Synthesis, Fungicidal Activity and Plant Protective Properties of 1,2,3-Thiadiazole and Isothiazole-Based N-acyl-N-arylalaninates
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis of Target Compounds
2.2. Structural Analysis
2.3. Fungicidal Activity In Vitro
2.4. Fungicidal and Protective Properties In Vivo
3. Materials and Methods
3.1. Chemical Synthesis
3.1.1. General Procedure for Preparation of Methyl N-aryl-(RS)-alaninates (3a–l)
3.1.2. General Procedure for Preparation Methyl N-(Heteryl-5-carbonyl)-N-aryl-(RS)-alaninates (1a–l and 2a–l)
3.2. X-ray Structure Determination of 1f
3.3. Fungicidal Activity In Vitro
3.4. Protective Activity of Compounds 1d and 2d on Rape Leaves
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Knogge, W. Fungal Infection of Plants. Plant Cell 1996, 8, 1711–1722. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Fernandez, R.; Prats, E.; Jorrin-Novo, J.V. Proteomics of Plant Pathogenic Fungi. J. Biomed. Biotechnol. 2010, 2010, 932527. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fisher, D.J.; Hayes, A.L. Mode of Action of the Systemic Fungicides Furalaxyl, Metalaxyl and Ofurace. Pestic. Sci. 1982, 13, 330–339. [Google Scholar] [CrossRef]
- Williams, A. Opportunities for chiral agrochemicals. Pestic. Sci. 1996, 46, 3–9. [Google Scholar] [CrossRef]
- Perez de Albuquerque, N.C.; Carrão, D.B.; Habenschus, M.D.; Moraes de Oliveira, A.R. Metabolism studies of chiral pesticides. J. Pharm. Biomed. Anal. 2018, 147, 89–109. [Google Scholar] [CrossRef]
- Sukul, P.; Spiteller, M. Metalaxyl: Persistence, degradation, metabolism, and analytical methods. Rev. Environ. Contam. Toxicol. 2000, 164, 1–26. [Google Scholar]
- Urech, P.A.; Staub, T. The resistance strategy for acylalanine fungicides. EPPO Bull. 1985, 15, 539–543. [Google Scholar] [CrossRef]
- Tripathi, D.; Raikhy, G.; Kumar, D. Chemical elicitors of systemic acquired resistance—Salicylic acid and its functional analogs. Curr. Plant Biol. 2019, 17, 48–59. [Google Scholar] [CrossRef]
- Ishii, H.; Tomita, Y.; Horio, T.; Narusaka, Y.; Nakazawa, Y.; Nishimura, K.; Iwamoto, S. Induced Resistance of Acibenzolar-S-methyl (CGA 245704) to Cucumber and Japanese Pear Diseases. Eur. J. Plant Pathol. 1999, 105, 77–85. [Google Scholar] [CrossRef]
- Zhang, S.; Reddy, M.S.; Kokalis-Burelle, N.; Wells, L.W.; Nightengale, S.P.; Kloepper, J.W. Lack of Induced Systemic Resistance in Peanut to Late Leaf Spot Disease by Plant Growth-Promoting Rhizobacteria and Chemical Elicitors. Plant Dis. 2001, 85, 879–884. [Google Scholar] [CrossRef] [Green Version]
- Sun, C.; Zhang, S.; Qian, P.; Li, Y.; Ren, W.; Deng, H.; Jiang, L. Synthesis and fungicidal activity of novel benzimidazole derivatives bearing pyrimidine-thioether moiety against Botrytis cinerea. Pest Manag. Sci. 2021, 77, 5529–5536. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Zhao, B.; Fan, Z.; Hu, M.; Li, Q.; Hu, W.; Li, J.; Zhang, J. Discovery of Novel Isothiazole, 1,2,3-Thiadiazole, and Thiazole-Based Cinnamamides as Fungicidal Candidates. J. Agric. Food Chem. 2019, 67, 12357–12365. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.-F.; Zhao, B.; Fan, Z.-J.; Zhao, J.-B.; Guo, X.-F.; Yang, D.-Y.; Zhang, N.-L.; Yu, B.; Kalinina, T.; Glukhareva, T. Design, synthesis and fungicidal activity of isothiazole–thiazole derivatives. RSC Adv. 2018, 8, 39593–39601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.-C.; Kuo, Y.-T.; Ho, T.-H. Photo-polymerization properties of type-II photoinitiator systems based on 2-chlorohexaaryl biimidazole (o-Cl-HABI) and various N-phenylglycine (NPG) derivatives. Photochem. Photobiol. Sci. 2019, 18, 190–197. [Google Scholar] [CrossRef]
- Ozcan, S.; Kazi, A.; Marsilio, F.; Fang, B.; Guida, W.C.; Koomen, J.; Lawrence, H.R.; Sebti, S.M. Oxadiazole-isopropylamides as Potent and Noncovalent Proteasome Inhibitors. J. Med. Chem. 2013, 56, 3783–3805. [Google Scholar] [CrossRef] [Green Version]
- Specklin, S.; Decuypere, E.; Plougastel, L.; Aliani, S.; Taran, F. One-Pot Synthesis of 1,4-Disubstituted Pyrazoles from Arylglycines via Copper-Catalyzed Sydnone–Alkyne Cycloaddition Reaction. J. Org. Chem. 2014, 79, 7772–7777. [Google Scholar] [CrossRef]
- Dai, L.-L.; Zhang, H.-Z.; Nagarajan, S.; Rasheed, S.; Zhou, C.-H. Synthesis of tetrazole compounds as a novel type of potential antimicrobial agents and their synergistic effects with clinical drugs and interactions with calf thymus DNA. MedChemComm 2015, 6, 147–154. [Google Scholar] [CrossRef]
- Pei, M.; Kong, H.; Tian, A.; Liu, X.; Zheng, K.; Ren, Z.; Wang, L. Novel benzotriazole-based probes for the selective detection of Cu(II). J. Mol. Struct. 2022, 1250, 131806. [Google Scholar] [CrossRef]
- da Silva Mesquita, R.; Kyrylchuk, A.; Grafova, I.; Kliukovskyi, D.; Bezdudnyy, A.; Rozhenko, A.; Tadei, W.P.; Leskelä, M.; Grafov, A. Synthesis, molecular docking studies, and larvicidal activity evaluation of new fluorinated neonicotinoids against Anopheles darlingi larvae. PLoS ONE 2020, 15, E0227811. [Google Scholar] [CrossRef]
- Li, Z.; Liu, C.; Yang, J.; Zhou, J.; Ye, Z.; Feng, D.; Yue, N.; Tong, J.; Huang, W.; Qian, H. Design, synthesis and biological evaluation of novel FFA1/GPR40 agonists: New breakthrough in an old scaffold. Eur. J. Med. Chem. 2019, 179, 608–622. [Google Scholar] [CrossRef]
- Sun, Y.-X.; Song, J.; Kong, L.-J.; Sha, B.-B.; Tian, X.-Y.; Liu, X.-J.; Hu, T.; Chen, P.; Zhang, S.-Y. Design, synthesis and evaluation of novel bis-substituted aromatic amide dithiocarbamate derivatives as colchicine site tubulin polymerization inhibitors with potent anticancer activities. Eur. J. Med. Chem. 2022, 229, 114069. [Google Scholar] [CrossRef]
- Song, J.; Gao, Q.-L.; Wu, B.-W.; Li, D.; Shi, L.; Zhu, T.; Lou, J.-F.; Jin, C.-Y.; Zhang, Y.-B.; Zhang, S.-Y.; et al. Novel tertiary sulfonamide derivatives containing benzimidazole moiety as potent anti-gastric cancer agents: Design, synthesis and SAR studies. Eur. J. Med. Chem. 2019, 183, 111731. [Google Scholar] [CrossRef]
- Evano, G.; Nitelet, A.; Thilmany, P.; Dewez, D.F. Metal-mediated halogen exchange in aryl and vinyl halides: A review. Front. Chem. 2018, 6, 114. [Google Scholar] [CrossRef]
- Okamoto, I.; Terashima, M.; Masu, H.; Nabeta, M.; Ono, K.; Morita, N.; Katagiri, K.; Azumaya, I.; Tamura, O. 836687: Experimental Crystal Structure Determination; Cambridge Crystallographic Data Centre: Cambridge, UK, 2011. [Google Scholar] [CrossRef]
- Okamoto, I.; Terashima, M.; Masu, H.; Nabeta, M.; Ono, K.; Morita, N.; Katagiri, K.; Azumaya, I.; Tamura, O. CCDC 836686: Experimental Crystal Structure Determination; Cambridge Crystallographic Data Centre: Cambridge, UK, 2011. [Google Scholar] [CrossRef]
- Okamoto, I.; Terashima, M.; Masu, H.; Nabeta, M.; Ono, K.; Morita, N.; Katagiri, K.; Azumaya, I.; Tamura, O. CCDC 836688: Experimental Crystal Structure Determination; Cambridge Crystallographic Data Centre: Cambridge, UK, 2011. [Google Scholar] [CrossRef]
- Okamoto, I.; Nabeta, M.; Minami, T.; Nakashima, A.; Morita, N.; Takeya, T.; Masu, H.; Azumaya, I.; Tamura, O. CCDC 625148: Experimental Crystal Structure Determination; Cambridge Crystallographic Data Centre: Cambridge, UK, 2007. [Google Scholar] [CrossRef]
- Okamoto, I.; Nabeta, M.; Minami, T.; Nakashima, A.; Morita, N.; Takeya, T.; Masu, H.; Azumaya, I.; Tamura, O. CCDC 625149: Experimental Crystal Structure Determination; Cambridge Crystallographic Data Centre: Cambridge, UK, 2007. [Google Scholar] [CrossRef]
- Okamoto, I.; Nabeta, M.; Minami, T.; Nakashima, A.; Morita, N.; Takeya, T.; Masu, H.; Azumaya, I.; Tamura, O. CCDC 625150: Experimental Crystal Structure Determination; Cambridge Crystallographic Data Centre: Cambridge, UK, 2007. [Google Scholar] [CrossRef]
- Okamoto, I.; Nabeta, M.; Minami, T.; Nakashima, A.; Morita, N.; Takeya, T.; Masu, H.; Azumaya, I.; Tamura, O. CCDC 625151: Experimental Crystal Structure Determination; Cambridge Crystallographic Data Centre: Cambridge, UK, 2007. [Google Scholar] [CrossRef]
- Okamoto, I.; Nabeta, M.; Minami, T.; Nakashima, A.; Morita, N.; Takeya, T.; Masu, H.; Azumaya, I.; Tamura, O. CCDC 625152: Experimental Crystal Structure Determination; Cambridge Crystallographic Data Centre: Cambridge, UK, 2007. [Google Scholar] [CrossRef]
- Okamoto, I.; Terashima, M.; Masu, H.; Nabeta, M.; Ono, K.; Morita, N.; Katagiri, K.; Azumaya, I.; Tamura, O. CCDC 836680: Experimental Crystal Structure Determination; Cambridge Crystallographic Data Centre: Cambridge, UK, 2011. [Google Scholar] [CrossRef]
- Okamoto, I.; Terashima, M.; Masu, H.; Nabeta, M.; Ono, K.; Morita, N.; Katagiri, K.; Azumaya, I.; Tamura, O. CCDC 836681: Experimental Crystal Structure Determination; Cambridge Crystallographic Data Centre: Cambridge, UK, 2011. [Google Scholar] [CrossRef]
- Okamoto, I.; Terashima, M.; Masu, H.; Nabeta, M.; Ono, K.; Morita, N.; Katagiri, K.; Azumaya, I.; Tamura, O. CCDC 836682: Experimental Crystal Structure Determination; Cambridge Crystallographic Data Centre: Cambridge, UK, 2011. [Google Scholar] [CrossRef]
- Okamoto, I.; Terashima, M.; Masu, H.; Nabeta, M.; Ono, K.; Morita, N.; Katagiri, K.; Azumaya, I.; Tamura, O. Acid-induced conformational alteration of cis-preferential aromatic amides bearing N-methyl-N-(2-pyridyl) moiety. Tetrahedron 2011, 67, 8536–8543. [Google Scholar] [CrossRef]
- Okamoto, I.; Terashima, M.; Masu, H.; Nabeta, M.; Ono, K.; Morita, N.; Katagiri, K.; Azumaya, I.; Tamura, O. CCDC 836684: Experimental Crystal Structure Determination; Cambridge Crystallographic Data Centre: Cambridge, UK, 2011. [Google Scholar] [CrossRef]
- Okamoto, I.; Terashima, M.; Masu, H.; Nabeta, M.; Ono, K.; Morita, N.; Katagiri, K.; Azumaya, I.; Tamura, O. CCDC 836685: Experimental Crystal Structure Determination; Cambridge Crystallographic Data Centre: Cambridge, UK, 2011. [Google Scholar] [CrossRef]
- Obydennov, K.L.; Kalinina, T.A.; Galieva, N.A.; Beryozkina, T.V.; Zhang, Y.; Fan, Z.; Glukhareva, T.V.; Bakulev, V.A. Synthesis, Fungicidal Activity, and Molecular Docking of 2 Acylamino and 2 Thioacylamino Derivatives of 1H benzo[d]imidazoles as Anti-Tubulin Agents. J. Agric. Food Chem. 2021, 69, 12048–12062. [Google Scholar] [CrossRef]
- Fache, F.; Valot, F.; Milenkovic, A.; Lemaire, M. Catalytic reductive N-alkylation of anilines. Application to the synthesis of N-aryl aminoacid precursors. Tetrahedron 1996, 52, 9777–9784. [Google Scholar] [CrossRef]
- Zhao, F.; Yang, Q.; Zhang, J.; Shi, W.; Hu, H.; Liang, F.; Wei, W.; Zhou, S. Photocatalytic Hydrogen-Evolving Cross-Coupling of Arenes with Primary Amines. Org. Lett. 2018, 20, 7753–7757. [Google Scholar] [CrossRef]
- Taylor, J.E.; Daniels, D.S.B.; Smith, A.D. Asymmetric NHC-Catalyzed Redox α-Amination of α-Aroyloxyaldehydes. Org. Lett. 2013, 15, 6058–6061. [Google Scholar] [CrossRef]
- Elisi, G.M.; Bedini, A.; Scalvini, L.; Carmi, C.; Bartolucci, S.; Lucini, V.; Scaglione, F.; Mor, M.; Rivara, S.; Spadoni, G. Chiral Recognition of Flexible Melatonin Receptor Ligands Induced by Conformational Equilibria. Molecules 2020, 25, 4057. [Google Scholar] [CrossRef]
- Guo, W.; Li, P.; Luo, Y.; Sun, J.; Sung, H.H.-Y.; Williams, I.D. Chiral Phosphoric Acid Catalyzed Enantioselective Synthesis of α-Tertiary Amino Ketones from Sulfonium Ylides. J. Am. Chem. Soc. 2020, 142, 14384–14390. [Google Scholar] [CrossRef]
- Sheldrick, G.M. SHELXT—Integrated space-group and crystal-structure determination. Acta Crystallogr. A Found. Adv. 2015, 71, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. C Struct. Chem. 2015, 71, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: A Complete Structure Solution, Refinement and Analysis Program. J. Appl. Cryst. 2009, 42, 339–341. [Google Scholar] [CrossRef]
- Westrip, S.P. publCIF: Software for editing, validating and formatting crystallographic information files. J. Appl. Crystallogr. 2010, 43, 920–925. [Google Scholar] [CrossRef] [Green Version]
- Royse, D.J.; Ries, S.M. The influence of fungi isolated from peach twigs on the pathogenicity of Cytospora cincta. Phytopathology 1978, 68, 603–607. [Google Scholar] [CrossRef]
- Gong, Y.; Fu, Y.; Xie, J.; Li, B.; Chen, T.; Lin, Y.; Chen, W.; Jiang, D.; Cheng, J. Sclerotinia sclerotiorum SsCut1 Modulates Virulence and Cutinase Activity. J. Fungi 2022, 8, 526. [Google Scholar] [CrossRef]
Entry | Solvent | Base | Additives | Temperature, °C | Yield, % |
1 | acetonitrile | Na2CO3 | – | 80 | <1 |
2 | acetonitrile | K2CO3 | – | 80 | 4–5 |
3 | methanol | MeCO2Na | – | 60 | 16 |
4 | ethanol | MeCO2Na | – | 70 | 35 |
5 | DMF | K2CO3 | – | 80 | 52 |
6 | DMF | K2CO3 | 1.0 eq. KI | 80 | 71 |
7 | DMF | K2CO3 | 1.5 eq. KI | 80 | 88 |
8 | DMF | K2CO3 | 2.0 eq. KI | 80 | 92 |
Ar | For Compounds 3 | For Compounds 1, 2 and 6 | ||||
Het—4-methyl-1,2,3-thiadiazolyl (1a–l, 6a) | Het—3,4-dichloro-isothiazolyl (2a–l, 6b) | |||||
Comp. | Yield, % | Comp. | Yield, % | Comp. | Yield, % | |
C6H5 | 3a | 92 | 1a | 73 | 2a | 71 |
3-MeC6H4 | 3b | 76 | 1b | 74 | 2b | 90 |
4-MeC6H4 | 3c | 79 | 1c | 68 | 2c | 75 |
2,6-(Me)2C6H3 | 3d | 88 | 1d | 69 | 2d | 72 |
2,4,6-(Me)3C6H2 | 3e | 58 | 1e | 82 | 2e | 77 |
3-ClC6H4 | 3f | 76 | 1f | 97 | 2f | 97 |
4-ClC6H4 | 3g | 78 | 1g | 87 | 2g | 91 |
3,5-Cl2C6H3 | 3h | 53 | 1h | 86 | 2h | 59 |
2-Me-3-ClC6H3 | 3i | 73 | 1i | 75 | 2i | 67 |
3-MeOC6H4 | 3j | 74 | 1j | 80 | 2j | 84 |
4-MeOC6H4 | 3k | 61 | 1k | 86 | 2k | 82 |
3-CF3C6H4 | 3l | 89 | 1l | 96 | 2l | 61 |
Comp. | Degree of Inhibition of Mycelial Growth (I ± SD%) | ||||||||
---|---|---|---|---|---|---|---|---|---|
A.b. | A.s. | B.c. | C.c. | F.s. | P.i. | P.l. | R.s. | S.s. | |
1a | 27.20 ± 0.50 | 19.19 ± 1.44 | 16.99 ± 1.38 | 11.61 ± 0.80 | 5.56 ± 0.63 | 7.44 ± 1.58 | 39.86 ± 0.20 | 20.62 ± 0.78 | 13.15 ± 1.32 |
1b | 13.01 ± 0.21 | 8.41 ± 0.41 | 41.51 ± 0.63 | 15.97 ± 0.49 | 21.50 ± 0.25 | 31.23 ± 0.26 | 25.86 ± 0.62 | 38.19 ± 0.78 | 54.22 ± 0.59 |
1c | 20.16 ± 0.48 | 14.08 ± 0.60 | 33.78 ± 1.23 | 16.56 ± 1.40 | 2.10 ± 0.23 | 10.13 ± 0.94 | 12.85 ± 1.00 | 32.47 ± 2.62 | 15.13 ± 0.34 |
1d | 12.05 ± 0.08 | 10.60 ± 0.70 | 33.03 ± 1.92 | 14.71 ± 0.41 | 3.22 ± 0.48 | 8.06 ± 0.50 | 3.83 ± 0.31 | 30.88 ± 0.63 | 15.42 ± 0.79 |
1e | 13.40 ± 0.19 | 25.14 ± 0.79 | 19.97 ± 0.61 | 46.65 ± 0.77 | 14.92 ± 1.77 | 12.97 ± 0.32 | 22.24 ± 1.27 | 30.78 ± 0.16 | 6.31 ± 0.87 |
1f | 22.69 ± 0.26 | 5.44 ± 0.47 | 35.03 ± 1.09 | 6.14 ± 0.46 | 7.52 ± 0.62 | 20.61 ± 1.31 | 26.94 ± 0.30 | 43.67 ± 0.28 | 34.46 ± 0.19 |
1g | 28.89 ± 0.18 | 13.54 ± 1.07 | 50.60 ± 1.08 | 31.01 ± 0.57 | 6.17 ± 0.74 | 14.62 ± 1.30 | 29.31 ± 1.21 | 37.63 ± 0.28 | 22.01 ± 0.30 |
1h | 40.54 ± 0.29 | 26.11 ± 0.76 | 25.12 ± 0.41 | 24.19 ± 0.36 | 30.68 ± 0.24 | 34.16 ± 0.49 | 34.77 ± 0.19 | 48.87 ± 0.21 | 60.26 ± 1.07 |
1i | 15.03 ± 0.18 | 5.26 ± 1.70 | 27.36 ± 0.85 | 22.89 ± 0.80 | 9.43 ± 0.56 | 13.79 ± 0.67 | 6.49 ± 0.47 | 25.92 ± 0.54 | 23.37 ± 0.19 |
1j | 8.50 ± 0.60 | 23.04 ± 0.33 | 17.41 ± 0.87 | 18.37 ± 0.17 | 19.18 ± 0.91 | 13.97 ± 0.18 | 17.60 ± 0.75 | 39.81 ± 0.38 | 19.94 ± 0.13 |
1k | 24.27 ± 0.11 | 10.03 ± 1.51 | 21.90 ± 0.62 | 14.04 ± 0.55 | 29.82 ± 1.17 | 9.14 ± 0.50 | 24.35 ± 0.55 | 42.85 ± 0.70 | 51.02 ± 0.14 |
1l | 24.49 ± 0.32 | 23.11 ± 0.24 | 4.40 ± 0.60 | 37.80 ± 0.21 | 13.39 ± 0.44 | 26.31 ± 0.28 | 6.00 ± 0.44 | 23.65 ± 0.34 | 49.37 ± 0.11 |
2a | 28.27 ± 0.26 | 37.07 ± 0.23 | 69.11 ± 0.36 | 33.06 ± 0.97 | 18.59 ± 0.90 | 33.44 ± 0.74 | 10.84 ± 0.24 | 68.43 ± 0.82 | 61.60 ± 0.25 |
2b | 36.15 ± 0.55 | 27.68 ± 0.24 | 1.24 ± 0.27 | 21.98 ± 1.47 | 19.36 ± 0.54 | 27.92 ± 0.26 | 31.72 ± 0.21 | 40.13 ± 0.22 | 51.99 ± 0.41 |
2c | 34.29 ± 0.18 | 33.22 ± 0.25 | 55.20 ± 0.49 | 33.16 ± 0.95 | 17.54 ± 0.21 | 34.15 ± 0.32 | 19.70 ± 0.75 | 59.38 ± 0.78 | 58.04 ± 0.93 |
2d | 10.64 ± 0.59 | 17.95 ± 0.59 | 35.80 ± 2.58 | 7.77 ± 1.41 | 12.82 ± 0.25 | 13.79 ± 0.80 | 6.98 ± 0.46 | 29.66 ± 1.13 | 23.38 ± 0.64 |
2e | 12.78 ± 0.65 | 26.78 ± 0.62 | 5.53 ± 0.77 | 18.07 ± 0.10 | 17.54 ± 0.47 | 16.39 ± 0.56 | 7.86 ± 0.55 | 14.83 ± 0.56 | 51.76 ± 1.00 |
2f | 32.88 ± 0.41 | 13.53 ± 0.46 | 22.70 ± 1.17 | 9.08 ± 0.27 | 20.72 ± 0.77 | 27.14 ± 0.56 | 18.02 ± 0.81 | 25.30 ± 1.48 | 47.66 ± 0.88 |
2g | 27.36 ± 0.89 | 38.41 ± 1.13 | 65.62 ± 0.55 | 29.24 ± 0.60 | 20.15 ± 1.19 | 35.64 ± 0.57 | 14.85 ± 0.92 | 67.44 ± 1.46 | 60.01 ± 0.30 |
2h | 45.61 ± 0.32 | 41.66 ± 0.84 | 39.57 ± 1.09 | 38.17 ± 0.45 | 31.02 ± 0.50 | 33.38 ± 1.52 | 38.67 ± 0.35 | 59.19 ± 0.05 | 62.89 ± 0.30 |
2i | 22.89 ± 0.63 | 34.76 ± 0.47 | 3.22 ± 0.43 | 14.22 ± 0.32 | 17.82 ± 0.30 | 28.51 ± 0.54 | 22.62 ± 0.53 | 28.56 ± 0.77 | 33.49 ± 0.36 |
2j | 34.12 ± 0.16 | 24.18 ± 0.67 | 20.90 ± 0.49 | 21.82 ± 0.25 | 21.29 ± 0.13 | 24.83 ± 0.88 | 22.57 ± 0.13 | 22.14 ± 1.45 | 56.33 ± 0.32 |
2k | 13.85 ± 0.39 | 38.85 ± 0.71 | 22.55 ± 0.19 | 18.87 ± 0.11 | 24.00 ± 0.16 | 34.32 ± 0.38 | 10.79 ± 0.82 | 39.05 ± 0.49 | 49.44 ± 0.11 |
2l | 33.78 ± 0.27 | 14.38 ± 0.21 | 30.40 ± 1.18 | 34.09 ± 2.16 | 29.87 ± 1.11 | 9.92 ± 0.36 | 17.32 ± 0.17 | 37.76 ± 0.30 | 27.26 ± 0.35 |
CZ | 16.33 ± 0.66 | 16.99 ± 0.56 | 100 ± 0.00 | 0 | 100 ± 0.00 | 0 | 95.92 ± 0.70 | 37.08 ± 1.61 | 98.28 ± 0.65 |
Compound | Protective Efficacy, % | Disease Spot Diameter, mm |
---|---|---|
1d | 92.16 | 1.33 ± 0.48 |
2d | 19.86 | 13.60 ± 2.04 |
Tiadinil | 91.57 | 1.43 ± 1.90 |
Isotianil | 40.78 | 10.05 ± 3.31 |
Negative control | – | 16.97 ± 4.84 |
Parameter | Value |
---|---|
Crystal data | |
Chemical formula | C14H14ClN3O3S |
Mr, g/mol | 339.79 |
Crystal system, space group | Orthorhombic, Pbca |
Temperature, K | 295 |
a, b, c (Å) | 9.5344(12), 13.538(2), 23.985(3) |
V (Å3) | 3095.9(8) |
Z | 8 |
Radiation type | Mo Kα |
µ, mm−1 | 0.40 |
Crystal size (mm) | 0.49 × 0.31 × 0.18 |
Data collection | |
Diffractometer | Xcalibur, Sapphire3 |
Absorption correction | Multi-scan CrysAlis PRO 1.171.41.123a (Rigaku Oxford Diffraction, 2022) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. |
Tmin, Tmax | 0.846, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 11,607, 4160, 1957 |
Rint | 0.066 |
(sin θ/λ)max (Å−1) | 0.714 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.077, 0.266, 1.05 |
No. of reflections | 4160 |
No. of parameters | 207 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e.Å−3) | 0.30–0.35 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kalinina, T.A.; Balandina, V.I.; Obydennov, K.L.; Slepukhin, P.A.; Fan, Z.; Bakulev, V.A.; Glukhareva, T.V. Synthesis, Fungicidal Activity and Plant Protective Properties of 1,2,3-Thiadiazole and Isothiazole-Based N-acyl-N-arylalaninates. Molecules 2023, 28, 419. https://doi.org/10.3390/molecules28010419
Kalinina TA, Balandina VI, Obydennov KL, Slepukhin PA, Fan Z, Bakulev VA, Glukhareva TV. Synthesis, Fungicidal Activity and Plant Protective Properties of 1,2,3-Thiadiazole and Isothiazole-Based N-acyl-N-arylalaninates. Molecules. 2023; 28(1):419. https://doi.org/10.3390/molecules28010419
Chicago/Turabian StyleKalinina, Tatiana A., Valeriya I. Balandina, Konstantin L. Obydennov, Pavel A. Slepukhin, Zhijin Fan, Vasiliy A. Bakulev, and Tatiana V. Glukhareva. 2023. "Synthesis, Fungicidal Activity and Plant Protective Properties of 1,2,3-Thiadiazole and Isothiazole-Based N-acyl-N-arylalaninates" Molecules 28, no. 1: 419. https://doi.org/10.3390/molecules28010419
APA StyleKalinina, T. A., Balandina, V. I., Obydennov, K. L., Slepukhin, P. A., Fan, Z., Bakulev, V. A., & Glukhareva, T. V. (2023). Synthesis, Fungicidal Activity and Plant Protective Properties of 1,2,3-Thiadiazole and Isothiazole-Based N-acyl-N-arylalaninates. Molecules, 28(1), 419. https://doi.org/10.3390/molecules28010419