First Example of Cage P4N4-Macrocycle Copper Complexes with Intracavity Location of Unusual Cu2I Fragments
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis
2.2. X-ray Diffraction
3. Materials and Methods
3.1. General
3.2. X-ray Crystallography Data
3.3. Experimental Part
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Karasik, A.; Sinyashin, O. Phosphorus based macrocyclic ligands: Synthesis and applications, in catalysis by metal complexes. In Phosphorus Compounds: Advanced Tools in Catalysis and Material Sciences; Gonsalvi, L., Peruzzini, M., Eds.; Springer: Dordrecht, The Netherlands, 2011; Volume 37, pp. 377–448. [Google Scholar]
- Swor, C.; Tyler, D. Synthesis and coordination chemistry of macrocyclic phosphine ligands. Coord. Chem. Rev. 2011, 255, 2860–2881. [Google Scholar] [CrossRef]
- Widhalm, M.; Wimmer, P.; Klintschar, G. Synthesis of aminophosphines containing a chiral dinaphthoazepine entity and their use in asymmetric catalysis. J. Organomet. Chem. 1996, 523, 167–178. [Google Scholar] [CrossRef]
- Yan, Y.-Y.; Widhalm, M. Synthesis and application of macrocyclic binaphthyl ligands with extended chiral bias. Tetrahedron Asymmetry 1998, 9, 3607–3610. [Google Scholar] [CrossRef]
- Pamies, O.; Net, G.; Widhalm, M.; Ruiz, A.; Clawer, C. Rhodium cationic complexes using macrocyclic diphosphines as chiral ligands: Application in asymmetric hydroformylation. J. Organomet. Chem. 1999, 587, 136–143. [Google Scholar] [CrossRef]
- Matano, Y.; Miyajima, T.; Nakabuchi, T.; Imahori, H.; Ochiand, N.; Sakaki, S. Phosphorus-Containing hybrid calixphyrins: Promising mixed-donor ligands for visible and efficient palladium catalysts. J. Am. Chem. Soc. 2006, 128, 11760–11761. [Google Scholar] [CrossRef]
- Matano, Y.; Miyajima, T.; Ochi, N.; Nakabuchi, T.; Shiro, M.; Nakao, Y.; Sakaki, S.; Imahori, H. Syntheses, structures, and coordination chemistry of phosphole-containing hybrid calixphyrins: Promising macrocyclic P,N2,X-mixed donor ligands for designing reactive transition-metal complexes. J. Am. Chem. Soc. 2008, 130, 990–1002. [Google Scholar] [CrossRef]
- Mercier, F.; Laporte, F.; Ricard, L.; Mathey, F.; Schröderand, M.; Regitz, M. The use of a ten-membered tetraphosphole macrocycle to increase the lifetime of a palladium catalyst. Angew. Chem. Int. Ed. Engl. 1997, 36, 2364–2366. [Google Scholar] [CrossRef]
- Pearce, K.G.; Crossley, I.R. Diphosphametacyclophanes: Structural and Electronic Influences of Substituent Variation within a Family of Bis(diketophosphanyl) Macrocycles. J. Org. Chem. 2020, 85, 14697–14707. [Google Scholar] [CrossRef]
- Katagiri, K.; Ohara, M.; Ikehara, M.; Higashimura, I.; Isono, K. Oxaphosphacyclophanes Constructed from a Bis(triphenylphosphine oxide) Moiety Linked by Dioxyalkyl Chains: Synthesis and Crystal Structures. ACS Omega 2020, 5, 23621–23630. [Google Scholar] [CrossRef]
- Bauer, I.; Habicher, W.D. Phosphite macrocycles of varying size. Tetrahedron Lett. 2002, 43, 5245–5248. [Google Scholar] [CrossRef]
- Balueva, A.S.; Musina, E.I.; Nikolaeva, Y.A.; Karasik, A.A.; Sinyashin, O.G. Complexes of phosphorus-containing cyclophanes and cryptands with metals, anions, and organic substrates. Russ. J. Org. Chem. 2019, 55, 1660–1679. [Google Scholar] [CrossRef]
- Joshi, H.; Kharel, S.; Ehnbom, A.; Skopek, K.; Hess, G.D.; Fiedler, T.; Hampel, F.; Bhuvanesh, N.; Gladysz, J.A. Three-fold intramolecular ring closing alkene metatheses of square planar complexes with cis phosphorus donor ligands P(X(CH2)mCH=CH2)3 (X = −, m = 5–10; X = O, m = 3–5): Syntheses, structures, and thermal properties of macrocyclic dibridgehead diphosphorus complexes. J. Am. Chem. Soc. 2018, 140, 8463–8478. [Google Scholar] [CrossRef] [PubMed]
- Kharel, S.; Joshi, H.; Bhuvanesh, N.; Gladysz, J.A. Syntheses, structures, and thermal properties of gyroscope-like complexes consisting of PtCl2 rotators encased in macrocyclic dibridgehead diphosphines P((CH2)n)3P with extended methylene chains (n = 20/22/30) and isomers thereof organometallics. Organometallics 2018, 37, 2991–3000. [Google Scholar] [CrossRef]
- Hood, T.M.; Gyton, M.R.; Chaplin, A.B. Synthesis and rhodium complexes of macrocyclic PNP and PONOP pincer ligands. Dalton Trans. 2020, 49, 2077–2086. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, S.; Shen, W.; Li, Y.; Dong, Z.; Xu, Y.; Li, Q.; Zhang, J.; Gao, J. Iron-Catalyzed Highly Enantioselective Reduction of Aromatic Ketones with Chiral P2N4-Type Macrocycles. Adv. Synth. Catal. 2012, 354, 818–822. [Google Scholar] [CrossRef]
- Izzet, G.; Zeng, X.; Over, D.; Douziech, B.; Zeitouny, J.; Giorgi, M.; Jabin, I.; Le Mest, Y.; Reinaud, O. First insights into the electronic properties of a Cu(II) center embedded in the PN3 Cap of a Calix[6]arene-based ligand. Inorg. Chem. 2007, 46, 375–377. [Google Scholar] [CrossRef]
- Over, D.; Lande, A.; Zeng, X.; Parisel, O.; Reinaud, O. Replacement of a nitrogen by a phosphorus donor in biomimetic copper complexes: A surprising and informative case study with calix[6]arene-based cryptands. Inorg. Chem. 2009, 48, 4317–4330. [Google Scholar] [CrossRef]
- Karasik, A.A.; Balueva, A.S.; Sinyashin, O.G. An effective strategy of P,N-containing macrocycle design. Comptes Rendus Chim. 2010, 13, 1151–1167. [Google Scholar] [CrossRef]
- Kuznetsov, R.M.; Balueva, A.S.; Litvinov, I.A.; Gubaidullin, A.T.; Nikonov, G.N. Cyclo-bis{1-[p-(p-phenylenomethyl)phenyl]-3,7-diphenyl-1,5,3,7-diazadiphosphacyclooctane} as the first representative of a new type of nitrogen-containing macroheterocyclic phosphines. Mendeleev Commun. 2000, 10, 120–121. [Google Scholar] [CrossRef]
- Kuznetsov, R.M.; Balueva, A.S.; Litvinov, I.A.; Gubaidullin, A.T.; Nikonov, G.N.; Karasik, A.A.; Sinyashin, O.G. Synthesis of new macrocyclic aminomethylphosphines based on 4,4”-diaminodiphenylmethane and its derivatives. Russ. Chem. Bull. Int. Ed. 2002, 51, 151–156. [Google Scholar] [CrossRef]
- Balueva, A.S.; Kuznetsov, R.M.; Ignatgeva, S.N.; Karasik, A.A.; Gubaidullin, A.T.; Litvinov, I.A.; Sinyashin, O.G.; Lönnecke, P.; Hey-Hawkins, E. Self-assembly of novel macrocyclic aminomethylphosphines with hydrophobic intramolecular cavities. Dalton Trans. 2004, 3, 442–447. [Google Scholar] [CrossRef] [PubMed]
- Kulikov, D.V.; Karasik, A.A.; Balueva, A.S.; Kataeva, O.N.; Litvinov, I.A.; Hey-Hawkins, E.; Sinyashin, O.G. The first representative of novel 36-membered P,N,O-containing cyclophanes. Mendeleev Commun. 2007, 17, 195–196. [Google Scholar] [CrossRef]
- Karasik, A.A.; Kulikov, D.V.; Balueva, A.S.; Ignat’eva, S.N.; Kataeva, O.N.; Lönnecke, P.; Kozlov, A.V.; Latypov, S.K.; Hey-Hawkins, E.; Sinyashin, O.G. P,N-Containing cyclophanes with large helical hydrophobic cavities: Prospective precursors for the design of a molecular reactor. Dalton Trans. 2009, 3, 490–494. [Google Scholar] [CrossRef] [PubMed]
- Karasik, A.A.; Kulikov, D.V.; Kuznetsov, R.M.; Balueva, A.S.; Akhmetgaliev, A.A.; Kataeva, O.N.; Lonnecke, P.; Sharapov, O.R.; Zhelezina, Y.A.; Ignat’eva, S.N.; et al. Novel P,N-Containing Cyclophane with a Chiral Hydrophobic Cavity. Macroheterocycles 2011, 4, 324–330. [Google Scholar] [CrossRef] [Green Version]
- Nikolaeva, Y.A.; Balueva, A.S.; Ignat’eva, S.N.; Musina, E.I.; Karasik, A.A. Synthesis of first representatives of 46-membered P,N,O-containing cyclophanes and their transition metal complexes. Russ. Chem. Bull. Int. Ed. 2016, 65, 1319–1324. [Google Scholar] [CrossRef]
- Balueva, A.S.; Ignatieva, S.N.; Karasik, A.A.; Lönnecke, P.; Hey-Hawkins, E.; Sinyashin, O.G. Optically Active Cage P,N-Containing Cyclophanes Based on L-Menthylphosphine and Their Platinum (II) and Palladium (II) Complexes. Phosphorus Sulfur Silicon Relat. Elem. 2011, 186, 891–893. [Google Scholar] [CrossRef]
- Nikolaeva, Y.A.; Balueva, A.S.; Musina, E.I.; Karasik, A.A.; Sinyashin, O.G. Tetracarbonyltungsten (0) and –molybdenum (0) complexes of P,N-containing cyclophanes. Phosphorus Sulfur Silicon Relat. Elem. 2016, 191, 1581–1582. [Google Scholar] [CrossRef]
- Karasik, A.A.; Musina, E.I.; Balueva, A.S.; Strelnik, I.D.; Sinyashin, O.G. Cyclic aminomethylphosphines as ligands. Rational design and unpredicted findings. Pure Appl. Chem. 2017, 89, 293–309. [Google Scholar] [CrossRef]
- Nikolaeva, Y.A.; Balueva, A.S.; Khafizov, A.A.; Strelnik, I.D.; Gerasimova, T.P.; Katsyuba, S.A.; Litvinov, I.A.; Musina, E.I.; Karasik, A.A.; Sinyashin, O.G. The first representatives of tetranuclear gold(I)complexes of P,N-containing cyclophanes. Dalton Trans. 2018, 47, 7715–7720. [Google Scholar] [CrossRef]
- Latypov, S.K.; Strelnik, A.G.; Ignatieva, S.N.; Hey-Hawkins, E.; Balueva, A.S.; Karasik, A.A.; Sinyashin, O.G. Structure and Dynamics of P,N-Containing Heterocycles and Their Metal Complexes in Solution. J. Phys. Chem. A 2012, 116, 3182–3193. [Google Scholar] [CrossRef]
- Nikolaeva, Y.A.; Balueva, A.S.; Musina, E.I.; Karasik, A.A.; Sinyashin, O.G. New P,N-Containing Cyclophanes with Exocyclic Pyridyl-Containing Substituents on Phosphorus Atoms. Macroheterocycles 2015, 8, 402–408. [Google Scholar] [CrossRef] [Green Version]
- Strelnik, I.D.; Dayanova, I.R.; Krivolapov, D.B.; Litvinov, I.A.; Musina, E.I.; Karasik, A.A.; Sinyashin, O.G. Unpredicted concurrency between P,P-chelate and P,P-bridge coordination modes of 1,5-diR-3,7-di(pyridine-2-yl)-1,5-diaza-3,7-diphosphacyclooctane ligands in copper(I) complexes. Polyhedron 2018, 139, 1–6. [Google Scholar] [CrossRef]
- Ananthnag, G.S.; Mague, J.T.; Balakrishna, M.S. Self-assembled cyclophane-type copper(I) complexes of 2,4,6-tris(diphenylphosphino)-1,3,5-triazine and their catalytic application. Inorg. Chem. 2015, 54, 10985–10992. [Google Scholar] [CrossRef] [PubMed]
- Al-Ktaifani, M.M.; Hitchcock, P.B.; Nixon, J.F. 1,2,4-Triphospholyl gold(I) and copper(I) complexes: Synthesis, crystal and molecular structures of [Cu(PMe3)2(μ-P3C2tBu2)(μ-I)Cu(PMe3)2], [Cu(PMe3)2(μ-P3C2tBu2)2Cu(PMe3)2] and [Au(η1-P3C2tBu2)2][Au(PEt3)2]. J. Organomet. Chem. 2003, 665, 101–106. [Google Scholar] [CrossRef]
- CrysAlisPro. Rigaku OD. 2017. Available online: https://www.rigaku.com/products/crystallography/crysalis (accessed on 2 December 2022).
- Sheldrick, G.M. SHELXT–Integrated space-group and crystal-structure determination. Acta Crystallogr. Sect. A Found. Adv. 2015, 71, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Sheldrick, G.M. Crystal Structure Refinement with SHELXL. Acta Crystallogr. Sect. C Struct. Chem. 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farrugia, L.J. WinGX and ORTEP for Windows: An Update. J. Appl. Crystallogr. 2012, 45, 849–854. [Google Scholar] [CrossRef]
- Macrae, C.F.; Edgington, P.R.; McCabe, P.; Pidcock, E.; Shields, G.P.; Taylor, R.; Towler, M.; Streek, J.V.D. Mercury: Visualization and analysis of crystal structures. J. Appl. Crystallogr. 2006, 39, 453–457. [Google Scholar] [CrossRef]
Parameter | 3 |
---|---|
Moiety formula | C54H52Cu2IN8P4, 2(C3H7NO), I |
Sum formula | C60H66Cu2I2N10O2P4 |
Formula weight | 1464.01 |
T (K) | 130(2) |
Crystal system | Monoclinic |
Space group | Cc |
a (Å) | 16.5041(4) |
b (Å) | 17.3987(4) |
c (Å) | 21.5078(5) |
α (o) | 90 |
β (o) | 104.326(2) |
γ (o) | 90 |
V (Å3) | 5983.9(2) |
Z | 4 |
d calc (g/cm3) | 1.625 |
Absorption coefficient, μ (mm−1) | 1.902 |
Max. and min. transmission | 1.00000 and 0.67416 |
Refinement method | Full-matrix least-squares on F2 |
Refleections collected | 48,449 |
Independent reflections | 19,153 (R(int) = 0.0539 |
Data/restraints/parameters | 19,153/2/725 |
Goodness-of-fit | 1.0031 |
Final R indexes [I > 2r (I)] | R1 = 0.0472 wR2 = 0.1017 |
Final R indexes [all data] | R1 = 0.0583 wR2 = 0.1090 |
Absolute structure parameter | −0.010(8) |
Largest diff. peak and hole. (e Å3) | 2.171 and −1.294 e.Å−3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balueva, A.S.; Nikolaeva, Y.A.; Musina, E.I.; Litvinov, I.A.; Karasik, A.A. First Example of Cage P4N4-Macrocycle Copper Complexes with Intracavity Location of Unusual Cu2I Fragments. Molecules 2023, 28, 680. https://doi.org/10.3390/molecules28020680
Balueva AS, Nikolaeva YA, Musina EI, Litvinov IA, Karasik AA. First Example of Cage P4N4-Macrocycle Copper Complexes with Intracavity Location of Unusual Cu2I Fragments. Molecules. 2023; 28(2):680. https://doi.org/10.3390/molecules28020680
Chicago/Turabian StyleBalueva, Anna S., Yulia A. Nikolaeva, Elvira I. Musina, Igor A. Litvinov, and Andrey A. Karasik. 2023. "First Example of Cage P4N4-Macrocycle Copper Complexes with Intracavity Location of Unusual Cu2I Fragments" Molecules 28, no. 2: 680. https://doi.org/10.3390/molecules28020680
APA StyleBalueva, A. S., Nikolaeva, Y. A., Musina, E. I., Litvinov, I. A., & Karasik, A. A. (2023). First Example of Cage P4N4-Macrocycle Copper Complexes with Intracavity Location of Unusual Cu2I Fragments. Molecules, 28(2), 680. https://doi.org/10.3390/molecules28020680