Immune Defences: A View from the Side of the Essential Oils
Abstract
:1. Introduction
2. Studies Research
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Wang, C.H.; Hsieh, Y.H.; Powers, Z.M.; Kao, C.Y. Defeating antibiotic-resistant bacteria: Exploring alternative therapies for a post-antibiotic era. Int. J. Mol. Sci. 2020, 21, 1061. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palmeira-de-Oliveira, A.; Salgueiro, L.; Palmeira-de-Oliveira, R.; Martinez-de-Oliveira, J.; Pina-Vaz, C.; Queiroz, J.A.; Rodrigues, A.G. Anti-Candida activity of essential oils. Mini. Rev. Med. Chem. 2009, 9, 1292–1305. [Google Scholar] [CrossRef] [PubMed]
- Pina-Vaz, C.; Gonçalves Rodrigues, A.; Pinto, E.; Costa-de-Oliveira, S.; Tavares, C.; Salgueiro, L.; Cavaleiro, C.; Gonçalves, M.J.; Martinez-de-Oliveira, J. Antifungal activity of Thymus oils and their major compounds. J. Eur. Acad. Dermatol. Venereol. 2004, 18, 73–78. [Google Scholar] [CrossRef]
- Ali, B.; Ali, N.; Al-Wabel, N.A.; Shams, S.; Ahamad, A.; Khan, S.A.; Anwar, F. Essential oils used in aromatherapy: A systemic review. Asian Pac. J. Trop Biomed. 2015, 5, 601–611. [Google Scholar] [CrossRef] [Green Version]
- Swamy, M.K.; Akhtar, M.S.; Sinniah, U.R. Antimicrobial properties of plant essential oils against human pathogens and their mode of action: An updated review. Evid. Based Complement. Alternat. Med. 2016, 2016, 3012462. [Google Scholar] [CrossRef] [Green Version]
- Wińska, K.; Mączka, W.; Łyczko, J.; Grabarczyk, M.; Czubaszek, A.; Szumny, A. Essential oils as antimicrobial agents-myth or real alternative? Molecules 2019, 24, 2130. [Google Scholar] [CrossRef] [Green Version]
- Tullio, V.; Nostro, A.; Mandras, N.; Dugo, P.; Banche, G.; Cannatelli, M.A.; Cuffini, A.M.; Alonzo, V.; Carlone, N.A. Antifungal activity of essential oils against filamentous fungi determined by broth microdilution and vapour contact methods. J. Appl. Microbiol. 2007, 102, 1544–1550. [Google Scholar] [CrossRef]
- Scalas, D.; Mandras, N.; Roana, J.; Tardugno, R.; Cuffini, A.M.; Ghisetti, V.; Benvenuti, S.; Tullio, V. Use of Pinus sylvestris L. (Pinaceae), Origanum vulgare L. (Lamiaceae), and Thymus vulgaris L. (Lamiaceae) essential oils and their main components to enhance itraconazole activity against azole susceptible/not-susceptible Cryptococcus neoformans strains. BMC Complement. Altern. Med. 2018, 18, 43. [Google Scholar] [CrossRef] [Green Version]
- Ugazio, E.; Tullio, V.; Binello, A.; Tagliapietra, S.; Dosio, F. Ozonated oils as antimicrobial systems in topical applications. Their characterization, current applications, and advances in improved delivery techniques. Molecules 2020, 25, 334. [Google Scholar] [CrossRef] [Green Version]
- Carlone, N.A.; Mandras, N.; Nicolosi, D.; Vitali, L. Farmaci antibatterici. In Microbiologia Farmaceutica, 3rd ed.; Carlone, N., Pompei, R., Tullio, V., Eds.; Edises Università S.r.l.: Naples, Italy, 2021; pp. 178–207. [Google Scholar]
- Carlone, N.A.; Mandras, N. Farmaci antifungini. In Microbiologia Farmaceutica, 3rd ed.; Carlone, N., Pompei, R., Tullio, V., Eds.; Edises Università S.r.l.: Naples, Italy, 2021; pp. 226–238. [Google Scholar]
- Tullio, V.; Roana, J.; Scalas, D.; Mandras, N. Evaluation of the antifungal activity of Mentha x piperita (Lamiaceae) of Pancalieri (Turin, Italy) essential oil and its synergistic interaction with azoles. Molecules 2019, 24, 3148. [Google Scholar] [CrossRef]
- Garozzo, A.; Timpanaro, R.; Bisignano, B.; Furneri, P.M.; Bisignano, G.; Castro, A. In vitro antiviral activity of Melaleuca alternifolia essential oil. Lett. Appl. Microbiol. 2009, 49, 806–808. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Fu, X.; Ma, X.; Geng, S.; Jiang, X.; Huang, Q.; Hu, C.; Han, X. Intestinal microbiome-metabolome responses to essential oils in piglets. Front. Microbiol. 2018, 9, 1988. [Google Scholar] [CrossRef] [PubMed]
- Carlone, N.A.; Cuffini, A.M.; Tullio, V.; Cavallo, G. Interactions of antibiotics with phagocytes in vitro. J. Chemother. 1991, 3 (Suppl. 1), 98–104. [Google Scholar] [PubMed]
- Tullio, V.; Cuffini, A.M.; Fazari, S.; Carlone, N.A. Cefonicid potentiation of human macrophage activity. Microbiologica 1992, 15, 219–226. [Google Scholar] [PubMed]
- Tullio, V.; Cuffini, A.M.; De Leo, C.; Perrone, F.; Carlone, N.A. Interaction of Candida albicans, macrophages and fluconazole: In vitro and ex vivo observations. J. Chemother. 1996, 8, 438–444. [Google Scholar] [CrossRef]
- Labro, M.T. Interference of antibacterial agents with phagocyte functions: Immunomodulation or “immuno-fairy tales”? Clin. Microbiol. Rev. 2000, 13, 615–650. [Google Scholar] [CrossRef] [Green Version]
- Tullio, V.; Cuffini, A.M.; Bonino, A.; Palarchio, A.I.; Roana, J.; Mandras, N.; Rossi, V.; Carlone, N.A. Influence of a new fluoroquinolone, AF3013 (the active metabolite of prulifloxacin), on macrophage functions against Klebsiella pneumoniae: An in vitro comparison with pefloxacin. J. Antimicrob. Chemother. 2000, 46, 241–247. [Google Scholar] [CrossRef] [Green Version]
- Banche, G.; Allizond, V.; Mandras, N.; Tullio, V.; Cuffini, A.M. Host immune modulation by antimicrobial drugs: Current knowledge and implications for antimicrobial chemotherapy. Curr. Opin. Pharmacol. 2014, 18, 159–166. [Google Scholar] [CrossRef] [PubMed]
- Grüneboom, A.; Aust, O.; Cibir, Z.; Weber, F.; Hermann, D.M.; Gunzer, M. Imaging innate immunity. Immunol. Rev. 2022, 306, 293–303. [Google Scholar] [CrossRef]
- Tullio, V.; Cuffini, A.M.; Carlone, N.A.; Spignoli, G. New imidazole derivates: In-vitro activity on dermatophytes. J. Chemother. 1991, 3 (Suppl. 1), 43–46. [Google Scholar]
- Testore, G.P.; Dori, L.; Buonomini, A.R.; Schito, G.C.; Soro, O.; Fortina, G.; Andreoni, S.; Carlone, N.; Tullio, V.; Andreoni, M. In vitro fluconazole susceptibility of 1565 clinical isolates of Candida species evaluated by the disk diffusion method performed using NCCLS M44-A guidelines. Diagn. Microbiol. Infect. Dis. 2004, 50, 187–192. [Google Scholar] [CrossRef] [PubMed]
- Mandras, N.; Tullio, V.; Allizond, V.; Scalas, D.; Banche, G.; Roana, J.; Robbiano, F.; Fucale, G.; Malabaila, A.; Cuffini, A.M.; et al. In vitro activities of fluconazole and voriconazole against clinical isolates of Candida spp. determined by disk diffusion testing in Turin, Italy. Antimicrob. Agents Chemother. 2009, 53, 1657–1659. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mandras, N.; Roana, J.; Scalas, D.; Fucale, G.; Allizond, V.; Banche, G.; Barbui, A.; Li Vigni, N.; Newell, V.A.; Cuffini, A.M.; et al. In vitro antifungal activity of fluconazole and voriconazole against non-Candida yeasts and yeast-like fungi clinical isolates. New Microbiol. 2015, 38, 583–587. [Google Scholar] [PubMed]
- Pfaller, M.A.; Diekema, D.J.; Gibbs, D.L.; Newell, V.A.; Ng, K.P.; Colombo, A.; Finquelievich, J.; Barnes, R.; Wadula, J.; Global Antifungal Surveillance Group. Geographic and temporal trends in isolation and antifungal susceptibility of Candida parapsilosis: A global assessment from the ARTEMIS DISK Antifungal Surveillance Program, 2001 to 2005. J. Clin. Microbiol. 2008, 46, 842–849. [Google Scholar] [CrossRef] [Green Version]
- Pfaller, M.A.; Boyken, L.; Hollis, R.J.; Kroeger, J.; Messer, S.A.; Tendolkar, S.; Diekema, D.J.; ARTEMIS DISK Global Antifungal Surveillance Group. Comparison of results of fluconazole and voriconazole disk diffusion testing for Candida spp. with results from a central reference laboratory in the ARTEMIS DISK Global Antifungal Surveillance Program. Diagn. Microbiol. Infect. Dis. 2009, 65, 27–34. [Google Scholar] [CrossRef]
- Pfaller, M.A.; Diekema, D.J.; Gibbs, D.L.; Newell, V.A.; Ellis, D.; Tullio, V.; Rodloff, A.; Fu, W.; Ling, T.A.; Global Antifungal Surveillance Group. Results from the ARTEMIS DISK Global Antifungal Surveillance Study, 1997 to 2007: A 10.5-year analysis of susceptibilities of Candida Species to fluconazole and voriconazole as determined by CLSI standardized disk diffusion. J. Clin. Microbiol. 2010, 48, 1366–1377. [Google Scholar] [CrossRef] [Green Version]
- Tullio, V.; Cuffini, A.M.; Giacchino, F.; Mandras, N.; Roana, J.; Comune, L.; Merlino, C.; Carlone, N.A. Combined action of fluconazole and PMNs from uremic patients in clearing intracellular Candida albicans. J. Chemother. 2003, 15, 301–303. [Google Scholar] [CrossRef]
- Tullio, V.; Cuffini, A.M.; Banche, G.; Mandras, N.; Allizond, V.; Roana, J.; Giacchino, F.; Bonello, F.; Ungheri, D.; Carlone , N. Role of fosfomycin tromethamine in modulating non-specific defence mechanisms in chronic uremic patients towards ESBL-producing Escherichia coli. Int. J. Immunopathol. Pharmacol. 2008, 21, 153–160. [Google Scholar] [CrossRef]
- Banche, G.; Tullio, V.; Allizond, V.; Mandras, N.; Roana, J.; Scalas, D.; El Fassi, F.; D’Antico, S.; Cuffini, A.M.; Carlone, N. Synergistic effect of erythromycin on polymorphonuclear cell antibacterial activity against erythromycin-resistant phenotypes of Streptococcus pyogenes. Int. J. Antimicrob. Agents 2010, 36, 319–323. [Google Scholar] [CrossRef]
- Tullio, V.; Mandras, N.; Scalas, D.; Allizond, V.; Banche, G.; Roana, J.; Greco, D.; Castagno, F.; Cuffini, A.M.; Carlone, N.A. Synergy of caspofungin with human polymorphonuclear granulocytes for killing Candida albicans. Antimicrob. Agents Chemother. 2010, 54, 3964–3966. [Google Scholar] [CrossRef] [Green Version]
- Scalas, D.; Banche, G.; Merlino, C.; Giacchino, F.; Allizond, V.; Garneri, G.; Patti, R.; Roana, J.; Mandras, N.; Tullio, V.; et al. Role of caspofungin in restoring the impaired phagocyte-dependent innate immunity towards Candida albicans in chronic haemodialysis patients. Int. J. Antimicrob. Agents 2012, 39, 73–76. [Google Scholar] [CrossRef] [PubMed]
- Mandras, N.; Nostro, A.; Roana, J.; Scalas, D.; Banche, G.; Ghisetti, V.; Del Re, S.; Fucale, G.; Cuffini, A.M.; Tullio, V. Liquid and vapour-phase antifungal activities of essential oils against Candida albicans and non-albicans Candida. BMC Complement. Altern. Med. 2016, 16, 330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mandras, N.; Roana, J.; Scalas, D.; Del Re, S.; Cavallo, L.; Ghisetti, V.; Tullio, V. The inhibition of non-albicans Candida species and uncommon yeast pathogens by selected essential oils and their major compounds. Molecules 2021, 26, 4937. [Google Scholar] [CrossRef] [PubMed]
- Marino, A.; Nostro, A.; Mandras, N.; Roana, J.; Ginestra, G.; Miceli, N.; Taviano, M.F.; Gelmini, F.; Beretta, G.; Tullio, V. Evaluation of antimicrobial activity of the hydrolate of Coridothymus capitatus (L.) Reichenb. fil. (Lamiaceae) alone and in combination with antimicrobial agents. BMC Complement. Med. Ther. 2020, 20, 89. [Google Scholar] [CrossRef] [PubMed]
- Berkow, E.L.; Lockhart, S.R.; Ostrosky-Zeichner, L. Antifungal susceptibility testing: Current approaches. Clin. Microbiol. Rev. 2020, 33, e00069-19. [Google Scholar] [CrossRef]
- Humphries, R.; Bobenchik, A.M.; Hindler, J.A.; Schuetz, A.N. Overview of changes to the Clinical and Laboratory Standards Institute performance standards for antimicrobial susceptibility testing, M100, 31st Edition. J. Clin. Microbiol. 2021, 59, e0021321. [Google Scholar] [CrossRef]
- Tadtong, S.; Puengseangdee, C.; Prasertthanawut, S.; Hongratanaworakit, T. Antimicrobial constituents and effects of blended Eucalyptus, Rosemary, Patchouli, Pine, and Cajuput essential oils. Nat. Prod. Commun. 2016, 11, 267–270. [Google Scholar] [CrossRef] [Green Version]
- Benameur, Q.; Gervasi, T.; Pellizzeri, V.; Pľuchtová, M.; Tali-Maama, H.; Assaous, F.; Guettou, B.; Rahal, K.; Gruľová, D.; Dugo, G.; et al. Antibacterial activity of Thymus vulgaris essential oil alone and in combination with cefotaxime against blaESBL producing multidrug resistant Enterobacteriaceae isolates. Nat. Prod. Res. 2019, 33, 2647–2654. [Google Scholar] [CrossRef]
- Allenspach, M.; Steuer, C. α-Pinene: A never-ending story. Phytochemistry 2021, 190, 112857. [Google Scholar] [CrossRef]
- Tullio, V.; Mandras, N.; Allizond, V.; Nostro, A.; Roana, J.; Merlino, C.; Banche, G.; Scalas, D.; Cuffini, A.M. Positive interaction of thyme (red) essential oil with human polymorphonuclear granulocytes in eradicating intracellular Candida albicans. Planta. Med. 2012, 78, 1633–1635. [Google Scholar] [CrossRef] [Green Version]
- Bertino, A. Oli Essenziali: Valutazione Dell’attività Antifungina e Della Loro Eventuale Capacità di Modulare le Funzioni dei PMN nei Confronti dei Lieviti Patogeni/Essential Oils: Evaluation of Antifungal Activity and their Potential Ability to Modulate the Functions of PMNs against Pathogenic Yeasts. Level 1. Bachelor’s Thesis in Drug Chemistry and Technology, 5-Years Postgraduate Degree, Second Cycle EHEA Equivalent, University of Torino, Torino, Italy, 2014. [Google Scholar]
- Mandras, N.; Roana, J.; Scalas, D.; Nostro, A.; Allizond, V.; Banche, G.; Cuffini, A.M.; Tullio, V. Azione sinergica tra olio essenziale di timo rosso e granulociti polimorfonucleati nell’eradicare Candida albicans e C. krusei intracellulari/Synergistic action between red thyme essential oil and polymorphonuclear granulocytes in eradicating Candida albicans and C. krusei intracellularly. In Proceedings of the X Congresso Naz Soc It Microbiol Farmaceut (SIMiF), Chieti, Italy, 6–7 June 2014. [Google Scholar]
- Demir, K.K.; Butler-Laporte, G.; Del Corpo, O.; Ekmekjian, T.; Sheppard, D.C.; Lee, T.C.; Cheng, M.P. Comparative effectiveness of amphotericin B, azoles and echinocandins in the treatment of candidemia and invasive candidiasis: A systematic review and network meta-analysis. Mycoses 2021, 64, 1098–1110. [Google Scholar] [CrossRef] [PubMed]
- Horváth, G.; Horváth, A.; Reichert, G.; Böszörményi, A.; Sipos, K.; Pandur, E. Three chemotypes of thyme (Thymus vulgaris L.) essential oil and their main compounds affect differently the IL-6 and TNFα cytokine secretions of BV-2 microglia by modulating the NF-κB and C/EBPβ signalling pathways. BMC Complement. Med. Ther. 2021, 21, 148. [Google Scholar] [CrossRef] [PubMed]
- Pandur, E.; Micalizzi, G.; Mondello, L.; Horváth, A.; Sipos, K.; Horváth, G. Antioxidant and anti-inflammatory effects of thyme (Thymus vulgaris L.) essential oils prepared at different plant phenophases on Pseudomonas aeruginosa LPS-activated THP-1 macrophages. Antioxidants 2022, 11, 1330. [Google Scholar] [CrossRef] [PubMed]
- Zuzarte, M.; Alves-Silva, J.M.; Alves, M.; Cavaleiro, C.; Salgueiro, L.; Cruz, M.T. New insights on the anti-inflammatory potential and safety profile of Thymus carnosus and Thymus camphoratus essential oils and their main compounds. J. Ethnopharmacol. 2018, 225, 10–17. [Google Scholar] [CrossRef] [PubMed]
- Fachini-Queiroz, F.C.; Kummer, R.; Estevão-Silva, C.F.; Carvalho, M.D.; Cunha, J.M.; Grespan, R.; Bersani-Amado, C.A.; Cuman, R.K. Effects of thymol and carvacrol, constituents of Thymus vulgaris L. essential oil, on the inflammatory response. Evid. Based Complement. Alternat. Med. 2012, 2012, 657026. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saleh, N.; Allam, T.; Abd El-Latif, A.S.; Ghazy, E.W. The effects of dietary supplementation of different levels of thyme (Thymus vulgaris) and ginger (Zingiber officinale) essential oils on performance, hematological, biochemical and immunological parameters of broiler chickens. Glob. Vet. 2014, 12, 736–744. [Google Scholar] [CrossRef]
- Zargar, A.; Rahimi-Afzal, Z.; Soltani, E.; Mirghaed, A.T.; Ebrahimzadeh-Mousavi, H.A.; Soltani, M.; Yuosefi, P. Growth performance, immune response and disease resistance of rainbow trout (Oncorhynchus mykiss) fed Thymus vulgaris essential oils. Aquac. Res. 2019, 50, 3097–3106. [Google Scholar] [CrossRef]
- Peterfalvi, A.; Miko, E.; Nagy, T.; Reger, B.; Simon, D.; Miseta, A.; Czéh, B.; Szereday, L. Much more than a pleasant scent: A review on essential oils supporting the immune system. Molecules 2019, 24, 4530. [Google Scholar] [CrossRef] [Green Version]
- Rota, M.C.; Herrera, A.; Martínez, R.M.; Sotomayor, J.A.; Jordán, M.J. Antimicrobial activity and chemical composition of Thymus vulgaris, Thymus zygis and Thymus hyemalis essential oils. Food Control 2008, 19, 681–687. [Google Scholar] [CrossRef]
- de Cássia da Silveira, E. Sá. R.; Andrade, L.N.; Dos Reis Barreto de Oliveira, R.; de Sousa, D.P. A review on anti-inflammatory activity of phenylpropanoids found in essential oils. Molecules 2014, 19, 1459–1480. [Google Scholar] [CrossRef] [Green Version]
- Zeng, Z.; Zhang, S.; Wang, H.; Piao, X. Essential oil and aromatic plants as feed additives in non-ruminant nutrition: A review. J. Anim. Sci. Biotechnol. 2015, 6, 7. [Google Scholar] [CrossRef]
- Tullio, V.; Roana, J.; Scalas, D.; Mandras, N. Enhanced killing of Candida krusei by polymorphonuclear leucocytes in the presence of subinhibitory concentrations of Melaleuca alternifolia and “Mentha of Pancalieri” essential oils. Molecules 2019, 24, 3824. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmad, A.; Khan, A.; Akhtar, F.; Yousuf, S.; Xess, I.; Khan, L.A.; Manzoor, N. Fungicidal activity of thymol and carvacrol by disrupting ergosterol biosynthesis and membrane integrity against Candida. Eur. J. Clin. Microbiol. Infect. Dis. 2011, 30, 41–50. [Google Scholar] [CrossRef] [PubMed]
- Li, W.R.; Li, H.L.; Shi, Q.S.; Sun, T.L.; Xie, X.B.; Song, B.; Huang, X.M. The dynamics and mechanism of the antimicrobial activity of tea tree oil against bacteria and fungi. Appl. Microbiol. Biotechnol. 2016, 100, 8865–8875. [Google Scholar] [CrossRef] [PubMed]
- Kamatou, G.P.; Vermaak, I.; Viljoen, A.M.; Lawrence, B.M. Menthol: A simple monoterpene with remarkable biological properties. Phytochemistry 2013, 96, 15–25. [Google Scholar] [CrossRef]
- Caldefie-Chézet, F.; Fusillier, C.; Jarde, T.; Laroye, H.; Damez, M.; Vasson, M.P.; Guillot, J. Potential anti-inflammatory effects of Melaleuca alternifolia essential oil on human peripheral blood leukocytes. Phytother. Res. 2006, 20, 364–370. [Google Scholar] [CrossRef]
- Zhang, X.; Guo, Y.; Guo, L.; Jiang, H.; Ji, Q. In vitro evaluation of antioxidant and antimicrobial activities of Melaleuca alternifolia essential oil. Biomed. Res. Int. 2018, 2018, 2396109. [Google Scholar] [CrossRef] [Green Version]
- Baldissera, M.D.; Da Silva, A.S.; Oliveira, C.B.; Vaucher, R.A.; Santos, R.C.; Duarte, T.; Duarte, M.M.; França, R.T.; Lopes, S.T.; Raffin, R.P.; et al. Effect of tea tree oil (Melaleuca alternifolia) on the longevity and immune response of rats infected by Trypanosoma evansi. Res. Vet. Sci. 2014, 96, 501–506. [Google Scholar] [CrossRef]
- McKay, D.L.; Blumberg, J.B. A review of the bioactivity and potential health benefits of peppermint tea (Mentha piperita L.). Phytother. Res. 2006, 20, 619–633. [Google Scholar] [CrossRef]
- Schmidt, E.; Bail, S.; Buchbauer, G.; Stoilova, I.; Atanasova, T.; Stoyanova, A.; Krastanov, A.; Jirovetz, L. Chemical composition, olfactory evaluation and antioxidant effects of essential oil from Mentha x piperita. Nat. Prod. Commun. 2009, 4, 1107–1112. [Google Scholar] [CrossRef] [Green Version]
- Silva, W.M.F.; Bona, N.P.; Pedra, N.S.; Cunha, K.F.D.; Fiorentini, A.M.; Stefanello, F.M.; Zavareze, E.R.; Dias, A.R.G. Risk assessment of in vitro cytotoxicity, antioxidant and antimicrobial activities of Mentha piperita L. essential oil. J. Toxicol. Environ. Health A 2022, 85, 230–242. [Google Scholar] [CrossRef] [PubMed]
- Karimian, P.; Kavoosi, G.; Amirghofran, Z. Anti-inflammatory effect of Mentha longifolia in lipopolysaccharide-stimulated macrophages: Reduction of nitric oxide production through inhibition of inducible nitric oxide synthase. J. Immunotoxicol. 2013, 10, 393–400. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, X.; Wu, Q.; Gong, Z.; Ren, T.; Du, Q.; Yuan, Y.; Zuo, Y.; Miao, Y.; He, J.; Qiao, C.; et al. A natural plant ingredient, menthone, regulates T cell subtypes and lowers pro-inflammatory cytokines of rheumatoid arthritis. J. Nat. Prod. 2022, 85, 1109–1117. [Google Scholar] [CrossRef] [PubMed]
- Miguel, M.G. Antioxidant and anti-inflammatory activities of essential oils: A short review. Molecules 2010, 15, 9252–9287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ocaña-Fuentes, A.; Arranz-Gutiérrez, E.; Señorans, F.J.; Reglero, G. Supercritical fluid extraction of oregano (Origanum vulgare) essentials oils: Anti-inflammatory properties based on cytokine response on THP-1 macrophages. Food Chem. Toxicol. 2010, 48, 1568–1575. [Google Scholar] [CrossRef]
- Yu, D.; Yuan, Y.; Jiang, L.; Tai, Y.; Yang, X.; Hu, F.; Xie, Z. Anti-inflammatory effects of essential oil in Echinacea purpurea L. Pak. J. Pharm. Sci. 2013, 26, 403–408. [Google Scholar]
- Li, J.; Li, F.; Xu, Y.; Yang, W.; Qu, L.; Xiang, Q.; Liu, C.; Li, D. Chemical composition and synergistic antioxidant activities of essential oils from Atractylodes macrocephala and Astragalus membranaceus. Nat. Prod. Commun. 2013, 8, 1321–1324. [Google Scholar] [CrossRef] [Green Version]
- Viuda-Martos, M.; Ruiz Navajas, Y.; Sánchez Zapata, E.; Fernández-López, J.; Pérez-Álvarez, J.A. Antioxidant activity of essential oils of five spice plants widely used in a Mediterranean diet. Flavour Fragr. J. 2010, 25, 13–19. [Google Scholar] [CrossRef]
- Sandner, G.; Heckmann, M.; Weghuber, J. Immunomodulatory activities of selected essential oils. Biomolecules 2020, 10, 1139. [Google Scholar] [CrossRef]
- Arreola, R.; Quintero-Fabián, S.; López-Roa, R.I.; Flores-Gutiérrez, E.O.; Reyes-Grajeda, J.P.; Carrera-Quintanar, L.; Ortuño-Sahagún, D. Immunomodulation and anti-inflammatory effects of garlic compounds. J. Immunol. Res. 2015, 2015, 401630. [Google Scholar] [CrossRef] [Green Version]
- Schepetkin, I.A.; Kirpotina, L.N.; Khlebnikov, A.I.; Balasubramanian, N.; Quinn, M.T. Neutrophil immunomodulatory activity of natural organosulfur compounds. Molecules 2019, 24, 1809. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sadlon, A.E.; Lamson, D.W. Immune-modifying and antimicrobical effects of Eucalyptus oil and simple inhalation devices. Altern. Med. Rev. 2010, 15, 33–47. [Google Scholar] [PubMed]
- Serafino, A.; Sinibaldi Vallebona, P.; Andreola, F.; Zonfrillo, M.; Mercuri, L.; Federici, M.; Rasi, G.; Garaci, E.; Pierimarchi, P. Stimulatory effect of Eucalyptus essential oil on innate cell-mediated immune response. BMC Immunol. 2008, 9, 17. [Google Scholar] [CrossRef] [Green Version]
- Kacem, R.; Meraihi, Z. The effect of essential oil extracted from Nigella sativa (L.) seeds on human neutrophil functions. Nat. Prod. Res. 2009, 23, 1168–1175. [Google Scholar] [CrossRef]
- Ciesielska-Figlon, K.; Daca, A.; Kokotkiewicz, A.; Łuczkiewicz, M.; Zabiegała, B.; Witkowski, J.M.; Lisowska, K.A. The influence of Nigella sativa essential oil on proliferation, activation, and apoptosis of human T lymphocytes in vitro. Biomed. Pharmacother. 2022, 153, 113349. [Google Scholar] [CrossRef] [PubMed]
- Özek, G.; Schepetkin, I.A.; Yermagambetova, M.; Özek, T.; Kirpotina, L.N.; Almerekova, S.S.; Abugalieva, S.I.; Khlebnikov, A.I.; Quinn, M.T. Innate immunomodulatory activity of cedrol, a component of essential oils isolated from Juniperus species. Molecules 2021, 26, 7644. [Google Scholar] [CrossRef]
- Schepetkin, I.A.; Özek, G.; Özek, T.; Kirpotina, L.N.; Khlebnikov, A.I.; Quinn, M.T. Chemical composition and immunomodulatory activity of essential oils from Rhododendron albiflorum. Molecules 2021, 26, 3652. [Google Scholar] [CrossRef]
- Nikoliĉ, M.; Glamoĉlija, J.; Ferreira, I.C.; Calhelha, R.C.; Fernandes, Â.; Markoviĉ, T.; Markoviĉ, D.; Giweli, A.; Sokoviĉ, M. Chemical composition, antimicrobial, antioxidant and antitumor activity of Thymus serpyllum L., Thymus algeriensis Boiss. and Reut and Thymus vulgaris L. essential oils. Ind. Crops Prod. 2014, 52, 183–190. [Google Scholar] [CrossRef]
- Samuelson, R.; Lobl, M.; Higgins, S.; Clarey, D.; Wysong, A. The effects of lavender essential oil on wound healing: A review of the current evidence. J. Altern. Complement. Med. 2020, 26, 680–690. [Google Scholar] [CrossRef]
- Panikar, S.; Shoba, G.; Arun, M.; Sahayarayan, J.J.; Usha Raja Nanthini, A.; Chinnathambi, A.; Alharbi, S.A.; Nasif, O.; Kim, H.J. Essential oils as an effective alternative for the treatment of COVID-19: Molecular interaction analysis of protease (Mpro) with pharmacokinetics and toxicological properties. J. Infect. Public Health 2021, 14, 601–610. [Google Scholar] [CrossRef]
- Sharma, M.; Grewal, K.; Jandrotia, R.; Batish, D.R.; Singh, H.P.; Kohli, R.K. Essential oils as anticancer agents: Potential role in malignancies, drug delivery mechanisms, and immune system enhancement. Biomed. Pharmacother. 2022, 146, 112514. [Google Scholar] [CrossRef] [PubMed]
- Valdivieso-Ugarte, M.; Gomez-Llorente, C.; Plaza-Díaz, J.; Gil, Á. Antimicrobial, antioxidant, and immunomodulatory properties of essential oils: A systematic review. Nutrients 2019, 11, 2786. [Google Scholar] [CrossRef] [PubMed]
Survival Index ± SEM | |||||||
---|---|---|---|---|---|---|---|
Time (min) | Controls | Thyme 1/2 × MIC 0.25% (v/v) | Thyme 1 × MIC 0. 5% (v/v) | Fluconazole 1/2 × MIC 4 µg/mL | Fluconazole 1 × MIC 8 µg/mL | Calponin 1/2 × MIC 1 µg/mL | Caspofungin 1 × MIC 2 µg/mL |
30 | 1.67 ± 0.03 (33%) c | 1.56 b ± 0.07 (44%) | 1.50 b ± 0.01 (50%) | 1.58 b ± 0.08 (42%) | 1.49 a ± 0.07 (51%) | 1.39 a ± 0.05 (61%) | 1.29 a ± 0.07 (71%) |
60 | 1.53 ± 0.02 (47%) | 1.43 b ± 0.11 (57%) | 1.36 a ± 0.04 (64%) | 1.42 b ± 0.08 (58%) | 1.31 a ± 0.06 (69%) | 1.35 a ± 0.09 (65%) | 1.28 a ± 0.11 (72%) |
90 | 1.50 ± 0.03 (50%) | 1.31 b ± 0.07 (69%) | 1.27 a ± 0.02 (73%) | 1.37 b ± 0.17 (63%) | 1.25 a ± 0.05 (75%) | 1.34 b ± 0.08 (66%) | 1.25 a ± 0.07 (75%) |
Survival Index ± SEM | |||
---|---|---|---|
Time (min) | Controls | Thyme Red Oil 1/2 × MIC 0.25% (v/v) | Anidulafungin 1/2 × MIC 4 µg/mL |
30 | 1.70 ± 0.03 (30%) c | 1.44 a ± 0.06 (56%) | 1.78 ± 0.16 (22%) |
60 | 1.65 ± 0.02 (35%) | 1.50 a ± 0.06 (50%) | 1.71 ± 0.01 (29%) |
90 | 1.80 ± 0.03 (20%) | 1.63 b ± 0.03 (37%) | 1.67 b ± 0.15 (33%) |
CFU/mL ± SEM | |||||||
---|---|---|---|---|---|---|---|
Time (h) | Controls | Thyme Red Oil 1/2 × MIC 0.25% (v/v) | Thyme red Oil MIC 0.5% (v/v) | Anidulafungin 1/8 × MIC 1 µg/mL | Anidulafungin 1/2 × MIC 4 µg/mL | Anidulafungin MIC 8 µg/mL | Anidula- fungin 2 × MIC 16 µg/mL |
0 | 1.39 × 106 ± 0.02 | 2.9 × 106 ± 0.01 | 5.6 × 106 ± 0.01 | 3.88 × 106 ± 0.01 | 1.61 × 106 ± 0.03 | 6.11 × 106 ± 0.02 | 4.55 × 106 ± 0.04 |
0.5 | 3.36 × 106 ± 0.01 | 1.55 × 104 ± 0.01 | 2.1 × 104 ± 0.02 | 5.55 × 106 ± 0.01 | 2.25 × 106 ± 0.01 | 6.83 × 106 ± 0.01 | 6.24 × 106 ± 0.01 |
1 | 1.26 × 106 ± 0.03 | 2.00 × 104 ± 0.01 | 1.1 × 104 ± 0.01 | 3.09 × 106 ± 0.04 | 1.54 × 106 ± 0.03 | 2.82 × 106 ± 0.02 | 4.71 × 106 ± 0.05 |
1.5 | 1.53 × 106 ± 0.01 | 1.00 × 104 ± 0.02 | 1.5 × 104 ± 0.01 | 3.43 × 106 ± 0.01 | 1.69 × 106 ± 0.01 | 5.22 × 106 ± 0.09 | 6.50 × 106 ± 0.06 |
2 | 5.80 × 105 ± 0.03 | 6.00 × 103 ± 0.04 | 1.00 × 104 ± 0.01 | 3.95 × 106 ± 0.02 | 1.54 × 106 ± 0.01 | 2.23 × 106 ± 0.01 | 3.41 × 106 ± 0.02 |
3 | 1.27 × 106 ± 0.01 | 2.00 × 104 ± 0.01 | 0 | 5.55 × 106 ± 0.06 | 4.06 × 106 ± 0.02 | 6.53 × 106 ± 0.03 | 2.6 × 106 ± 0.01 |
24 | 4.73 × 107 ± 0.03 | 0 | 0 | 1.60 × 107 ± 0.01 | 1.10 × 106 ± 0.01 | 5.15 × 106 ± 0.02 | 1.21 × 107 ± 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tullio, V.; Roana, J.; Cavallo, L.; Mandras, N. Immune Defences: A View from the Side of the Essential Oils. Molecules 2023, 28, 435. https://doi.org/10.3390/molecules28010435
Tullio V, Roana J, Cavallo L, Mandras N. Immune Defences: A View from the Side of the Essential Oils. Molecules. 2023; 28(1):435. https://doi.org/10.3390/molecules28010435
Chicago/Turabian StyleTullio, Vivian, Janira Roana, Lorenza Cavallo, and Narcisa Mandras. 2023. "Immune Defences: A View from the Side of the Essential Oils" Molecules 28, no. 1: 435. https://doi.org/10.3390/molecules28010435
APA StyleTullio, V., Roana, J., Cavallo, L., & Mandras, N. (2023). Immune Defences: A View from the Side of the Essential Oils. Molecules, 28(1), 435. https://doi.org/10.3390/molecules28010435