. Am. J. Physiol.—Leg. Content 1968, 215, 334–338. [Google Scholar] [CrossRef]
- Li, X.L.; Wong, Y.S.; Xu, G.; Chan, J.C.N. Selenium-Enriched Spirulina Protects INS-1E Pancreatic Beta Cells from Human Islet Amyloid Polypeptide-Induced Apoptosis through Suppression of ROS-Mediated Mitochondrial Dysfunction and PI3/AKT Pathway. Eur. J. Nutr. 2015, 54, 509–522. [Google Scholar] [CrossRef]
- Tanweer, T.; Rana, N.F.; Saleem, I.; Shafique, I.; Alshahrani, S.M.; Almukhlifi, H.A.; Alotaibi, A.S.; Alshareef, S.A.; Menaa, F. Dental Composites with Magnesium Doped Zinc Oxide Nanoparticles Prevent Secondary Caries in the Alloxan-Induced Diabetic Model. Int. J. Mol. Sci. 2022, 23, 15926. [Google Scholar] [CrossRef]
- Nawaz, A.; Ali, S.M.; Rana, N.F.; Tanweer, T.; Batool, A.; Webster, T.J.; Menaa, F.; Riaz, S.; Rehman, Z.; Batool, F.; et al. Ciprofloxacin-Loaded Gold Nanoparticles against Antimicrobial Resistance: An In Vivo Assessment. Nanomaterials 2021, 11, 3152. [Google Scholar] [CrossRef] [PubMed]
- Nii, T.; Ishii, F. Encapsulation Efficiency of Water-Soluble and Insoluble Drugs in Liposomes Prepared by the Microencapsulation Vesicle Method. Int. J. Pharm. 2005, 298, 198–205. [Google Scholar] [CrossRef] [PubMed]
- Bibi, N.; ur Rehman, A.; Rana, N.F.; Akhtar, H.; Khan, M.I.; Faheem, M.; Jamal, S.B.; Ahmed, N. Formulation and Characterization of Curcumin Nanoparticles for Skin Cancer Treatment. Appl. Nanosci. 2022, 12, 3421–3436. [Google Scholar] [CrossRef]
- Kumar, V.; Kalita, J.; Bora, H.K.; Misra, U.K. Temporal Kinetics of Organ Damage in Copper Toxicity: A Histopathological Correlation in Rat Model. Regul. Toxicol. Pharmacol. 2016, 81, 372–380. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maryam, T.; Rana, N.F.; Alshahrani, S.M.; Batool, F.; Fatima, M.; Tanweer, T.; Alrdahe, S.S.; Alanazi, Y.F.; Alsharif, I.; Alaryani, F.S.; et al. Silymarin Encapsulated Liposomal Formulation: An Effective Treatment Modality against Copper Toxicity Associated Liver Dysfunction and Neurobehavioral Abnormalities in Wistar Rats. Molecules 2023, 28, 1514. https://doi.org/10.3390/molecules28031514
Maryam T, Rana NF, Alshahrani SM, Batool F, Fatima M, Tanweer T, Alrdahe SS, Alanazi YF, Alsharif I, Alaryani FS, et al. Silymarin Encapsulated Liposomal Formulation: An Effective Treatment Modality against Copper Toxicity Associated Liver Dysfunction and Neurobehavioral Abnormalities in Wistar Rats. Molecules. 2023; 28(3):1514. https://doi.org/10.3390/molecules28031514
Chicago/Turabian StyleMaryam, Tuba, Nosheen Fatima Rana, Sultan M. Alshahrani, Farhat Batool, Misha Fatima, Tahreem Tanweer, Salma Saleh Alrdahe, Yasmene F. Alanazi, Ifat Alsharif, Fatima S. Alaryani, and et al. 2023. "Silymarin Encapsulated Liposomal Formulation: An Effective Treatment Modality against Copper Toxicity Associated Liver Dysfunction and Neurobehavioral Abnormalities in Wistar Rats" Molecules 28, no. 3: 1514. https://doi.org/10.3390/molecules28031514
APA StyleMaryam, T., Rana, N. F., Alshahrani, S. M., Batool, F., Fatima, M., Tanweer, T., Alrdahe, S. S., Alanazi, Y. F., Alsharif, I., Alaryani, F. S., Kashif, A. S., & Menaa, F. (2023). Silymarin Encapsulated Liposomal Formulation: An Effective Treatment Modality against Copper Toxicity Associated Liver Dysfunction and Neurobehavioral Abnormalities in Wistar Rats. Molecules, 28(3), 1514. https://doi.org/10.3390/molecules28031514