Effects of Histamine and the α-Tocopherol Metabolite α-13′-COOH in an Atopic Dermatitis Full-Thickness Skin Model
Abstract
:1. Introduction
2. Results
2.1. The Role of Histamine in an Atopic Dermatitis Cytokine Milieu
2.1.1. Histamine Enhances Proliferation in Healthy and Atopic Dermatitis Keratinocytes
2.1.2. Histamine Induces Hyperproliferation in Atopic Dermatitis Skin Models and Enhances Inflammation
2.2. Anti-Allergic and Anti-Inflammatory Effects of α-13’-COOH
2.2.1. α-13′-COOH Mediates Anti-Allergic Effects in Leukocytes
2.2.2. α-13′-COOH Affects Skin Barrier Integrity in Atopic Dermatitis Skin Models and Reduces Inflammation
3. Discussion
4. Materials and Methods
4.1. Test Substance
4.2. Primary Keratinocytes and HaCaT Culture
4.3. Scratch Wound Assay
4.4. Cell Culture for Analysis of Gene Expression and Cytokine Secretion
4.5. Cultivation of Full-Thickness Skin Models
4.6. Treatment of Full-Thickness Skin Models
4.7. Determination of Cell Viability and Cytotoxicity
4.8. Determination of Cytokine Levels
4.9. RNA Isolation, cDNA Synthesis and Quantitative Real-Time PCR (RT-qPCR)
4.10. Determination of Cellular Antigen Stimulation and Specific Anti-Allergic Effects
4.11. Determination of Basophil Activation
4.12. Histological Preparation, Immunohistochemical Staining and Skin Permeability
4.13. Statistical Analyses
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Asher, M.I.; Montefort, S.; Björkstén, B.; Lai, C.K.; Strachan, D.P.; Weiland, S.K.; Williams, H. Worldwide Time Trends in the Prevalence of Symptoms of Asthma, Allergic Rhinoconjunctivitis, and Eczema in Childhood: ISAAC Phases One and Three Repeat Multicountry Cross-Sectional Surveys. Lancet 2006, 368, 733–743. [Google Scholar] [CrossRef]
- Lloyd-Lavery, A.; Solman, L.; Grindlay, D.J.C.; Rogers, N.K.; Thomas, K.S.; Harman, K.E. What’s New in Atopic Eczema? An Analysis of Systematic Reviews Published in 2016. Part 2: Epidemiology, Aetiology and Risk Factors. Clin. Exp. Dermatol. 2019, 44, 370–375. [Google Scholar] [CrossRef] [Green Version]
- Silverberg, J.I. Associations between Atopic Dermatitis and Other Disorders. F1000Research 2018, 7, 303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silverberg, N.B.; Silverberg, J.I. Inside out or Outside in: Does Atopic Dermatitis Disrupt Barrier Function or Does Disruption of Barrier Function Trigger Atopic Dermatitis? Cutis 2015, 96, 359–361. [Google Scholar] [PubMed]
- Buys, L.M. Treatment Options for Atopic Dermatitis. Am. Fam. Phys. 2007, 75, 523–528. [Google Scholar]
- Burgess, J.A.; Dharmage, S.C.; Byrnes, G.B.; Matheson, M.C.; Gurrin, L.C.; Wharton, C.L.; Johns, D.P.; Abramson, M.J.; Hopper, J.L.; Walters, E.H. Childhood Eczema and Asthma Incidence and Persistence: A Cohort Study from Childhood to Middle Age. J. Allergy Clin. Immunol. 2008, 122, 280–285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dharmage, S.C.; Lowe, A.J.; Matheson, M.C.; Burgess, J.A.; Allen, K.J.; Abramson, M.J. Atopic Dermatitis and the Atopic March Revisited. Allergy 2014, 69, 17–27. [Google Scholar] [CrossRef] [PubMed]
- Abbas, M.; Moussa, M.; Akel, H. Type I Hypersensitivity Reaction. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- La Rosa, M.; Ranno, C.; Musarra, I.; Guglielmo, F.; Corrias, A.; Bellanti, J.A. Double-Blind Study of Cetirizine in Atopic Eczema in Children. Ann. Allergy 1994, 73, 117–122. [Google Scholar]
- Damsgaard, T.E.; Olesen, A.B.; Sørensen, F.B.; Thestrup-Pedersen, K.; Schiøtz, P.O. Mast Cells and Atopic Dermatitis. Stereological Quantification of Mast Cells in Atopic Dermatitis and Normal Human Skin. Arch. Dermatol. Res. 1997, 289, 256–260. [Google Scholar] [CrossRef]
- Imaizumi, A.; Kawakami, T.; Murakami, F.; Soma, Y.; Mizoguchi, M. Effective Treatment of Pruritus in Atopic Dermatitis Using H1 Antihistamines (Second-Generation Antihistamines): Changes in Blood Histamine and Tryptase Levels. J. Dermatol. Sci. 2003, 33, 23–29. [Google Scholar] [CrossRef] [PubMed]
- Johnson, H.H.; Deoreo, G.A.; Lascheid, W.P.; Mitchell, F. Skin Histamine Levels in Chronic Atopic Dermatitis. J. Investig. Dermatol. 1960, 34, 237–238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gschwandtner, M.; Mildner, M.; Mlitz, V.; Gruber, F.; Eckhart, L.; Werfel, T.; Gutzmer, R.; Elias, P.M.; Tschachler, E. Histamine Suppresses Epidermal Keratinocyte Differentiation and Impairs Skin Barrier Function in a Human Skin Model. Allergy 2013, 68, 37–47. [Google Scholar] [CrossRef]
- Murata, S.; Kaneko, S.; Morita, E. Interleukin-8 Levels in the Stratum Corneum as a Biomarker for Monitoring Therapeutic Effect in Atopic Dermatitis Patients. Int. Arch. Allergy Immunol. 2021, 182, 592–606. [Google Scholar] [CrossRef] [PubMed]
- Amarbayasgalan, T.; Takahashi, H.; Dekio, I.; Morita, E. Interleukin-8 Content in the Stratum Corneum as an Indicator of the Severity of Inflammation in the Lesions of Atopic Dermatitis. Int. Arch. Allergy Immunol. 2013, 160, 63–74. [Google Scholar] [CrossRef]
- Kimata, H.; Lindley, I. Detection of Plasma Interleukin-8 in Atopic Dermatitis. Arch. Dis. Child. 1994, 70, 119–122. [Google Scholar] [CrossRef] [Green Version]
- Drannik, G.; Kurchenko, A.; Kurchenko, I.; Dubuske, L. Effect of Cetirizine on Serum IL-8 Levels in Patients with Atopic Dermatitis. J. Allergy Clin. Immunol. 2008, 121, S36. [Google Scholar] [CrossRef]
- Öztürk, P.; Aral, M.; Kurutaș, E.B.; Kİreççİ, E.; Çelİk, M. Serum Levels of IL-8, Tnf-α and IL-6 in Children with Atopic Dermatitis. J. Curr. Pediatr. 2012, 10, 50–54. [Google Scholar]
- Javanbakht, M.H.; Keshavarz, S.A.; Djalali, M.; Siassi, F.; Eshraghian, M.R.; Firooz, A.; Seirafi, H.; Ehsani, A.H.; Chamari, M.; Mirshafiey, A. Randomized Controlled Trial Using Vitamins E and D Supplementation in Atopic Dermatitis. J. Dermatol. Treat. 2011, 22, 144–150. [Google Scholar] [CrossRef] [PubMed]
- Fogarty, A.; Lewis, S.; Weiss, S.; Britton, J. Dietary Vitamin E, IgE Concentrations, and Atopy. Lancet 2000, 356, 1573–1574. [Google Scholar] [CrossRef]
- Wallert, M.; Mosig, S.; Rennert, K.; Funke, H.; Ristow, M.; Pellegrino, R.M.; Cruciani, G.; Galli, F.; Lorkowski, S.; Birringer, M. Long-Chain Metabolites of α-Tocopherol Occur in Human Serum and Inhibit Macrophage Foam Cell Formation in Vitro. Free Radic. Biol. Med. 2014, 68, 43–51. [Google Scholar] [CrossRef]
- Kenne Michel, T.; Arua Ottoh, A.; Christopher Emeka Chukwunonye, U.; Christopher Obodoike, E.; Christopher, O.; Maurice Mmaduakolam, I. Bio-Flavonoids and Garcinoic Acid from Garcinia Kola Seeds with Promising Anti-Inflammatory Potentials. Pharmacogn. J. 2015, 8, 56–58. [Google Scholar] [CrossRef] [Green Version]
- Terashima, K.; Takaya, Y.; Niwa, M. Powerful Antioxidative Agents Based on Garcinoic Acid from Garcinia Kola. Bioorganic Med. Chem. 2002, 10, 1619–1625. [Google Scholar] [CrossRef] [PubMed]
- Jang, Y.; Park, N.-Y.; Rostgaard-Hansen, A.L.; Huang, J.; Jiang, Q. Vitamin E Metabolite 13′-Carboxychromanols Inhibit pro-Inflammatory Enzymes, Induce Apoptosis and Autophagy in Human Cancer Cells by Modulating Sphingolipids and Suppress Colon Tumor Development in Mice. Free Radic. Biol. Med. 2016, 95, 190–199. [Google Scholar] [CrossRef]
- Jiang, Z.; Yin, X.; Jiang, Q. Natural Forms of Vitamin E and 13′-Carboxychromanol, a Long-Chain Vitamin E Metabolite, Inhibit Leukotriene Generation from Stimulated Neutrophils by Blocking Calcium Influx and Suppressing 5-Lipoxygenase Activity, Respectively. J. Immunol. 2011, 186, 1173–1179. [Google Scholar] [CrossRef] [Green Version]
- Pein, H.; Ville, A.; Pace, S.; Temml, V.; Garscha, U.; Raasch, M.; Alsabil, K.; Viault, G.; Dinh, C.-P.; Guilet, D.; et al. Endogenous Metabolites of Vitamin E Limit Inflammation by Targeting 5-Lipoxygenase. Nat. Commun. 2018, 9, 3834. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sandilands, A.; Sutherland, C.; Irvine, A.D.; McLean, W.H.I. Filaggrin in the Frontline: Role in Skin Barrier Function and Disease. J. Cell Sci. 2009, 122, 1285–1294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schubert, M.; Kluge, S.; Brunner, E.; Pace, S.; Birringer, M.; Werz, O.; Lorkowski, S. The α-Tocopherol-Derived Long-Chain Metabolite α-13′-COOH Mediates Endotoxin Tolerance and Modulates the Inflammatory Response via MAPK and NFκB Pathways. Free Radic. Biol. Med. 2022, 178, 83–96. [Google Scholar] [CrossRef] [PubMed]
- Wallert, M.; Schmölz, L.; Koeberle, A.; Krauth, V.; Glei, M.; Galli, F.; Werz, O.; Birringer, M.; Lorkowski, S. α-Tocopherol Long-Chain Metabolite α-13’-COOH Affects the Inflammatory Response of Lipopolysaccharide-Activated Murine RAW264.7 Macrophages. Mol. Nutr. Food Res. 2015, 59, 1524–1534. [Google Scholar] [CrossRef]
- do Nascimento Pedrosa, T.; De Vuyst, E.; Mound, A.; Lambert de Rouvroit, C.; Maria-Engler, S.S.; Poumay, Y. Methyl-β-Cyclodextrin Treatment Combined to Incubation with Interleukin-4 Reproduces Major Features of Atopic Dermatitis in a 3D-Culture Model. Arch. Dermatol. Res. 2017, 309, 63–69. [Google Scholar] [CrossRef]
- Hsu, C.-Y.; Lecland, N.; Pendaries, V.; Viodé, C.; Redoulès, D.; Paul, C.; Merdes, A.; Simon, M.; Bierkamp, C. Stabilization of Microtubules Restores Barrier Function after Cytokine-Induced Defects in Reconstructed Human Epidermis. J. Dermatol. Sci. 2018, 91, 87–96. [Google Scholar] [CrossRef] [Green Version]
- Huet, F.; Severino-Freire, M.; Chéret, J.; Gouin, O.; Praneuf, J.; Pierre, O.; Misery, L.; Le Gall-Ianotto, C. Reconstructed Human Epidermis for in Vitro Studies on Atopic Dermatitis: A Review. J. Dermatol. Sci. 2018, 89, 213–218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bao, L.; Shi, V.Y.; Chan, L.S. IL-4 Regulates Chemokine CCL26 in Keratinocytes through the Jak1, 2/Stat6 Signal Transduction Pathway: Implication for Atopic Dermatitis. Mol. Immunol. 2012, 50, 91–97. [Google Scholar] [CrossRef]
- Kamsteeg, M.; Bergers, M.; de Boer, R.; Zeeuwen, P.L.J.M.; Hato, S.V.; Schalkwijk, J.; Tjabringa, G.S. Type 2 Helper T-Cell Cytokines Induce Morphologic and Molecular Characteristics of Atopic Dermatitis in Human Skin Equivalent. Am. J. Pathol. 2011, 178, 2091–2099. [Google Scholar] [CrossRef] [PubMed]
- Rilla, K.; Siiskonen, H.; Spicer, A.P.; Hyttinen, J.M.T.; Tammi, M.I.; Tammi, R.H. Plasma Membrane Residence of Hyaluronan Synthase Is Coupled to Its Enzymatic Activity. J. Biol. Chem. 2005, 280, 31890–31897. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malaisse, J.; Bourguignon, V.; De Vuyst, E.; Lambert de Rouvroit, C.; Nikkels, A.F.; Flamion, B.; Poumay, Y. Hyaluronan Metabolism in Human Keratinocytes and Atopic Dermatitis Skin Is Driven by a Balance of Hyaluronan Synthases 1 and 3. J. Investig. Dermatol. 2014, 134, 2174–2182. [Google Scholar] [CrossRef] [Green Version]
- Ohtani, T.; Memezawa, A.; Okuyama, R.; Sayo, T.; Sugiyama, Y.; Inoue, S.; Aiba, S. Increased Hyaluronan Production and Decreased E-Cadherin Expression by Cytokine-Stimulated Keratinocytes Lead to Spongiosis Formation. J. Investig. Dermatol. 2009, 129, 1412–1420. [Google Scholar] [CrossRef] [Green Version]
- Glatzer, F.; Gschwandtner, M.; Ehling, S.; Rossbach, K.; Janik, K.; Klos, A.; Bäumer, W.; Kietzmann, M.; Werfel, T.; Gutzmer, R. Histamine Induces Proliferation in Keratinocytes from Patients with Atopic Dermatitis through the Histamine 4 Receptor. J. Allergy Clin. Immunol. 2013, 132, 1358–1367. [Google Scholar] [CrossRef] [Green Version]
- Giustizieri, M.L.; Albanesi, C.; Fluhr, J.; Gisondi, P.; Norgauer, J.; Girolomoni, G. H1 Histamine Receptor Mediates Inflammatory Responses in Human Keratinocytes. J. Allergy Clin. Immunol. 2004, 114, 1176–1182. [Google Scholar] [CrossRef]
- Wood, A.J.J.; Simons, F.E.R.; Simons, K.J. The Pharmacology and Use of H1-Receptor-Antagonist Drugs. N. Engl. J. Med. 1994, 330, 1663–1670. [Google Scholar] [CrossRef]
- Waller, D.G.; Sampson, A.P. 39-Antihistamines and Allergic Disease. In Medical Pharmacology and Therapeutics, 5th ed.; Waller, D.G., Sampson, A.P., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 451–456. ISBN 978-0-7020-7167-6. [Google Scholar]
- Horio, S.; Fujimoto, K.; Mizuguchi, H.; Fukui, H. Interleukin-4 up-Regulates Histamine H1 Receptors by Activation of H1 Receptor Gene Transcription. Naunyn-Schmied. Arch. Pharmacol. 2010, 381, 305–313. [Google Scholar] [CrossRef]
- Hou, Y.; Zhou, Y.; Zheng, X.; Wang, H.; Fu, Y.; Fang, Z.; He, S. Modulation of Expression and Function of Toll-like Receptor 3 in A549 and H292 Cells by Histamine. Mol. Immunol. 2006, 43, 1982–1992. [Google Scholar] [CrossRef] [PubMed]
- Marone, G.; Gentile, M.; Petraroli, A.; De Rosa, N.; Triggiani, M. Histamine-Induced Activation of Human Lung Macrophages. Int. Arch. Allergy Immunol. 2001, 124, 249–252. [Google Scholar] [CrossRef] [PubMed]
- Park, I.-H.; Um, J.-Y.; Cho, J.-S.; Lee, S.H.; Lee, S.H.; Lee, H.-M. Histamine Promotes the Release of Interleukin-6 via the H1R/P38 and NF-ΚB Pathways in Nasal Fibroblasts. Allergy Asthma Immunol. Res. 2014, 6, 567. [Google Scholar] [CrossRef]
- Triggiani, M.; Gentile, M.; Secondo, A.; Granata, F.; Oriente, A.; Taglialatela, M.; Annunziato, L.; Marone, G. Histamine Induces Exocytosis and IL-6 Production from Human Lung Macrophages Through Interaction with H 1 Receptors. J. Immunol. 2001, 166, 4083–4091. [Google Scholar] [CrossRef] [Green Version]
- Matsubara, M.; Tamura, T.; Ohmori, K.; Hasegawa, K. Histamine H1 Receptor Antagonist Blocks Histamine-Induced Proinflammatory Cytokine Production through Inhibition of Ca2+-Dependent Protein Kinase C, Raf/MEK/ERK and IKK/IκB/NF-ΚB Signal Cascades. Biochem. Pharmacol. 2005, 69, 433–449. [Google Scholar] [CrossRef]
- Zhang, J.; Bai, C. Elevated Serum Interleukin-8 Level as a Preferable Biomarker for Identifying Uncontrolled Asthma and Glucocorticosteroid Responsiveness. Tanaffos 2017, 16, 260–269. [Google Scholar]
- Farci, F.; Mahabal, G.D. Hyperkeratosis. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Gutowska-Owsiak, D.; Selvakumar, T.A.; Salimi, M.; Taylor, S.; Ogg, G.S. Histamine Enhances Keratinocyte-Mediated Resolution of Inflammation by Promoting Wound Healing and Response to Infection. Clin. Exp. Dermatol. 2014, 39, 187–195. [Google Scholar] [CrossRef] [PubMed]
- Ran, L.; Tan, W.; Tan, S.; Zhang, R.; Wang, W. Effects of histamine on proliferation, apoptosis and differentiation of human keratinocytes. Di Yi Jun Yi Da Xue Xue Bao 2005, 25, 1286–1289. [Google Scholar]
- Yang, Y.; Yoo, H.M.; Choi, I.; Pyun, K.H.; Byun, S.M.; Ha, H. Interleukin 4-Induced Proliferation in Normal Human Keratinocytes Is Associated with c-Myc Gene Expression and Inhibited by Genistein. J. Investig. Dermatol. 1996, 107, 367–372. [Google Scholar] [CrossRef] [Green Version]
- Serezani, A.P.M.; Bozdogan, G.; Sehra, S.; Walsh, D.; Krishnamurthy, P.; Sierra Potchanant, E.A.; Nalepa, G.; Goenka, S.; Turner, M.J.; Spandau, D.F.; et al. IL-4 Impairs Wound Healing Potential in the Skin by Repressing Fibronectin Expression. J. Allergy Clin. Immunol. 2017, 139, 142–151.e5. [Google Scholar] [CrossRef] [Green Version]
- Salmon-Ehr, V.; Ramont, L.; Godeau, G.; Birembaut, P.; Guenounou, M.; Bernard, P.; Maquart, F.-X. Implication of Interleukin-4 in Wound Healing. Lab. Invest. 2000, 80, 1337–1343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, Y.; Bao, L.; Chan, L.S.; DiPietro, L.A.; Chen, L. Aberrant Wound Healing in an Epidermal Interleukin-4 Transgenic Mouse Model of Atopic Dermatitis. PLoS ONE 2016, 11, e0146451. [Google Scholar] [CrossRef] [PubMed]
- Gittler, J.K.; Shemer, A.; Suárez-Fariñas, M.; Fuentes-Duculan, J.; Gulewicz, K.J.; Wang, C.Q.F.; Mitsui, H.; Cardinale, I.; de Guzman Strong, C.; Krueger, J.G.; et al. Progressive Activation of TH2/TH22 Cytokines and Selective Epidermal Proteins Characterizes Acute and Chronic Atopic Dermatitis. J. Allergy Clin. Immunol. 2012, 130, 1344–1354. [Google Scholar] [CrossRef] [Green Version]
- Tsoi, L.C.; Rodriguez, E.; Stölzl, D.; Wehkamp, U.; Sun, J.; Gerdes, S.; Sarkar, M.K.; Hübenthal, M.; Zeng, C.; Uppala, R.; et al. Progression of Acute-to-Chronic Atopic Dermatitis Is Associated with Quantitative Rather than Qualitative Changes in Cytokine Responses. J. Allergy Clin. Immunol. 2020, 145, 1406–1415. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grewe, M.; Walther, S.; Gyufko, K.; Czech, W.; Schöpf, E.; Krutmann, J. Analysis of the Cytokine Pattern Expressed In Situ in Inhalant Allergen Patch Test Reactions of Atopic Dermatitis Patients. J. Investig. Dermatol. 1995, 105, 407–410. [Google Scholar] [CrossRef] [PubMed]
- Grewe, M.; Gyufko, K.; Schöpf, E.; Krutmann, J. Lesional Expression of Interferon-γ in Atopic Eczema. Lancet 1994, 343, 25–26. [Google Scholar] [CrossRef]
- Thepen, T.; Langeveldwildschut, E.; Bihari, I.; Wichen, D.; Reijsen, F.; Mudde, G.; Bruijnzeelkoomen, C. Biphasic Response against Aeroallergen in Atopic Dermatitis Showing a Switch from an Initial TH2 Response to a TH1 Response in Situ: An Immunocytochemical Study. J. Allergy Clin. Immunol. 1996, 97, 828–837. [Google Scholar] [CrossRef]
- Fujimoto, S.; Komine, M.; Karakawa, M.; Uratsuji, H.; Kagami, S.; Tada, Y.; Saeki, H.; Ohtsuki, M.; Tamaki, K. Histamine Differentially Regulates the Production of Th1 and Th2 Chemokines by Keratinocytes through Histamine H1 Receptor. Cytokine 2011, 54, 191–199. [Google Scholar] [CrossRef]
- Park, N.-Y.; Im, S.; Jiang, Q. Different Forms of Vitamin E and Metabolite 13’-Carboxychromanols Inhibit Cyclooxygenase-1 and Its Catalyzed Thromboxane in Platelets, and Tocotrienols and 13’-Carboxychromanols Are Competitive Inhibitors of 5-Lipoxygenase. J. Nutr. Biochem. 2022, 100, 108884. [Google Scholar] [CrossRef]
- Soter, N.A.; Lewis, R.A.; Corey, E.J.; Austen, K.F. Local Effects of Synthetic Leukotrienes (LTC4, LTD4, and LTB4) in Human Skin. J. Investig. Dermatol. 1983, 80, 115–119. [Google Scholar] [CrossRef] [Green Version]
- Lazarus, S.C.; Lee, T.; Kemp, J.P.; Wenzel, S.; Dubé, L.M.; Ochs, R.F.; Carpentier, P.J.; Lancaster, J.F. Safety and Clinical Efficacy of Zileuton in Patients with Chronic Asthma. Am. J. Manag. Care 1998, 4, 841–848. [Google Scholar] [PubMed]
- Woodruff, P.G.; Albert, R.K.; Bailey, W.C.; Casaburi, R.; Connett, J.E.; Cooper, J.A.D.; Criner, G.J.; Curtis, J.L.; Dransfield, M.T.; Han, M.K.; et al. Randomized Trial of Zileuton for Treatment of COPD Exacerbations Requiring Hospitalization. COPD J. Chronic Obstr. Pulm. Dis. 2011, 8, 21–29. [Google Scholar] [CrossRef] [PubMed]
- Niwa, M.; Terashima, K.; Shimamura, T.; Tanabayashi, M.; Aqil, M.; Akinniyi, J.A. Constituents of the Seeds of Garcinia Kola: Two New Antioxidants, Garcinoic Acid and Garcinal. Heterocycles 1997, 45, 1559. [Google Scholar] [CrossRef]
- Birringer, M.; Lington, D.; Vertuani, S.; Manfredini, S.; Scharlau, D.; Glei, M.; Ristow, M. Proapoptotic Effects of Long-Chain Vitamin E Metabolites in HepG2 Cells Are Mediated by Oxidative Stress. Free Radic. Biol. Med. 2010, 49, 1315–1322. [Google Scholar] [CrossRef]
- Wiegand, C.; Hipler, U.-C.; Elsner, P.; Tittelbach, J. Keratinocyte and Fibroblast Wound Healing In Vitro Is Repressed by Non-Optimal Conditions but the Reparative Potential Can Be Improved by Water-Filtered Infrared A. Biomedicines 2021, 9, 1802. [Google Scholar] [CrossRef] [PubMed]
- Fink, S.; Burmester, A.; Hipler, U.-C.; Neumeister, C.; Götz, R.M.; Wiegand, C. Efficacy of Antifungal Agents against Fungal Spores: An in Vitro Study Using Microplate Laser Nephelometry and an Artificially Infected 3D Skin Model. MicrobiologyOpen 2021, 11, 24. [Google Scholar] [CrossRef] [PubMed]
- Fink, S.; Sethmann, A.; Hipler, U.-C.; Wiegand, C. In Vitro Investigation of the Principle of Action of Ammonium Bituminosulfonate Ointments on a 3D Skin Model. Eur. J. Pharm. Sci. 2022, 172, 106152. [Google Scholar] [CrossRef]
- Wiegand, C.; Fink, S.; Beier, O.; Horn, K.; Pfuch, A.; Schimanski, A.; Grünler, B.; Hipler, U.-C.; Elsner, P. Dose- and Time-Dependent Cellular Effects of Cold Atmospheric Pressure Plasma Evaluated in 3D Skin Models. Skin Pharmacol. Physiol. 2016, 29, 257–265. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Reddersen, K.; Wiegand, C.; Elsner, P.; Hipler, U.-C. Three-Dimensional Human Skin Model Infected with Staphylococcus Aureus as a Tool for Evaluation of Bioactivity and Biocompatibility of Antiseptics. Int. J. Antimicrob. Agents 2019, 54, 283–291. [Google Scholar] [CrossRef]
- Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B.; et al. Fiji: An Open-Source Platform for Biological-Image Analysis. Nat. Methods 2012, 9, 676–682. [Google Scholar] [CrossRef] [PubMed]
mRNA | Forward Primers (5′ → 3′) | Reverse Primers (5′ → 3′) |
---|---|---|
CK10 | GGGACCAAGATACTAACAAAACC | TGAAAGAACTCTACCGTCGGG |
H1R | AAGTCACCATCCCAAACCCCCAAG | TCAGGCCCTGCTCATCTGTCTTGA |
H4R | CCGTTTGGGTGCTGGCCTTCTTAG | GATCACGCTTCCACAGGCTCCAAT |
NELL2 | AGCCAAAACATCAGCCAAGC | TTCCCTTCATGGTGCAAGTC |
HAS3 | TCCACACGGAAAAGCACTAC | TGCTCCAGGAAGGCAAAAAG |
mRNA | GeneGlobe ID |
---|---|
β-actin | QT01680476 |
FLG | QT00092218 |
IVL | QT00082586 |
CCL26 | QT00023135 |
CA2 | QT00031059 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Riedl, R.; Wallert, M.; Lorkowski, S.; Wiegand, C. Effects of Histamine and the α-Tocopherol Metabolite α-13′-COOH in an Atopic Dermatitis Full-Thickness Skin Model. Molecules 2023, 28, 440. https://doi.org/10.3390/molecules28010440
Riedl R, Wallert M, Lorkowski S, Wiegand C. Effects of Histamine and the α-Tocopherol Metabolite α-13′-COOH in an Atopic Dermatitis Full-Thickness Skin Model. Molecules. 2023; 28(1):440. https://doi.org/10.3390/molecules28010440
Chicago/Turabian StyleRiedl, Rebecca, Maria Wallert, Stefan Lorkowski, and Cornelia Wiegand. 2023. "Effects of Histamine and the α-Tocopherol Metabolite α-13′-COOH in an Atopic Dermatitis Full-Thickness Skin Model" Molecules 28, no. 1: 440. https://doi.org/10.3390/molecules28010440
APA StyleRiedl, R., Wallert, M., Lorkowski, S., & Wiegand, C. (2023). Effects of Histamine and the α-Tocopherol Metabolite α-13′-COOH in an Atopic Dermatitis Full-Thickness Skin Model. Molecules, 28(1), 440. https://doi.org/10.3390/molecules28010440