Neuroprotective Effect of Quercetin and Memantine against AlCl3-Induced Neurotoxicity in Albino Wistar Rats
Abstract
:1. Introduction
2. Results
2.1. Behavioral Assessment
2.1.1. Actophotometer
2.1.2. Morris Water Maze (MWM)
2.1.3. Elevated Plus Maze (EPM)
2.1.4. Passive Avoidance (PA)
2.2. Oxidative Stress Parameters
2.2.1. Assessment of Oxidative Stress Parameters in Cortex
2.2.2. Assessment of Oxidative Stress Parameters in Hippocampus
2.3. Acetylcholinesterase Assay (AChE)
2.4. Histopathological Studies:
2.4.1. Hematoxylin and Eosin
2.4.2. Congo Red Staining
2.5. Immunohistochemistry Studies (IHC)
2.5.1. Amyloid-β Expression
2.5.2. BDNF Expression
3. Discussion
4. Material and Methods
4.1. Drugs and Chemicals
4.2. Animals
4.3. Experimental Design
4.4. Behavioral Assessment
4.4.1. Actophotometer
4.4.2. Morris Water Maze
4.4.3. Elevated Plus Maze
4.4.4. Passive Avoidance
4.5. Biochemical Assessment
4.5.1. Brain Tissues
4.5.2. Oxidative Stress Parameters
4.5.3. Acetylcholinesterase Activity (AChE)
4.6. Histopathological Assessment
4.7. Immunohistochemical Assessment
4.8. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- World Health Organization. Global Action Plan on the Public Health Response to Dementia 2017-2025; WTO: Geneva, Switzerland, 2017. [Google Scholar]
- Gaugler, J.; Bryan James, T.J.; Reimer, J.; Weuve, J. Alzheimer’s Association 2021 Alzheimer’s Disease Facts and Figures Special Report Race, Ethnicity and Alzheimer’s in America. Alzheimers. Dement. 2021, 17, 327–406. [Google Scholar]
- Ferri, C.P.; Prince, M.; Brayne, C.; Brodaty, H.; Fratiglioni, L.; Ganguli, M.; Hall, K.; Hasegawa, K.; Hendrie, H.; Huang, Y.; et al. Global Prevalence of Dementia: A Delphi Consensus Study. Lancet 2005, 366, 2112–2117. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, M.B. Alzheimer’s Disease: Recent Advances in Etiology, Diagnosis, and Management. Tex. Med. 2001, 97, 50–58. [Google Scholar] [PubMed]
- Serrano-Pozo, A.; Frosch, M.P.; Masliah, E.; Hyman, B.T. Neuropathological Alterations in Alzheimer Disease. Cold Spring Harb. Perspect. Med. 2011, 1, a006189. [Google Scholar] [CrossRef] [Green Version]
- Tanghe, A.; Termont, A.; Merchiers, P.; Schilling, S.; Demuth, H.-U.; Scrocchi, L.; Van Leuven, F.; Griffioen, G.; Van Dooren, T. Pathological Hallmarks, Clinical Parallels, and Value for Drug Testing in Alzheimer’s Disease of the APP[V717I] London Transgenic Mouse Model. Int. J. Alzheimers. Dis. 2010, 2010. [Google Scholar] [CrossRef] [Green Version]
- Kiaei, M. New Hopes and Challenges for Treatment of Neurodegenerative Disorders: Great Opportunities for Young Neuroscientists. Basic Clin. Neurosci. 2013, 4, 3–4. [Google Scholar]
- Finn, L.A. Current Medications for the Treatment of Alzheimer’s Disease: Acetylcholinesterase Inhibitors and NMDA Receptor Antagonist; Elsevier Inc.: Amsterdam, The Netherlands, 2017; ISBN 9780128028117. [Google Scholar]
- Liu, J.; Chang, L.; Song, Y.; Li, H.; Wu, Y. The Role of NMDA Receptors in Alzheimer’s Disease. Front. Neurosci. 2019, 13, 43. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.-Y.; Stucky, A.; Liu, J.; Shen, C.; Trocme-Thibierge, C.; Morain, P. Dissociating Beta-Amyloid from Alpha 7 Nicotinic Acetylcholine Receptor by a Novel Therapeutic Agent, S 24795, Normalizes Alpha 7 Nicotinic Acetylcholine and NMDA Receptor Function in Alzheimer’s Disease Brain. J. Neurosci. Off. J. Soc. Neurosci. 2009, 29, 10961–10973. [Google Scholar] [CrossRef] [Green Version]
- 2020 Alzheimer’s Disease Facts and Figures. Alzheimer’s Dement. 2020, 16, 391–460. [CrossRef]
- Ayaz, M.; Ullah, F.; Sadiq, A.; Kim, M.O.; Ali, T. Editorial: Natural Products-Based Drugs: Potential Therapeutics Against Alzheimer’s Disease and Other Neurological Disorders. Front. Pharmacol. 2019, 10, 1417. [Google Scholar] [CrossRef] [Green Version]
- Panche, A.N.; Diwan, A.D.; Chandra, S.R. Flavonoids: An Overview. J. Nutr. Sci. 2016, 5, e47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anand David, A.V.; Arulmoli, R.; Parasuraman, S. Overviews of Biological Importance of Quercetin: A Bioactive Flavonoid. Pharmacogn. Rev. 2016, 10, 84–89. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.-Z.; Deng, G.; Liang, Q.; Chen, D.-F.; Guo, R.; Lai, R.-C. Antioxidant Activity of Quercetin and Its Glucosides from Propolis: A Theoretical Study. Sci. Rep. 2017, 7, 7543. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.K.; Park, S.U. Quercetin and Its Role in Biological Functions: An Updated Review. EXCLI J. 2018, 17, 856–863. [Google Scholar] [CrossRef]
- Abdalla, F.H.; Cardoso, A.M.; Pereira, L.B.; Schmatz, R.; Gonçalves, J.F.; Stefanello, N.; Fiorenza, A.M.; Gutierres, J.M.; da Silva Serres, J.D.; Zanini, D.; et al. Neuroprotective Effect of Quercetin in Ectoenzymes and Acetylcholinesterase Activities in Cerebral Cortex Synaptosomes of Cadmium-Exposed Rats. Mol. Cell. Biochem. 2013, 381, 1–8. [Google Scholar] [CrossRef]
- Fiorani, M.; Guidarelli, A.; Blasa, M.; Azzolini, C.; Candiracci, M.; Piatti, E.; Cantoni, O. Mitochondria Accumulate Large Amounts of Quercetin: Prevention of Mitochondrial Damage and Release upon Oxidation of the Extramitochondrial Fraction of the Flavonoid. J. Nutr. Biochem. 2010, 21, 397–404. [Google Scholar] [CrossRef]
- Sabogal-Guáqueta, A.M.; Muñoz-Manco, J.I.; Ramírez-Pineda, J.R.; Lamprea-Rodriguez, M.; Osorio, E.; Cardona-Gómez, G.P. The Flavonoid Quercetin Ameliorates Alzheimer’s Disease Pathology and Protects Cognitive and Emotional Function in Aged Triple Transgenic Alzheimer’s Disease Model Mice. Neuropharmacology 2015, 93, 134–145. [Google Scholar] [CrossRef] [Green Version]
- Minocha, T.; Birla, H.; Obaid, A.A.; Rai, V.; Sushma, P.; Shivamallu, C.; Moustafa, M.; Al-Shehri, M.; Al-Emam, A.; Tikhonova, M.A.; et al. Flavonoids as Promising Neuroprotectants and Their Therapeutic Potential against Alzheimer’s Disease. Oxid. Med. Cell. Longev. 2022, 2022, 6038996. [Google Scholar] [CrossRef]
- Lendon, C.L.; Ashall, F.; Goate, A.M. Exploring the Etiology of Alzheimer Disease Using Molecular Genetics. JAMA 1997, 277, 825–831. [Google Scholar] [CrossRef]
- Filley, C.M. Alzheimer’s Disease in Women. Am. J. Obstet. Gynecol. 1997, 176, 1–7. [Google Scholar] [CrossRef]
- Prakash, A.; Kumar, A. Mitoprotective Effect of Centella Asiatica against Aluminum-Induced Neurotoxicity in Rats: Possible Relevance to Its Anti-Oxidant and Anti-Apoptosis Mechanism. Neurol. Sci. Off. J. Ital. Neurol. Soc. Ital. Soc. Clin. Neurophysiol. 2013, 34, 1403–1409. [Google Scholar] [CrossRef] [PubMed]
- Platt, B.; Fiddler, G.; Riedel, G.; Henderson, Z. Aluminium Toxicity in the Rat Brain: Histochemical and Immunocytochemical Evidence. Brain Res. Bull. 2001, 55, 257–267. [Google Scholar] [CrossRef] [PubMed]
- Justin Thenmozhi, A.; Raja, T.R.W.; Janakiraman, U.; Manivasagam, T. Neuroprotective Effect of Hesperidin on Aluminium Chloride Induced Alzheimer’s Disease in Wistar Rats. Neurochem. Res. 2015, 40, 767–776. [Google Scholar] [CrossRef] [PubMed]
- Osman, A.S.; Gad, M.H.; Hareedy, A.A.; Mishriki, A.A.; Rasheed, E.A.M.A. Sitagliptin Attenuates Cognitive Impairment in the Rat Model of Aluminum-Induced Alzheimer’s Disease. J. Adv. Pharm. Educ. Res. 2019, 9, 53–61. [Google Scholar]
- Khan, K.A.; Kumar, N.; Nayak, P.G.; Nampoothiri, M.; Shenoy, R.R.; Krishnadas, N.; Rao, C.M.; Mudgal, J. Impact of Caffeic Acid on Aluminium Chloride-Induced Dementia in Rats. J. Pharm. Pharmacol. 2013, 65, 1745–1752. [Google Scholar] [CrossRef]
- Parsons, C.G.; Danysz, W.; Dekundy, A.; Pulte, I. Memantine and Cholinesterase Inhibitors: Complementary Mechanisms in the Treatment of Alzheimer’s Disease. Neurotox. Res. 2013, 24, 358–369. [Google Scholar] [CrossRef] [Green Version]
- Choi, G.N.; Kim, J.H.; Kwak, J.H.; Jeong, C.-H.; Jeong, H.R.; Lee, U.; Heo, H.J. Effect of Quercetin on Learning and Memory Performance in ICR Mice under Neurotoxic Trimethyltin Exposure. Food Chem. 2012, 132, 1019–1024. [Google Scholar] [CrossRef]
- Beckmann, D.V.; Carvalho, F.B.; Mazzanti, C.M.; Dos Santos, R.P.; Andrades, A.O.; Aiello, G.; Rippilinger, A.; Graça, D.L.; Abdalla, F.H.; Oliveira, L.S.; et al. Neuroprotective Role of Quercetin in Locomotor Activities and Cholinergic Neurotransmission in Rats Experimentally Demyelinated with Ethidium Bromide. Life Sci. 2014, 103, 79–87. [Google Scholar] [CrossRef]
- Costa, L.G.; Garrick, J.M.; Roquè, P.J.; Pellacani, C. Mechanisms of Neuroprotection by Quercetin: Counteracting Oxidative Stress and More. Oxid. Med. Cell. Longev. 2016, 2016, 2986796. [Google Scholar] [CrossRef] [Green Version]
- Zheng, H.; Jiang, M.; Trumbauer, M.E.; Sirinathsinghji, D.J.; Hopkins, R.; Smith, D.W.; Heavens, R.P.; Dawson, G.R.; Boyce, S.; Conner, M.W.; et al. Beta-Amyloid Precursor Protein-Deficient Mice Show Reactive Gliosis and Decreased Locomotor Activity. Cell 1995, 81, 525–531. [Google Scholar] [CrossRef] [Green Version]
- Kocahan, S.; Dogan, Z.; Erdemli, E.; Taskin, E. Protective Effect of Quercetin Against Oxidative Stress-Induced Toxicity Associated With Doxorubicin and Cyclophosphamide in Rat Kidney and Liver Tissue. Iran. J. Kidney Dis. 2017, 11, 124–131. [Google Scholar] [PubMed]
- Salvamani, S.; Gunasekaran, B.; Shaharuddin, N.A.; Ahmad, S.A.; Shukor, M.Y. Antiartherosclerotic Effects of Plant Flavonoids. Biomed. Res. Int. 2014, 2014, 480258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matouk, A.I.; Taye, A.; Heeba, G.H.; El-Moselhy, M.A. Quercetin Augments the Protective Effect of Losartan against Chronic Doxorubicin Cardiotoxicity in Rats. Environ. Toxicol. Pharmacol. 2013, 36, 443–450. [Google Scholar] [CrossRef] [PubMed]
- Xin, L.; Yamujala, R.; Wang, Y.; Wang, H.; Wu, W.H.; Lawton, M.A.; Long, C.; Di, R. Acetylcholineestarase-Inhibiting Alkaloids from Lycoris Radiata Delay Paralysis of Amyloid Beta-Expressing Transgenic C. Elegans CL4176. PLoS ONE 2013, 8, e63874. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Townsend, M.; Shankar, G.M.; Mehta, T.; Walsh, D.M.; Selkoe, D.J. Effects of Secreted Oligomers of Amyloid Beta-Protein on Hippocampal Synaptic Plasticity: A Potent Role for Trimers. J. Physiol. 2006, 572, 477–492. [Google Scholar] [CrossRef]
- Parameshwaran, K.; Dhanasekaran, M.; Suppiramaniam, V. Amyloid Beta Peptides and Glutamatergic Synaptic Dysregulation. Exp. Neurol. 2008, 210, 7–13. [Google Scholar] [CrossRef]
- Kumar, A.; Dogra, S.; Prakash, A. Protective Effect of Curcumin (Curcuma Longa), against Aluminium Toxicity: Possible Behavioral and Biochemical Alterations in Rats. Behav. Brain Res. 2009, 205, 384–390. [Google Scholar] [CrossRef]
- Morris, R. Developments of a Water-Maze Procedure for Studying Spatial Learning in the Rat. J. Neurosci. Methods 1984, 11, 47–60. [Google Scholar] [CrossRef]
- Auti, S.T.; Kulkarni, Y.A. Neuroprotective Effect of Cardamom Oil Against Aluminum Induced Neurotoxicity in Rats. Front. Neurol. 2019, 10, 399. [Google Scholar] [CrossRef] [Green Version]
- Sharma, A.C.; Kulkarni, S.K. Evaluation of Learning and Memory Mechanisms Employing Elevated Plus-Maze in Rats and Mice. Prog. Neuropsychopharmacol. Biol. Psychiatry 1992, 16, 117–125. [Google Scholar] [CrossRef]
- Itoh, J.; Nabeshima, T.; Kameyama, T. Utility of an Elevated Plus-Maze for Dissociation of Amnesic and Behavioral Effects of Drugs in Mice. Eur. J. Pharmacol. 1991, 194, 71–76. [Google Scholar] [CrossRef] [PubMed]
- Rao Barkur, R.; Bairy, L.K. Evaluation of Passive Avoidance Learning and Spatial Memory in Rats Exposed to Low Levels of Lead during Specific Periods of Early Brain Development. Int. J. Occup. Med. Environ. Health 2015, 28, 533–544. [Google Scholar] [CrossRef] [PubMed]
- Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein Measurement with the Folin Phenol Reagent. J. Biol. Chem. 1951, 193, 265–275. [Google Scholar] [CrossRef] [PubMed]
- Ohkawa, H.; Ohishi, N.; Yagi, K. Assay for Lipid Peroxides in Animal Tissues by Thiobarbituric Acid Reaction. Anal. Biochem. 1979, 95, 351–358. [Google Scholar] [CrossRef]
- Ellman, G.L. Tissue Sulfhydryl Groups. Arch. Biochem. Biophys. 1959, 82, 70–77. [Google Scholar] [CrossRef]
- Paoletti, F.; Aldinucci, D.; Mocali, A.; Caparrini, A. A Sensitive Spectrophotometric Method for the Determination of Superoxide Dismutase Activity in Tissue Extracts. Anal. Biochem. 1986, 154, 536–541. [Google Scholar] [CrossRef]
- Paoletti, F.; Mocali, A.; Aldinucci, D. Superoxide-Driven NAD(P)H Oxidation Induced by EDTA-Manganese Complex and Mercaptoethanol. Chem. Biol. Interact. 1990, 76, 3–18. [Google Scholar] [CrossRef] [PubMed]
- Ellman, G.L.; Courtney, K.D.; Andres, V.J.; Feather-Stone, R.M. A New and Rapid Colorimetric Determination of Acetylcholinesterase Activity. Biochem. Pharmacol. 1961, 7, 88–95. [Google Scholar] [CrossRef]
- Rajamohamedsait, H.B.; Sigurdsson, E.M. Histological Staining of Amyloid and Pre-Amyloid Peptides and Proteins in Mouse Tissue. Methods Mol. Biol. 2012, 849, 411–424. [Google Scholar] [CrossRef] [Green Version]
- Kenawy, S.; Hegazy, R.; Hassan, A.; El-Shenawy, S.; Gomaa, N.; Zaki, H.; Attia, A. Involvement of Insulin Resistance in D-Galactose-Induced Age-Related Dementia in Rats: Protective Role of Metformin and Saxagliptin. PLoS ONE 2017, 12, e183565. [Google Scholar] [CrossRef] [Green Version]
- Rivera-Escalera, F.; Matousek, S.B.; Ghosh, S.; Olschowka, J.A.; O’Banion, M.K. Interleukin-1β Mediated Amyloid Plaque Clearance Is Independent of CCR2 Signaling in the APP/PS1 Mouse Model of Alzheimer’s Disease. Neurobiol. Dis. 2014, 69, 124–133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gazia, M.A. The Possible Protective Effect of Gardenia Jasminoides Extracts on the Dentate Gyrus Changes in an Alzheimer-Induced Model in Adult Male Albino Rats: Histological and Immunohistochemical Study. Egypt. J. Histol. 2019, 42, 393–407. [Google Scholar] [CrossRef]
- Dugich-Djordjevic, M.M.; Peterson, C.; Isono, F.; Ohsawa, F.; Widmer, H.R.; Denton, T.L.; Bennett, G.L.; Hefti, F. Immunohistochemical Visualization of Brain-Derived Neurotrophic Factor in the Rat Brain. Eur. J. Neurosci. 1995, 7, 1831–1839. [Google Scholar] [CrossRef] [PubMed]
- Matsunaga, S.; Kishi, T.; Iwata, N. Combination Therapy with Cholinesterase Inhibitors and Memantine for Alzheimer’s Disease: A Systematic Review and Meta-Analysis. Int. J. Neuropsychopharmacol. 2014, 18, pyu115. [Google Scholar] [CrossRef] [PubMed]
Groups | MDA (nmol/mg of Protein) | SOD (µmol/mg of Protein) | CAT (nmol of H2O2 Decomposed/min mg of Protein) | GSH (µmol/mg of Protein) |
---|---|---|---|---|
Normal control | 3.78 ± 0.33 | 8.48 ± 0.48 | 8.32 ± 0.40 | 10.42 ± 0.48 |
Disease control | 7.38 ± 0.36 ### | 5.13 ± 0.34 ### | 3.73 ± 0.09 ### | 6.07 ± 0.40 ### |
Memantine (20 mg/kg) | 6.57 ± 0.46 | 5.68 ± 0.54 | 4.78 ± 0.30 ** | 7.56 ± 0.67 * |
Quercetin (50 mg/kg) | 5.22 ± 0.24 *** | 5.99 ± 0.64 | 5.12 ± 0.28 ** | 7.69 ± 0.37 * |
Memantine + Quercetin (20 + 25 mg/kg) | 4.42 ± 0.35 *** | 7.22 ± 0.45* | 6.09 ± 0.18 *** | 8.56 ± 0.39 ** |
Memantine + Quercetin (20 + 50 mg/kg) | 4.08 ± 0.29 *** | 7.75 ± 0.46** | 7.87 ± 0.18 *** | 9.17 ± 0.40 *** |
Groups | MDA (nmol/mg of Protein) | SOD (µmol/mg of Protein) | CAT (nmol of H2O2 Decomposed/min mg of Protein) | GSH (µmol/mg of Protein) |
---|---|---|---|---|
Normal control | 3.91 ± 0.27 | 8.10 ± 0.42 | 8.35 ± 0.48 | 10.52 ± 051 |
Disease control | 7.19 ± 0.24 ### | 4.43 ± 0.62 ### | 4.17 ± 0.32 ### | 4.99 ± 0.59 ### |
Memantine (20 mg/kg) | 6.56 ± 0.53 | 4.97 ± 0.28 | 4.54 ± 0.48 | 5.93 ± 0.55 |
Quercetin (50 mg/kg) | 5.18 ± 0.35 ** | 6.98 ± 0.61 ** | 6.36 ± 0.55 * | 7.77 ± 0.60 ** |
Memantine + Quercetin (20 + 25 mg/kg) | 4.42 ± 0.43 *** | 7.43 ± 0.52 *** | 7.06 ± 0.52 ** | 8.59 ± 0.44 *** |
Memantine + Quercetin (20 + 50 mg/kg) | 4.10± 0.38 *** | 7.75 ± 0.45 *** | 7.70 ± 0.59 *** | 9.28 ± 0.48 *** |
Percentage of Positive Cells | Intensity of Staining |
---|---|
0 | No reactivity |
<1% | Minimal |
1–25% | Mild |
26–50% | Moderate |
51–75% | Marked/moderately severe |
76–100% | Severe |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jadhav, R.; Kulkarni, Y.A. Neuroprotective Effect of Quercetin and Memantine against AlCl3-Induced Neurotoxicity in Albino Wistar Rats. Molecules 2023, 28, 417. https://doi.org/10.3390/molecules28010417
Jadhav R, Kulkarni YA. Neuroprotective Effect of Quercetin and Memantine against AlCl3-Induced Neurotoxicity in Albino Wistar Rats. Molecules. 2023; 28(1):417. https://doi.org/10.3390/molecules28010417
Chicago/Turabian StyleJadhav, Ratnakar, and Yogesh A. Kulkarni. 2023. "Neuroprotective Effect of Quercetin and Memantine against AlCl3-Induced Neurotoxicity in Albino Wistar Rats" Molecules 28, no. 1: 417. https://doi.org/10.3390/molecules28010417
APA StyleJadhav, R., & Kulkarni, Y. A. (2023). Neuroprotective Effect of Quercetin and Memantine against AlCl3-Induced Neurotoxicity in Albino Wistar Rats. Molecules, 28(1), 417. https://doi.org/10.3390/molecules28010417