Assessment of the Phytochemical Analysis and Antimicrobial Potentials of Zingiber zerumbet
Abstract
:1. Introduction
2. Results
2.1. Phytochemical Analysis
2.2. HPLC Analysis
2.3. Antibacterial Activity of the Plant Extract Combined with the Antibiotic Solution
3. Materials and Methods
3.1. Extraction
3.2. Preliminary Phytochemical Screening
3.3. High-Performance Liquid Chromatography Analysis
3.4. Collection and Preparation of the Bacterial Strains
3.4.1. Antibiotic Susceptibility of the Four Pathogenic Strains
3.4.2. Preparation of the Synergistic Mixture for the Antibacterial Activity
3.4.3. Antibacterial Effect of the Z. zerumbet Extracts Combined with Antibiotics
3.5. Statistical Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Prakash, R.O.; Rabinarayan, A.; Kumar, M.S. Zingiber zerumbet (L.) Sm., a reservoir plant for therapeutic uses: A review. Int. J. Res. Ayurveda Pharm. 2011, 2, 543216. [Google Scholar]
- Saensouk, P.; Saensouk, S. Diversity, traditional uses and conservation status of Zingiberaceae in Udorn Thani Province, Thailand. Biodiversitas J. Biol. Divers. 2021, 22, 3083–3097. [Google Scholar] [CrossRef]
- Kress, W.J.; Prince, L.M.; Williams, K.J. The phylogeny and a new classification of the gingers (Zingiberaceae): Evidence from molecular data. Am. J. Bot. 2002, 89, 1682–1696. [Google Scholar] [CrossRef] [PubMed]
- Grzanna, R.; Lindmark, L.; Frondoza, C.G. Ginger—An herbal medicinal product with broad anti-inflammatory actions. J. Med. Food 2005, 8, 125–132. [Google Scholar] [CrossRef]
- Ahmed, N.; Karobari, M.I.; Yousaf, A.; Mohamed, R.N.; Arshad, S.; Basheer, S.N.; Peeran, S.W.; Noorani, T.Y.; Assiry, A.A.; Alharbi, A.S. The Antimicrobial Efficacy Against Selective Oral Microbes, Antioxidant Activity and Preliminary Phytochemical Screening of Zingiber officinale. Infect. Drug Resist. 2022, 15, 2773. [Google Scholar] [CrossRef]
- Hemeg, H.A.; Moussa, I.M.; Ibrahim, S.; Dawoud, T.M.; Alhaji, J.H.; Mubarak, A.S.; Kabli, S.A.; Alsubki, R.A.; Tawfik, A.M.; Marouf, S.A. Antimicrobial effect of different herbal plant extracts against different microbial population. Saudi J. Biol. Sci. 2020, 27, 3221–3227. [Google Scholar] [CrossRef]
- Chumroenphat, T.; Somboonwatthanakul, I.; Saensouk, S.; Siriamornpun, S. The diversity of biologically active compounds in the rhizomes of recently discovered Zingiberaceae plants native to North Eastern Thailand. Pharmacogn. J. 2019, 11, 1014–1022. [Google Scholar] [CrossRef] [Green Version]
- Saensouk, S.; Saensouk, P.; Pasorn, P.; Chantaranothai, P. Diversity and uses of Zingiberaceae in Nam Nao National Park, Chaiyaphum and Phetchabun provinces, Thailand, with a new record for Thailand. Agric. Nat. Resour. 2016, 50, 445–453. [Google Scholar] [CrossRef]
- Chang, C.J.; Tzeng, T.-F.; Liou, S.-S.; Chang, Y.-S.; Liu, I.-M. Acute and 28-day subchronic oral toxicity of an ethanol extract of Zingiber zerumbet (L.) Smith in rodents. Evid.-Based Complementary Altern. Med. 2012, 2012, 608284. [Google Scholar] [CrossRef] [Green Version]
- Diaz-Sanchez, S.; D’Souza, D.; Biswas, D.; Hanning, I. Botanical alternatives to antibiotics for use in organic poultry production. Poult. Sci. 2015, 94, 1419–1430. [Google Scholar] [CrossRef]
- Koga, A.Y.; Beltrame, F.L.; Pereira, A.V. Several aspects of Zingiber zerumbet: A review. Rev. Bras. Farmacogn. 2016, 26, 385–391. [Google Scholar] [CrossRef]
- Liu, W.Y.; Tzeng, T.-F.; Liu, I.-M. Healing potential of zerumbone ointment on experimental full-thickness excision cutaneous wounds in rat. J. Tissue Viability 2017, 26, 202–207. [Google Scholar] [CrossRef] [PubMed]
- Haque, M.A.; Jantan, I. Recent Updates on the Phytochemistry, Pharmacological, and Toxicological Activities of Zingiber zerumbet (L.) Roscoe ex Sm. Curr. Pharm. Biotechnol. 2017, 18, 696–720. [Google Scholar] [CrossRef] [PubMed]
- Sidahmed, H.M.A.; Hashim, N.M.; Abdulla, M.A.; Ali, H.M.; Mohan, S.; Abdelwahab, S.I.; Taha, M.M.E.; Fai, L.M.; Vadivelu, J. Antisecretory, gastroprotective, antioxidant and anti-Helicobcter pylori activity of zerumbone from Zingiber zerumbet (L.) Smith. PLoS ONE 2015, 10, e0121060. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petersen, P.E. Strengthening of oral health systems: Oral health through primary health care. Med. Princ. Pract. 2014, 23, 3–9. [Google Scholar] [CrossRef] [PubMed]
- Pasril, Y.; Yuliasanti, A. Anti-Bacterial Power of Red Batel Leaves (Piper Crocatum) to Enterococcus Faecalis Bacteria as Medi. Insisiva Dent. J. 2014, 3, 88–95. [Google Scholar]
- Sam, M.F.R.; Hamid, A.; Ghazali, A.R.; Louis, S.R.; Budin, S.B. Protective effects of zingiber zerumbet ethyl acetate extract on hydrogen peroxide-induced damage of red blood cells. Sains Malays. 2019, 48, 781–790. [Google Scholar]
- Rizvi, A.; Saeed, M.U.; Nadeem, A.; Yaqoob, A.; Rabaan, A.A.; Bakhrebah, M.A.; Al Mutair, A.; Alhumaid, S.; Aljeldah, M.; Al Shammari, B.R.; et al. Evaluation of Bi-Lateral Co-Infections and Antibiotic Resistance Rates among COVID-19 Patients in Lahore, Pakistan. Medicina 2022, 58, 904. [Google Scholar] [CrossRef]
- Rabaan, A.A.; Alhumaid, S.; Mutair, A.A.; Garout, M.; Abulhamayel, Y.; Halwani, M.A.; Alestad, J.H.; Bshabshe, A.A.; Sulaiman, T.; AlFonaisan, M.K. Application of Artificial Intelligence in Combating High Antimicrobial Resistance Rates. Antibiotics 2022, 11, 784. [Google Scholar] [CrossRef]
- Zeb, S.; Mushtaq, M.; Ahmad, M.; Saleem, W.; Rabaan, A.A.; Naqvi, B.S.Z.; Garout, M.; Aljeldah, M.; Al Shammari, B.R.; Al Faraj, N.J. Self-Medication as an Important Risk Factor for Antibiotic Resistance: A Multi-Institutional Survey among Students. Antibiotics 2022, 11, 842. [Google Scholar] [CrossRef]
- Ahmed, N.; Zeshan, B.; Naveed, M.; Afzal, M.; Mohamed, M. Antibiotic resistance profile in relation to virulence genes fimH, hlyA and usp of uropathogenic E. coli isolates in Lahore, Pakistan. Trop. Biomed. 2019, 36, 559–568. [Google Scholar] [PubMed]
- Hussain, S.; Zeshan, B.; Arshad, R.; Kabir, S.; Ahmed, N. MRSA Clinical Isolates Harboring mecC Gene Imply Zoonotic Transmission to Humans and Colonization by Biofilm Formation. Pakistan J. Zool. 2022. [Google Scholar] [CrossRef]
- Ahmed, N.; Khalid, H.; Mushtaq, M.; Basha, S.; Rabaan, A.A.; Garout, M.; Halwani, M.A.; Al Mutair, A.; Alhumaid, S.; Al Alawi, Z. The Molecular Characterization of Virulence Determinants and Antibiotic Resistance Patterns in Human Bacterial Uropathogens. Antibiotics 2022, 11, 516. [Google Scholar] [CrossRef]
- Parveen, S.; Saqib, S.; Ahmed, A.; Shahzad, A.; Ahmed, N. Prevalence of MRSA colonization among healthcare-workers and effectiveness of decolonization regimen in ICU of a Tertiary care Hospital, Lahore, Pakistan. Adv. Life Sci. 2020, 8, 38–41. [Google Scholar]
- Ahmed, N.; Ali, Z.; Riaz, M.; Zeshan, B.; Wattoo, J.I.; Aslam, M.N. Evaluation of antibiotic resistance and virulence genes among clinical isolates of Pseudomonas aeruginosa from cancer patients. Asian Pac. J. Cancer Prev. APJCP 2020, 21, 1333. [Google Scholar] [CrossRef] [PubMed]
- Abubakar, A.R.; Haque, M. Preparation of medicinal plants: Basic extraction and fractionation procedures for experimental purposes. J. Pharm. Bioallied Sci. 2020, 12, 1. [Google Scholar] [CrossRef]
- Pereira, C.; Barros, L.; Ferreira, I.C. Extraction, identification, fractionation and isolation of phenolic compounds in plants with hepatoprotective effects. J. Sci. Food Agric. 2016, 96, 1068–1084. [Google Scholar] [CrossRef] [PubMed]
- Swargiary, A.; Verma, A.K.; Singh, S.; Roy, M.K.; Daimari, M. Antioxidant and antiproliferative activity of selected medicinal plants of lower Assam, India: An in vitro and in silico study. Anti-Cancer Agents Med. Chem. 2021, 21, 267–277. [Google Scholar] [CrossRef]
- Ling, J.W.A.; Chang, L.S.; Mohd Khalid, R.; Wan Mustapha, W.A.; Sofian-Seng, N.S.; Mohd Razali, N.S.; Rahman, H.A.; Mohd Zaini, N.A.; Lim, S.J.; Preservation. Sequential extraction of red button ginger (Costus woodsonii): Phytochemical screening and antioxidative activities. J. Food Processing 2020, 44, e14776. [Google Scholar] [CrossRef]
- Yahaya, T.; Mungadi, A.; Obadiah, C. Phytoconstituent Screening of roselle (Hibiscus sabdariffa), moringa (Moringa oleifera), ginger (Zingiber officinale) and fluted pumpkin (Telfairia occidentalis) leaves. J. Appl. Sci. Environ. Manag. 2017, 21, 253–256. [Google Scholar] [CrossRef] [Green Version]
- Othman, L.; Sleiman, A.; Abdel-Massih, R.M. Antimicrobial activity of polyphenols and alkaloids in middle eastern plants. Front. Microbiol. 2019, 10, 911. [Google Scholar] [CrossRef]
- De Zoysa, M.H.N.; Rathnayake, H.; Hewawasam, R.P.; Wijayaratne, W.M.D.G.B. Determination of in vitro antimicrobial activity of five Sri Lankan medicinal plants against selected human pathogenic bacteria. Int. J. Microbiol. 2019, 2019, 7431439. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramzan, M.; Karobari, M.I.; Heboyan, A.; Mohamed, R.N.; Mustafa, M.; Basheer, S.N.; Desai, V.; Batool, S.; Ahmed, N.; Zeshan, B. Synthesis of silver nanoparticles from extracts of wild ginger (Zingiber zerumbet) with antibacterial activity against selective multidrug resistant oral bacteria. Molecules 2022, 27, 2007. [Google Scholar] [CrossRef]
- Clinical Laboratory Standard Institute. Performance Standards for Antimicrobial Susceptibility Testing, 27th ed.; CLSI Supplement M100; CLSI: Wayne, PA, USA, 2017. [Google Scholar]
- Ashour, M.L.; Youssef, F.S.; Gad, H.A.; El-Readi, M.Z.; Bouzabata, A.; Abuzeid, R.M.; Sobeh, M.; Wink, M. Evidence for the anti-inflammatory activity of Bupleurum marginatum (Apiaceae) extracts using in vitro and in vivo experiments supported by virtual screening. J. Pharm. Pharmacol. 2018, 70, 952–963. [Google Scholar] [CrossRef]
- Zakaria, Z.; Mohamad, A.; Chear, C.; Wong, Y.; Israf, D.; Sulaiman, M. Antiinflammatory and antinociceptive activities of Zingiber zerumbet methanol extract in experimental model systems. Med. Princ. Pract. 2010, 19, 287–294. [Google Scholar] [CrossRef]
- Fayaz, A.M.; Balaji, K.; Girilal, M.; Yadav, R.; Kalaichelvan, P.T.; Venketesan, R. Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: A study against gram-positive and gram-negative bacteria. Nanomed. Nanotechnol. Biol. Med. 2010, 6, 103–109. [Google Scholar] [CrossRef] [PubMed]
- Hashemi, S.; Zulkifli, I.; Hair Bejo, M.; Farida, A.; Somchit, M. Acute toxicity study and phytochemical screening of selected herbal aqueous extract in broiler chickens. Int. J. Pharm. 2008, 4, 352–360. [Google Scholar] [CrossRef] [Green Version]
- Kader, M.G.; Habib, M.R.; Nikkon, F.; Yeasmin, T.; Rashid, M.A.; Rahman, M.M.; Gibbons, S. Zederone from the rhizomes of Zingiber zerumbet and its anti-staphylococcal activity. Boletín Latinoam. Caribe Plantas Med. Aromáticas 2010, 9, 63–68. [Google Scholar]
- Reginato, F.Z.; da Silva, A.R.H.; de Freitas Bauermann, L. Evaluation of the flavonoides use in the treatment of the inflammation. Rev. Cuba. Farm. 2015, 49, 569–582. [Google Scholar]
- Liu, X.; Jia, J.; Jing, X.; Li, G. Antioxidant activities of extracts from sarcocarp of Cotoneaster multiflorus. J. Chem. 2018, 2018, 4619768. [Google Scholar] [CrossRef]
Phytochemical Analysis | Ethanol | Aqueous |
---|---|---|
Tannins | − | + |
Terpenoids | + | + |
Saponin | + | + |
Cardiac glycoside | + | + |
Quinones | − | − |
Flavonoids | + | − |
Alkaloids | + | + |
Plant Name | Phenolic and Flavonoid Compounds | Retention Time | Area% | Wavelength nm | mg/g |
---|---|---|---|---|---|
ZZAE | Benzoic acid | 12.818 | 2.5772 | 280 | 7.289 ± 0.85 |
Gallic acid | 7.02 | 0.7234 | 0.265 ± 0.41 | ||
Sinapic acid | 11.662 | 0.5014 | 0.22 ± 0.03 | ||
Caffeic acid | 10.553 | 2.3629 | 0.399 ± 0.04 | ||
Chlorogenic acid | 9.45 | 16.9286 | 12.224 ± 0.83 | ||
Kaempferol | 4.597 | 0.0637 | 360 | 0.084 ± 0.14 | |
Quercetin | 3.422 | 0.3127 | 0.054 ± 0.05 | ||
Myricetin | 2.645 | 26.8044 | 0.166 ± 0.11 | ||
ZZEE | Benzoic acid | 280 | ND | ||
Gallic acid | 7.157 | 9.4886 | 0.397 ± 0.04 | ||
Sinapic acid | 11.771 | 3.1307 | 0.936 ± 0.05 | ||
Caffeic acid | 10.329 | 1.8612 | 0.14 ± 0.003 | ||
Chlorogenic acid | 9.418 | 16.6717 | 3.404 ± 0.76 | ||
Kaempferol | 4.605 | 0.4576 | 360 | 0.054 ± 0.005 | |
Quercetin | 3.444 | 0.7825 | 0.042 ± 0.006 | ||
Myricetin | 2.993 | 39.3486 | 0.367 ± 0.04 |
Phenolic and Flavonoid Compounds | Retention Time | Wavelength (nm) |
---|---|---|
Benzoic acid | 12.97 | 280 |
Gallic acid | 7.03 | |
Sinapic acid | 11.58 | |
Caffeic acid | 10.36 | |
Chlorogenic acid | 9.37 | |
Kaempferol | 4.46 | 360 |
Quercetin | 3.51 | |
Myricetin | 2.84 |
Bacterial Strains | Zone of Inhibition (mm) Means ± SD | |||||
---|---|---|---|---|---|---|
Without Bitter Ginger Extracts | With Bitter Ginger Aqueous Extracts | |||||
CIP | TE | C | CIP | TE | C | |
Lactobacillus acidophilus | 18 ± 0.51 (R) | 20 ± 0.48 (R) | 14 ± 0.56 (R) | 21 ± 0.51 (S) | 24 ± 0.51 (S) | 18 ± 0.48 (R) |
Streptococcus mutans | 18 ± 0.51 (R) | 21 ± 0.48 (R) | 16 ± 0.56 (R) | 21 ± 0.51 (S) | 24 ± 0.51 (S) | 20 ± 0.46 (R) |
Enterococcus faecalis | 17 ± 0.51 (R) | 19 ± 0.48 (R) | 14 ± 0.56 (R) | 19 ± 0.46 (R) | 23 ± 0.5 (S) | 17 ± 0.47 (R) |
Staphylococcus aureus | 15 ± 0.51 (R) | 20 ± 0.48 (R) | 18 ± 0.56 (R) | 17 ± 0.46 (R) | 24 ± 0.51 (S) | 22 ± 0.50 (S) |
Bacterial Strains | Zone of Inhibition (mm) Means ± SD | |||||
---|---|---|---|---|---|---|
Without Bitter Ginger Extracts | With Bitter Ginger Ethanolic Extracts | |||||
CIP | TE | C | CIP | TE | C | |
Lactobacillus acidophilus | 18 ± 0.51 (R) | 20 ± 0.48 (R) | 14 ± 0.56 (R) | 22.1 ± 0.76 (S) | 25.5 ± 0.5 (S) | 20.3 ± 0.57 (R) |
Streptococcus mutans | 18 ± 0.51 (R) | 21 ± 0.48 (R) | 16 ± 0.56 (R) | 23 ± 0.5 (S) | 25.3 ± 0.28 (S) | 22.8 ± 0.76 (S) |
Enterococcus faecalis | 17 ± 0.51 (R) | 19 ± 0.48 (R) | 14 ± 0.56 (R) | 21 ± 0.5 (S) | 24 ± 0.5 (S) | 20.5 ± 0.5 (R) |
Staphylococcus aureus | 15 ± 0.51 (R) | 20 ± 0.48 (R) | 18 ± 0.56 (R) | 20 ± 0.5 (S) | 25.8 ± 0.76 (S) | 22.5 ± 0.5 (S) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramzan, M.; Zeshan, B. Assessment of the Phytochemical Analysis and Antimicrobial Potentials of Zingiber zerumbet. Molecules 2023, 28, 409. https://doi.org/10.3390/molecules28010409
Ramzan M, Zeshan B. Assessment of the Phytochemical Analysis and Antimicrobial Potentials of Zingiber zerumbet. Molecules. 2023; 28(1):409. https://doi.org/10.3390/molecules28010409
Chicago/Turabian StyleRamzan, Muhammad, and Basit Zeshan. 2023. "Assessment of the Phytochemical Analysis and Antimicrobial Potentials of Zingiber zerumbet" Molecules 28, no. 1: 409. https://doi.org/10.3390/molecules28010409
APA StyleRamzan, M., & Zeshan, B. (2023). Assessment of the Phytochemical Analysis and Antimicrobial Potentials of Zingiber zerumbet. Molecules, 28(1), 409. https://doi.org/10.3390/molecules28010409