Aerogel-Based Single-Ion Magnets: A Case Study of a Cobalt(II) Complex Immobilized in Silica
Abstract
:1. Introduction
2. Results and Discussion
2.1. Immobilization of Cobalt(II) Ions on Silica
2.2. The Chemical Composition of the Silica Aerogels
2.3. The Structural and Textural Properties of the Aerogels
2.4. Magnetic Properties of Co-Modified Silica Aerogels
3. Materials and Methods
3.1. Reagents
3.2. Preparation of Cobalt-Modified Silica Aerogels
3.2.1. Preparation of Ethylenediamine-Modified Silica Wet Gels
3.2.2. Modification of the Wet Gels with Cobalt Ions
3.2.3. Supercritical Drying of Cobalt-Modified Lyogels
3.3. Synthesis of [Co(en)(MeCN)(NO3)2]
3.4. Methods of Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Comstock, R.L. Review Modern magnetic materials in data storage. J. Mater. Sci. Mater. Electron. 2002, 13, 509–523. [Google Scholar] [CrossRef]
- Zhukova, V.; Corte-Leon, P.; Ipatov, M.; Blanco, J.M.; Gonzalez-Legarreta, L.; Zhukov, A. Development of Magnetic Microwires for Magnetic Sensor Applications. Sensors 2019, 19, 4767. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vitol, E.A.; Novosad, V.; Rozhkova, E.A. Microfabricated magnetic structures for future medicine: From sensors to cell actuators. Nanomedicine 2012, 7, 1611–1624. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Q.; Yang, X.; Guan, J. Applications of Magnetic Nanomaterials in Heterogeneous Catalysis. ACS Appl. Nano Mater. 2019, 2, 4681–4697. [Google Scholar] [CrossRef]
- Christou, G.; Gatteschi, D.; Hendrickson, D.N.; Sessoli, R. Single-Molecule Magnets. MRS Bull. 2000, 25, 66–71. [Google Scholar] [CrossRef]
- Dey, A.; Kalita, P.; Chandrasekhar, V. Lanthanide(III)-Based Single-Ion Magnets. ACS Omega 2018, 3, 9462–9475. [Google Scholar] [CrossRef]
- Gatteschi, D.; Sessoli, R.; Villain, J. Molecular Nanomagnets; Oxford University Press: Oxford, UK, 2006; ISBN 9780198567530. [Google Scholar]
- Jiang, S.-D.; Wang, B.-W.; Su, G.; Wang, Z.-M.; Gao, S. A Mononuclear Dysprosium Complex Featuring Single-Molecule-Magnet Behavior. Angew. Chemie Int. Ed. 2010, 49, 7448–7451. [Google Scholar] [CrossRef]
- Moseley, I.P.; Ard, C.P.; DiVerdi, J.A.; Ozarowski, A.; Chen, H.; Zadrozny, J.M. Slowing magnetic relaxation with open-shell diluents. Cell Rep. Phys. Sci. 2022, 3, 100802. [Google Scholar] [CrossRef]
- Liu, J.-L.; Chen, Y.-C.; Tong, M.-L. Symmetry strategies for high performance lanthanide-based single-molecule magnets. Chem. Soc. Rev. 2018, 47, 2431–2453. [Google Scholar] [CrossRef]
- Frost, J.M.; Harriman, K.L.M.; Murugesu, M. The rise of 3-d single-ion magnets in molecular magnetism: Towards materials from molecules? Chem. Sci. 2016, 7, 2470–2491. [Google Scholar] [CrossRef]
- Tripathi, S.; Dey, A.; Shanmugam, M.; Narayanan, R.S.; Chandrasekhar, V. Cobalt(II) Complexes as Single-Ion Magnets. Organomet. Magn. 2018, 64, 35–75. [Google Scholar]
- Juráková, J.; Šalitroš, I. Co(II) single-ion magnets: Synthesis, structure, and magnetic properties. Monatshefte für Chemie-Chem. Mon. 2022, 153, 1001–1036. [Google Scholar] [CrossRef] [PubMed]
- Aulakh, D.; Pyser, J.B.; Zhang, X.; Yakovenko, A.A.; Dunbar, K.R.; Wriedt, M. Metal–Organic Frameworks as Platforms for the Controlled Nanostructuring of Single-Molecule Magnets. J. Am. Chem. Soc. 2015, 137, 9254–9257. [Google Scholar] [CrossRef] [PubMed]
- Dechambenoit, P.; Long, J.R. Microporous magnets. Chem. Soc. Rev. 2011, 40, 3249. [Google Scholar] [CrossRef]
- Kosaka, W.; Liu, Z.; Zhang, J.; Sato, Y.; Hori, A.; Matsuda, R.; Kitagawa, S.; Miyasaka, H. Gas-responsive porous magnet distinguishes the electron spin of molecular oxygen. Nat. Commun. 2018, 9, 5420. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Wang, T.; Meng, H.; Zhao, C.; Nie, M.; Jiang, L.; Wang, C. Controlling the magnetic properties of dysprosium metallofullerene within metal–organic frameworks. Dalt. Trans. 2016, 45, 19226–19229. [Google Scholar] [CrossRef]
- Echenique-Errandonea, E.; Mendes, R.F.; Figueira, F.; Choquesillo-Lazarte, D.; Beobide, G.; Cepeda, J.; Ananias, D.; Rodríguez-Diéguez, A.; Almeida Paz, F.A.; Seco, J.M. Multifunctional Lanthanide-Based Metal–Organic Frameworks Derived from 3-Amino-4-hydroxybenzoate: Single-Molecule Magnet Behavior, Luminescent Properties for Thermometry, and CO2 Adsorptive Capacity. Inorg. Chem. 2022, 61, 12977–12990. [Google Scholar] [CrossRef]
- Su, J.; Yuan, S.; Li, J.; Wang, H.; Ge, J.; Drake, H.F.; Leong, C.F.; Yu, F.; D’Alessandro, D.M.; Kurmoo, M.; et al. Rare-Earth Metal Tetrathiafulvalene Carboxylate Frameworks as Redox-Switchable Single-Molecule Magnets. Chem.–A Eur. J. 2021, 27, 622–627. [Google Scholar] [CrossRef]
- Chen, H.-J.; Zheng, X.-Y.; Zhao, Y.-R.; Yuan, D.-Q.; Kong, X.-J.; Long, L.-S.; Zheng, L.-S. A Record-Breaking Loading Capacity for Single-Molecule Magnet Mn 12 Clusters Achieved in a Mesoporous Ln-MOF. ACS Appl. Electron. Mater. 2019, 1, 804–809. [Google Scholar] [CrossRef]
- Aulakh, D.; Liu, L.; Varghese, J.R.; Xie, H.; Islamoglu, T.; Duell, K.; Kung, C.-W.; Hsiung, C.-E.; Zhang, Y.; Drout, R.J.; et al. Direct Imaging of Isolated Single-Molecule Magnets in Metal–Organic Frameworks. J. Am. Chem. Soc. 2019, 141, 2997–3005. [Google Scholar] [CrossRef]
- Hu, P.; Yin, L.; Kirchon, A.; Li, J.; Li, B.; Wang, Z.; Ouyang, Z.; Zhang, T.; Zhou, H. Magnetic Metal–Organic Framework Exhibiting Quick and Selective Solvatochromic Behavior along with Reversible Crystal-to-Amorphous-to-Crystal Transformation. Inorg. Chem. 2018, 57, 7006–7014. [Google Scholar] [CrossRef] [PubMed]
- Son, K.; Goering, E.; Hirscher, M.; Oh, H. Magnetic Behavior of Single-Chain Magnets in Metal Organic Frameworks CPO-27-Co. J. Nanosci. Nanotechnol. 2017, 17, 7541–7546. [Google Scholar] [CrossRef]
- Vallejo, J.; Fortea-Pérez, F.R.; Pardo, E.; Benmansour, S.; Castro, I.; Krzystek, J.; Armentano, D.; Cano, J. Guest-dependent single-ion magnet behaviour in a cobalt(II) metal–organic framework. Chem. Sci. 2016, 7, 2286–2293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pajuelo-Corral, O.; Pérez-Yáñez, S.; Vitorica-Yrezabal, I.J.; Beobide, G.; Zabala-Lekuona, A.; Rodríguez-Diéguez, A.; Seco, J.M.; Cepeda, J. A metal-organic framework based on Co(II) and 3-aminoisonicotinate showing specific and reversible colourimetric response to solvent exchange with variable magnet behaviour. Mater. Today Chem. 2022, 24, 100794. [Google Scholar] [CrossRef]
- Kreno, L.E.; Leong, K.; Farha, O.K.; Allendorf, M.; Van Duyne, R.P.; Hupp, J.T. Metal–Organic Framework Materials as Chemical Sensors. Chem. Rev. 2012, 112, 1105–1125. [Google Scholar] [CrossRef]
- Owens, G.J.; Singh, R.K.; Foroutan, F.; Alqaysi, M.; Han, C.-M.; Mahapatra, C.; Kim, H.-W.; Knowles, J.C. Sol–gel based materials for biomedical applications. Prog. Mater. Sci. 2016, 77, 1–79. [Google Scholar] [CrossRef] [Green Version]
- Wright, J.D.; Sommerdijk, N.A.J.M. Sol-Gel Materials; CRC Press: Boca Raton, FL, USA, 2018; ISBN 9781482283167. [Google Scholar]
- Livage, J.; Sanchez, C. Sol-gel chemistry. J. Non. Cryst. Solids 1992, 145, 11–19. [Google Scholar] [CrossRef]
- Brinker, C.; Scherer, G. Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing; Academic Press: Cambridge, MA, USA, 1990; ISBN 978-0121349707. [Google Scholar]
- Klein, L.; Aparicio, M.; Jitianu, A. (Eds.) Handbook of Sol-Gel Science and Technology; Springer International Publishing AG: Cham, Switzerland, 2019. [Google Scholar] [CrossRef]
- Dyshin, A.A.; Bondarenko, G.V.; Kiselev, M.G. 3D Photonic Crystals: Synthesis and Drying in Supercritical Ethanol. Russ. J. Inorg. Chem. 2022, 67, 408–414. [Google Scholar] [CrossRef]
- Gutiérrez, L.; Veintemillas-Verdaguer, S.; Serna, C.J.; Morales, M.D.P. Sol-Gel Magnetic Materials. In The Sol-Gel Handbook; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2015; pp. 813–840. [Google Scholar] [CrossRef]
- Willard, M.A.; Kurihara, L.K.; Carpenter, E.E.; Calvin, S.; Harris, V.G. Chemically prepared magnetic nanoparticles. Int. Mater. Rev. 2004, 49, 125–170. [Google Scholar] [CrossRef]
- Clemente-León, M.; Coronado, E.; Forment-Aliaga, A.; Martínez-Agudo, J.M.; Amorós, P. Mn12 single-molecule magnets incorporated into mesoporous MCM-41 silica. Polyhedron 2003, 22, 2395–2400. [Google Scholar] [CrossRef]
- Clemente-León, M.; Coronado, E.; Forment-Aliaga, A.; Amorós, P.; Ramírez-Castellanos, J.; González-Calbet, J.M. Incorporation of Mn12 single molecule magnets into mesoporous silica. J. Mater. Chem. 2003, 13, 3089–3095. [Google Scholar] [CrossRef]
- Aulakh, D.; Bilan, H.K.; Wriedt, M. Porous substrates as platforms for the nanostructuring of molecular magnets. CrystEngComm 2018, 20, 1011–1030. [Google Scholar] [CrossRef]
- Laskowska, M.; Bałanda, M.; Fitta, M.; Dulski, M.; Zubko, M.; Pawlik, P.; Laskowski, Ł. Magnetic behaviour of Mn12-stearate single-molecule magnets immobilized inside SBA-15 mesoporous silica matrix. J. Magn. Magn. Mater. 2019, 478, 20–27. [Google Scholar] [CrossRef]
- Salomon, W.; Lan, Y.; Rivière, E.; Yang, S.; Roch-Marchal, C.; Dolbecq, A.; Simonnet-Jégat, C.; Steunou, N.; Leclerc-Laronze, N.; Ruhlmann, L.; et al. Single-Molecule Magnet Behavior of Individual Polyoxometalate Molecules Incorporated within Biopolymer or Metal-Organic Framework Matrices. Chem.–A Eur. J. 2016, 22, 6564–6574. [Google Scholar] [CrossRef]
- Pardo, E.; Burguete, P.; Ruiz-García, R.; Julve, M.; Beltrán, D.; Journaux, Y.; Amorós, P.; Lloret, F. Ordered mesoporous silicas as host for the incorporation and aggregation of octanuclear nickel(II) single-molecule magnets: A bottom-up approach to new magnetic nanocomposite materials. J. Mater. Chem. 2006, 16, 2702–2714. [Google Scholar] [CrossRef]
- Aegerter, M.A.; Leventis, N.; Koebel, M.M. (Eds.) Aerogels Handbook; Springer New York: New York, NY, USA, 2011. [Google Scholar] [CrossRef]
- Yorov, K.E.; Kottsov, S.Y.; Baranchikov, A.E.; Boytsova, O.V.; Kiskin, M.A.; Varaksina, E.A.; Kopitsa, G.P.; Lermontov, S.A.; Sidorov, A.A.; Pipich, V.; et al. Photoluminescent porous aerogel monoliths containing ZnEu-complex: The first example of aerogel modified with a heteronuclear metal complex. J. Sol-Gel Sci. Technol. 2019, 92, 304–318. [Google Scholar] [CrossRef]
- Yorov, K.E.; Khodan, A.N.; Baranchikov, A.E.; Utochnikova, V.V.; Simonenko, N.P.; Beltiukov, A.N.; Petukhov, D.I.; Kanaev, A.; Ivanov, V.K. Superhydrophobic and luminescent highly porous nanostructured alumina monoliths modified with tris(8-hydroxyquinolinato)aluminium. Microporous Mesoporous Mater. 2020, 293, 109804. [Google Scholar] [CrossRef]
- Kameneva, S.V.; Popkov, M.A.; Tronev, I.V.; Kottsov, S.Y.; Sozarukova, M.M.; Ivanov, V.K. Photochromic aerogels based on cellulose and chitosan modified with WO3 nanoparticles. Nanosyst. Phys. Chem. Math. 2022, 13, 404–413. [Google Scholar] [CrossRef]
- Yorov, K.E.; Baranchikov, A.E.; Kiskin, M.A.; Sidorov, A.A.; Ivanov, V.K. Functionalization of Aerogels with Coordination Compounds. Russ. J. Coord. Chem. 2022, 48, 89–117. [Google Scholar] [CrossRef]
- Sakfali, J.; Ben Chaabene, S.; Akkari, R.; Zina, M.S. One-Pot Sol-Gel Synthesis of Doped TiO2 Nanostructures for Photocatalytic Dye Decoloration. Russ. J. Inorg. Chem. 2022, 67, 1324–1337. [Google Scholar] [CrossRef]
- Shah, N.; Rehan, T.; Li, X.; Tetik, H.; Yang, G.; Zhao, K.; Lin, D. Magnetic aerogel: An advanced material of high importance. RSC Adv. 2021, 11, 7187–7204. [Google Scholar] [CrossRef] [PubMed]
- Du, R.; Zhao, Q.; Zheng, Z.; Hu, W.; Zhang, J. 3D Self-Supporting Porous Magnetic Assemblies for Water Remediation and Beyond. Adv. Energy Mater. 2016, 6, 1600473. [Google Scholar] [CrossRef]
- Hu, S.-C.; Shi, F.; Liu, J.-X.; Yu, L.; Liu, S.-H. Magnetic mesoporous iron oxide/silica composite aerogels with high adsorption ability for organic pollutant removal. J. Porous Mater. 2016, 23, 655–661. [Google Scholar] [CrossRef]
- Li, J.; Zhou, L.; Zhu, Q.; Li, H. Enhanced Methanation over Aerogel NiCo/Al2O3 Catalyst in a Magnetic Fluidized Bed. Ind. Eng. Chem. Res. 2013, 52, 6647–6654. [Google Scholar] [CrossRef]
- Lovskaya, D.; Menshutina, N. Alginate-Based Aerogel Particles as Drug Delivery Systems: Investigation of the Supercritical Adsorption and In Vitro Evaluations. Materials 2020, 13, 329. [Google Scholar] [CrossRef] [Green Version]
- Guo, S.; Xu, H.; Dong, M.; Peng, M.; Liu, C.; Shen, C. Fe ionic induced strong bioinspired Fe3O4@graphene aerogel with excellent electromagnetic shielding effectiveness. Appl. Surf. Sci. 2020, 525, 146569. [Google Scholar] [CrossRef]
- Hu, C.; Hung, Y.-C.; Tseng, P.-Y.; Yang, Z.-J.; Lin, Y.-F.; Nguyen, V.-H. The roles of metal species supported on Fe3O4 aerogel for photoassisted 4-nitrophenol reduction and benzoic acid oxidation. Catal. Sci. Technol. 2021, 11, 3447–3455. [Google Scholar] [CrossRef]
- Khalf-Alla, P.A.; Basta, A.H.; Lotfy, V.F.; Hassan, S.S. Synthesis, Characterization, Speciation, and Biological Studies on Metal Chelates of Carbohydrates with Molecular Docking Investigation. Macromol. Mater. Eng. 2021, 306, 2000633. [Google Scholar] [CrossRef]
- He, T.; Chen, Y.; Liu, Q.; Lu, B.; Song, X.; Liu, H.; Liu, M.; Liu, Y.; Zhang, Y.; Ouyang, X.; et al. Theory-Guided Regulation of FeN 4 Spin State by Neighboring Cu Atoms for Enhanced Oxygen Reduction Electrocatalysis in Flexible Metal–Air Batteries. Angew. Chemie Int. Ed. 2022, 61, e202201007. [Google Scholar] [CrossRef]
- Oliveira, R.J.; de Conto, J.F.; Oliveira, M.R.; Egues, S.M.S.; Borges, G.R.; Dariva, C.; Franceschi, E. CO2/CH4 adsorption at high-pressure using silica-APTES aerogel as adsorbent and near infrared as a monitoring technique. J. CO2 Util. 2019, 32, 232–240. [Google Scholar] [CrossRef]
- Mandal, C.; Donthula, S.; Soni, R.; Bertino, M.; Sotiriou-Leventis, C.; Leventis, N. Light scattering and haze in TMOS-co-APTES silica aerogels. J. Sol-Gel Sci. Technol. 2019, 90, 127–139. [Google Scholar] [CrossRef]
- Fang, Q.; Huang, W.; Wang, H. Role of additives in silica-supported polyethylenimine adsorbents for CO2 adsorption. Mater. Res. Express 2020, 7, 035026. [Google Scholar] [CrossRef]
- Rostamnia, S.; Doustkhah, E. Covalently bonded zwitterionic sulfamic acid onto the SBA-15 (SBA-15/PrEn-NHSO3H) reveals good Bronsted acidity behavior and catalytic activity in N-formylation of amines. J. Mol. Catal. A Chem. 2016, 411, 317–324. [Google Scholar] [CrossRef]
- Pal, N.; Sim, S.; Cho, E.B. Multifunctional periodic mesoporous benzene-silicas for evaluation of CO2 adsorption at standard temperature and pressure. Microporous Mesoporous Mater. 2020, 293, 109816. [Google Scholar] [CrossRef]
- Nehrkorn, J.; Valuev, I.A.; Kiskin, M.A.; Bogomyakov, A.S.; Suturina, E.A.; Sheveleva, A.M.; Ovcharenko, V.I.; Holldack, K.; Herrmann, C.; Fedin, M.V.; et al. Easy-plane to easy-axis anisotropy switching in a Co(II) single-ion magnet triggered by the diamagnetic lattice. J. Mater. Chem. C 2021, 9, 9446–9452. [Google Scholar] [CrossRef]
- Oki, A.; Adams, L.; Luo, Z.; Osayamen, E.; Biney, P.; Khabashesku, V. Functionalization of single-walled carbon nanotubes with N-[3-(trimethoxysilyl)propyl]ethylenediamine and its cobalt complex. J. Phys. Chem. Solids 2008, 69, 1194–1198. [Google Scholar] [CrossRef] [Green Version]
- Stegall, S.L.; Ashraf, K.M.; Moye, J.R.; Higgins, D.A.; Collinson, M.M. Separation of transition and heavy metals using stationary phase gradients and thin layer chromatography. J. Chromatogr. A 2016, 1446, 141–148. [Google Scholar] [CrossRef] [Green Version]
- Wu, Z.; Jiang, Y.; Kim, T.; Lee, K. Effects of surface coating on the controlled release of vitamin B1 from mesoporous silica tablets. J. Control. Release 2007, 119, 215–221. [Google Scholar] [CrossRef]
- Rashidi Nodeh, H.; Sereshti, H.; Gaikani, H.; Kamboh, M.A.; Afsharsaveh, Z. Magnetic graphene coated inorganic-organic hybrid nanocomposite for enhanced preconcentration of selected pesticides in tomato and grape. J. Chromatogr. A 2017, 1509, 26–34. [Google Scholar] [CrossRef]
- Kostenko, M.O.; Ustinovich, K.B.; Pokrovskii, O.I. Online Monitoring of Adsorption onto Silica Xerogels and Aerogels from Supercritical Solutions Using Supercritical Fluid Chromatography. Russ. J. Inorg. Chem. 2020, 65, 1577–1584. [Google Scholar] [CrossRef]
- Venkateswara Rao, A.; Hegde, N.D.; Hirashima, H. Absorption and desorption of organic liquids in elastic superhydrophobic silica aerogels. J. Colloid Interface Sci. 2007, 305, 124–132. [Google Scholar] [CrossRef] [PubMed]
- Tsodikov, M.V.; Katsobashvili, Y.R.; Korneeva, G.A.; Ellert, O.G.; Novotortsev, V.M. State of cobalt included in the layer structure of silica and effect of the structure of cobalt-containing sites on the catalytic activity in hydrogenation of CO. Bull. Acad. Sci. USSR Div. Chem. Sci. 1986, 35, 1564–1568. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, J.; Chen, H.; Zhang, X.; Fu, Y.; Shen, J. Synthesis of high-surface-area Co-O-Si complex oxide for skeletal isomerization of 1-hexene and hydrodesulfurization of thiophene. Chin. J. Catal. 2014, 35, 1402–1409. [Google Scholar] [CrossRef]
- Yao, C.; Dong, X.; Gao, G.; Sha, F.; Xu, D. Microstructure and Adsorption Properties of MTMS/TEOS Co-precursor Silica Aerogels Dried at Ambient Pressure. J. Non. Cryst. Solids 2021, 562, 120778. [Google Scholar] [CrossRef]
- Bhagat, S.D.; Rao, A.V. Surface chemical modification of TEOS based silica aerogels synthesized by two step (acid–base) sol–gel process. Appl. Surf. Sci. 2006, 252, 4289–4297. [Google Scholar] [CrossRef]
- Lotfizadeh, S.; Aljama, H.; Reilly, D.; Matsoukas, T. Formation of Reversible Clusters with Controlled Degree of Aggregation. Langmuir 2016, 32, 4862–4867. [Google Scholar] [CrossRef] [PubMed]
- Tanabe, Y.; Sugano, S. On the Absorption Spectra of Complex Ions II. J. Phys. Soc. Jpn. 1954, 9, 766–779. [Google Scholar] [CrossRef]
- Carlin, R.L. Transition Metal Chemistry; Marcel Dekker: New York, NY, USA, 1965. [Google Scholar]
- Hathaway, B.J.; Lewis, C.E. Electronic properties of transition-metal complex ions adsorbed on silica gel. Part II. Cobalt(II) and cobalt(III). J. Chem. Soc. A Inorg. Phys. Theor. 1969, 1183–1188. [Google Scholar] [CrossRef]
- Dunn, T.M.; McClure, D.S.; Pearson, R.G. Crystal Field Theory; Harper and Row: New York, NY, USA, 1965. [Google Scholar]
- Jorgensen, C.K. Adsorption Spectra and Chemical Bonding in Complexes; Pergamon: Oxford, UK, 1962. [Google Scholar]
- Praliaud, H.; Coudurier, G. Optical spectroscopy of hydrated, dehydrated and ammoniated cobalt(II) exchanged zeolites X and Y. J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condens. Phases 1979, 75, 2601. [Google Scholar] [CrossRef]
- Ahumada, G.; Roisnel, T.; Kahlal, S.; Carrillo, D.; Córdova, R.; Saillard, J.-Y.; Hamon, J.-R.; Manzur, C. Octahedral bis(2-thenoyltrifluoroacetonato)-ethylenediamine Co(II), Ni(II) and Cu(II) complexes: Synthetic, structural, electrochemical, and theoretical studies. Inorg. Chim. Acta 2018, 470, 221–231. [Google Scholar] [CrossRef]
- Clemente, D.A. A study of the 8466 structures reported in Inorganica Chimica Acta: 52 space group changes and their chemical consequences. Inorg. Chim. Acta 2005, 358, 1725–1748. [Google Scholar] [CrossRef]
- Hill, M.S.; Johnson, A.L.; Manning, T.D.; Molloy, K.C.; Wickham, B.J. Single-source AACVD of composite cobalt-silicon oxide thin films. Inorg. Chim. Acta 2014, 422, 47–56. [Google Scholar] [CrossRef] [Green Version]
- Dixon, D.A.; Marsh, R.E.; Schaefer, W.P. A tetranuclear cobalt complex. Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem. 1978, 34, 807–811. [Google Scholar] [CrossRef]
- Çolak, A.T.; Pamuk, G.; Yeşilel, O.Z.; Yılmaz, F.; Büyükgüngör, O. Hydrogen Bonded Supramolecular Network from a Mixed Valence Cobalt System: Synthesis and Crystal Structure of [Co(H2O)6][Co(pydc)2(en)]2·14H2O. J. Chem. Crystallogr. 2012, 42, 76–82. [Google Scholar] [CrossRef]
- White, A.H.; Willis, A.C. Structural studies in metal–purpurate complexes. Part 7. Crystal structures of diaquanitratopurpurato-cobalt(II) and -zinc(II) dihydrat. J. Chem. Soc. Dalt. Trans. 1977, 1377–1381. [Google Scholar] [CrossRef]
- Głowiak, T.; Kurdziel, K. Crystal structure and physico-chemical properties of hepta-coordinate isomorphic cobalt(II) and nickel(II) complexes of 1-allylimidazole. J. Mol. Struct. 2000, 516, 1–5. [Google Scholar] [CrossRef]
- Pérez-Lourido, P.; Madarasi, E.; Antal, F.; Esteban-Gómez, D.; Wang, G.; Angelovski, G.; Platas-Iglesias, C.; Tircsó, G.; Valencia, L. Stable and inert macrocyclic cobalt(II) and nickel(II) complexes with paraCEST response. Dalt. Trans. 2022, 51, 1580–1593. [Google Scholar] [CrossRef]
- Carcelli, M.; Ianelli, S.; Pelagatti, P.; Pelizzi, G. Structural characterization of a new ligand mode of 2,6-diacetylpyridine bis(semicarbazone), H2daps. Inorg. Chim. Acta 1999, 292, 121–126. [Google Scholar] [CrossRef]
- Cortijo, M.; Valentín-Pérez, Á.; Rouzières, M.; Clérac, R.; Rosa, P.; Hillard, E.A. Tris(ethylenediamine) Cobalt(II) and Manganese(II) Nitrates. Crystals 2020, 10, 472. [Google Scholar] [CrossRef]
- Hashmi, G.; Hosny, R.; Bernal, I.; Lalancette, R.A. Anhydrous and hydrated [Co(en)2CO3]X salts as predictive guides for crystallization behavior in other systems. Struct. Chem. 2021, 32, 225–234. [Google Scholar] [CrossRef]
- Wagh, P.; Kumar, R.; Patel, R.P.; Singh, I.K.; Ingale, S.; Gupta, S.; Mahadik, D.; Venkateswara Rao, A. Hydrophobicity Measurement Studies of Silica Aerogels using FTIR Spectroscopy, Weight Difference Method, Contact Angle Method and K-F Titration Method. J. Chem. Biol. Phys. Sci. 2015, 5, 2350–2359. [Google Scholar]
- Walrafen, G.E.; Hokmabadi, M.S.; Holmes, N.C.; Nellis, W.J.; Henning, S. Raman spectrum and structure of silica aerogel. J. Chem. Phys. 1985, 82, 2472–2476. [Google Scholar] [CrossRef]
- Gardiner, D.J.; Graves, P.R. (Eds.) Practical Raman Spectroscopy; Springer Berlin Heidelberg: Berlin/Heidelberg, Germany, 1989; ISBN 978-3-540-50254-8. [Google Scholar]
- Jitianu, A.; Amatucci, G.; Klein, L.C. Organic–inorganic sol-gel thick films for humidity barriers. J. Mater. Res. 2008, 23, 2084–2090. [Google Scholar] [CrossRef]
- Bennett, A.M.A.; Foulds, G.A.; Thornton, D.A. The i.r. spectra of ethylenediamine complexes—I. The tris(ethylenediamine) complexes of first transition series metal(II) sulphates. Spectrochim. Acta Part A Mol. Spectrosc. 1989, 45, 219–223. [Google Scholar] [CrossRef]
- Krishnan, K.; Plane, R.A. Raman and Infrared Spectra of Complexes of Ethylenediamine with Zinc(II), Cadmium(II), and Mercury(II). Inorg. Chem. 1966, 5, 852–857. [Google Scholar] [CrossRef]
- Sun, Y.; Yanagisawa, M.; Kunimoto, M.; Nakamura, M.; Homma, T. Depth profiling of APTES self-assembled monolayers using surface-enhanced confocal Raman microspectroscopy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2017, 184, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Yoon, B.; Hwang, G.S. On the mechanism of predominant urea formation from thermal degradation of CO2 -loaded aqueous ethylenediamine. Phys. Chem. Chem. Phys. 2020, 22, 17336–17343. [Google Scholar] [CrossRef]
- Thompson, J.; Richburg, H.; Liu, K. Thermal Degradation Pathways of Aqueous Diamine CO2 Capture Solvents. Energy Procedia 2017, 114, 2030–2038. [Google Scholar] [CrossRef]
- Said, R.B.; Kolle, J.M.; Essalah, K.; Tangour, B.; Sayari, A. A Unified Approach to CO2-Amine Reaction Mechanisms. ACS Omega 2020, 5, 26125–26133. [Google Scholar] [CrossRef]
- Martínez, S.; Moreno-Mañas, M.; Vallribera, A.; Schubert, U.; Roig, A.; Molins, E. Highly dispersed nickel and palladium nanoparticle silica aerogels: Sol-gel processing of tethered metal complexes and application as catalysts in the Mizoroki-Heck reaction. New J. Chem. 2006, 30, 1093–1097. [Google Scholar] [CrossRef]
- Schubert, U. Metal Oxide/Silica and Metal/Silica Nanocomposites from Organofunctional Single-Source Sol-Gel Precursors. Adv. Eng. Mater. 2004, 6, 173–176. [Google Scholar] [CrossRef]
- Grau, A.; Baeza, A.; Serrano, E.; García-Martínez, J.; Nájera, C. Mesoporous Metal Complex-Silica Aerogels for Environmentally Friendly Amination of Allylic Alcohols. ChemCatChem 2015, 7, 87–93. [Google Scholar] [CrossRef]
- Dutta, P.K.; Zaykoski, R.E. Dioxygen complexes of cobalt(II) ethylenediamine in zeolite Y cages: A resonance Raman spectroscopic study. J. Phys. Chem. 1989, 93, 2603–2607. [Google Scholar] [CrossRef]
- Saad, E.M.; Hassan, H.M.A.; Soltan, M.S.; Butler, I.S.; Mostafa, S.I. Removal of copper(II) ions from Aqueous Media by Chemically Modified MCM-41 with N -(3-(trimethoxysilyl)propyl)ethylenediamine and Its 4-hydroxysalicylidene Schiff-base. Environ. Prog. Sustain. Energy 2018, 37, 746–760. [Google Scholar] [CrossRef]
- Al-Azmi, A.; Keshipour, S. Cross-linked chitosan aerogel modified with Pd(II)/phthalocyanine: Synthesis, characterization, and catalytic application. Sci. Rep. 2019, 9, 13849. [Google Scholar] [CrossRef] [Green Version]
- Lermontov, S.A.; Sipyagina, N.A.; Malkova, A.N.; Baranchikov, A.E.; Sidorov, A.A.; Efimov, N.N.; Ugolkova, E.A.; Minin, V.V.; Ivanov, V.K.; Eremenko, I.L. New aerogels chemically modified with amino complexes of bivalent copper. Russ. J. Inorg. Chem. 2015, 60, 1459–1463. [Google Scholar] [CrossRef]
- Shi, L.; Li, D.; Hou, B.; Wang, Y.; Sun, Y. The modification of SiO2 by various organic groups and its influence on the properties of cobalt-based catalysts for Fischer–Tropsch synthesis. Fuel Process. Technol. 2010, 91, 394–398. [Google Scholar] [CrossRef]
- Pavlov, A.A.; Nehrkorn, J.; Zubkevich, S.V.; Fedin, M.V.; Holldack, K.; Schnegg, A.; Novikov, V.V. A Synergy and Struggle of EPR, Magnetometry and NMR: A Case Study of Magnetic Interaction Parameters in a Six-Coordinate Cobalt(II) Complex. Inorg. Chem. 2020, 59, 10746–10755. [Google Scholar] [CrossRef]
- Huang, W.; Liu, T.; Wu, D.; Cheng, J.; Ouyang, Z.W.; Duan, C. Field-induced slow relaxation of magnetization in a tetrahedral Co(ii) complex with easy plane anisotropy. Dalt. Trans. 2013, 42, 15326. [Google Scholar] [CrossRef]
- Colacio, E.; Ruiz, J.; Ruiz, E.; Cremades, E.; Krzystek, J.; Carretta, S.; Cano, J.; Guidi, T.; Wernsdorfer, W.; Brechin, E.K. Slow Magnetic Relaxation in a Co II -Y III Single-Ion Magnet with Positive Axial Zero-Field Splitting. Angew. Chemie Int. Ed. 2013, 52, 9130–9134. [Google Scholar] [CrossRef] [Green Version]
- Palacios, M.A.; Nehrkorn, J.; Suturina, E.A.; Ruiz, E.; Gómez-Coca, S.; Holldack, K.; Schnegg, A.; Krzystek, J.; Moreno, J.M.; Colacio, E. Analysis of Magnetic Anisotropy and the Role of Magnetic Dilution in Triggering Single-Molecule Magnet (SMM) Behavior in a Family of Co II Y III Dinuclear Complexes with Easy-Plane Anisotropy. Chem.–A Eur. J. 2017, 23, 11649–11661. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ceglarska, M.; Stefańczyk, O.; Ohkoshi, S.; Majcher-Fitas, A.M. Influence of magnetic dilution on relaxation processes in a solid solution comprising tetrahedral Co/Zn II complexes. Dalt. Trans. 2020, 49, 6807–6815. [Google Scholar] [CrossRef] [PubMed]
- Kurmoo, M. Magnetic metal–organic frameworks. Chem. Soc. Rev. 2009, 38, 1353. [Google Scholar] [CrossRef] [PubMed]
- Haussühl, S.; Schreuer, J. Crystal structure, dielectric, piezoelectric and elastic properties of (±)-tris(ethylenediamine)cobalt(III) nitrate, (±)–[Co(H2N(CH2)2NH2)3](NO3)3. Zeitschrift für Krist.-Cryst. Mater. 1998, 213, 161–167. [Google Scholar] [CrossRef]
- Bruker. APEX3 (Version 5.054); Bruker AXS Inc.: Madison, WI, USA, 2016. [Google Scholar]
- Sheldrick, G.M. CELL NOW. Program for Unit Cell Determination; Bruker-AXS Inc.: Madison, WI, USA, 2004. [Google Scholar]
- Sheldrick, G.M. Twinabs; Bruker-AXS Inc.: Madison, WI, USA, 2001. [Google Scholar]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341. [Google Scholar] [CrossRef]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C Struct. Chem. 2015, 71, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S.W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef] [Green Version]
- Rouquerol, J.; Llewellyn, P.; Rouquerol, F. Is the bet equation applicable to microporous adsorbents? Stud. Surf. Sci. Catal. 2007, 160, 49–56. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kottsov, S.Y.; Shmelev, M.A.; Baranchikov, A.E.; Kiskin, M.A.; Sharipov, A.U.; Efimov, N.N.; Rubtsova, I.K.; Nikolaevskii, S.A.; Kopitsa, G.P.; Khamova, T.V.; et al. Aerogel-Based Single-Ion Magnets: A Case Study of a Cobalt(II) Complex Immobilized in Silica. Molecules 2023, 28, 418. https://doi.org/10.3390/molecules28010418
Kottsov SY, Shmelev MA, Baranchikov AE, Kiskin MA, Sharipov AU, Efimov NN, Rubtsova IK, Nikolaevskii SA, Kopitsa GP, Khamova TV, et al. Aerogel-Based Single-Ion Magnets: A Case Study of a Cobalt(II) Complex Immobilized in Silica. Molecules. 2023; 28(1):418. https://doi.org/10.3390/molecules28010418
Chicago/Turabian StyleKottsov, Sergey Yu., Maxim A. Shmelev, Alexander E. Baranchikov, Mikhail A. Kiskin, Alim U. Sharipov, Nikolay N. Efimov, Irina K. Rubtsova, Stanislav A. Nikolaevskii, Gennady P. Kopitsa, Tamara V. Khamova, and et al. 2023. "Aerogel-Based Single-Ion Magnets: A Case Study of a Cobalt(II) Complex Immobilized in Silica" Molecules 28, no. 1: 418. https://doi.org/10.3390/molecules28010418
APA StyleKottsov, S. Y., Shmelev, M. A., Baranchikov, A. E., Kiskin, M. A., Sharipov, A. U., Efimov, N. N., Rubtsova, I. K., Nikolaevskii, S. A., Kopitsa, G. P., Khamova, T. V., Roslyakov, I. V., Eremenko, I. L., & Ivanov, V. K. (2023). Aerogel-Based Single-Ion Magnets: A Case Study of a Cobalt(II) Complex Immobilized in Silica. Molecules, 28(1), 418. https://doi.org/10.3390/molecules28010418