Development and Validation of an Innovative Analytical Approach for the Quantitation of Tris(Hydroxymethyl)Aminomethane (TRIS) in Pharmaceutical Formulations by Liquid Chromatography Tandem Mass Spectrometry
Abstract
:1. Introduction
2. Results and Discussion
2.1. RP-LC–MS/MS Strategy
2.2. Assay Development
2.2.1. Chromatographic Parameters
2.2.2. Structurally Informative RP-LC-ESI-MS/MS
2.2.3. Optimization of the Derivatization Reaction
2.2.4. Dilution of the Derivatization Reaction Mixture Prior to LC–ESI–MS/MS Analysis
2.3. Assay Validation
2.3.1. Specificity
2.3.2. Linearity
2.3.3. Accuracy
2.3.4. Precision
Repeatability
Intermediate Precision
2.3.5. Range
2.3.6. Robustness
2.3.7. System Suitability
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. Stock Solution, Standard Solutions, Quality Control Samples, and Vaccine Formulation
3.3. Liquid Chromatography–Mass Spectrometry (LC–MS)
3.3.1. Liquid Chromatography
3.3.2. Quadrupole Ion Trap (MS/MS and MRM Experiments)
3.3.3. Orbitrap-MS
3.4. Sample Derivatization
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yahalom-Ronen, Y.; Tamir, H.; Melamed, S.; Politi, B.; Shifman, O.; Achdout, H.; Vitner, E.B.; Israeli, O.; Milrot, E.; Stein, D.; et al. A single dose of recombinant VSV-∆G-spike vaccine provides protection against SARS-CoV-2 challenge. Nat. Commun. 2020, 11, 6402. [Google Scholar] [CrossRef] [PubMed]
- Makovitzki, A.; Jayson, A.; Oren, Z.; Lerer, E.; Kafri, Y.; Dor, E.; Cherry, L.; Tzadok, H.; Levin, L.; Hazan, O.; et al. In-line monitoring of downstream purification processes for VSV based SARS-CoV-2 vaccine using a novel technique. BioTech 2021, 10, 25. [Google Scholar] [CrossRef] [PubMed]
- Lerer, E.; Oren, Z.; Kafri, Y.; Adar, Y.; Toister, E.; Cherry, L.; Lupu, E.; Monash, A.; Levy, R.; Dor, E.; et al. Highly efficient purification of recombinant VSV-∆G-Spike vaccine against SARS-CoV-2 by flow-through chromatography. BioTech 2021, 10, 22. [Google Scholar] [CrossRef] [PubMed]
- Gomori, G. Preparation of buffers for use in enzyme studies. Methods Enzymol. 1955, 1, 138–146. [Google Scholar] [CrossRef]
- Windholz, M. The Merck Index, 10th ed.; Merck & Co.: Rahway, NJ, USA, 1983; 2052p. [Google Scholar]
- Nahas, G.G.; Sutin, K.M.; Fermon, C.; Streat, S.; Wiklund, L.; Wahlander, S.; Yellin, P.; Brasch, H.; Kanchuger, M.; Capan, L.; et al. Guidelines for the treatment of acidaemia with THAM. Drugs 1998, 55, 191–224. [Google Scholar] [CrossRef] [PubMed]
- Advising Individuals with Allergies on Their Suitability for COVID-19 Vaccine Moderna. Available online: https://uat.sps.nhs.uk/articles/advising-individuals-with-allergies-on-their-suitability-for-covid-19-vaccine-moderna/ (accessed on 8 March 2022).
- Vaccine Information Fact Sheet for Recipients and Varegivers, ModernaTX, Inc. Available online: https://eua.modernatx.com/covid19vaccine-eua/bivalent-dose-recipient.pdf (accessed on 8 March 2022).
- Hatziantoniou, S.; Maltezou, H.C.; Tsakris, A.; Poland, G.A.; Anastassopoulou, C. Anaphylactic reactions to mRNA COVID-19 vaccines: A call for further study. Vaccine 2021, 39, 2605–2607. [Google Scholar] [CrossRef] [PubMed]
- European Medicines Agency. CHMP Assessment Report on Group of an Extention of Marketing Authorization and Variations—Comirnaty; EMA: Amsterdam, The Nederland, 2021.
- Pfizer-Biontech COVID-19 Vaccine: Fact Sheet for Healthcare Providers Administering Vaccine (Vaccination Providers), Emergency Use Authorization (EUA) of the Pfizer-Biontech COVID-19 Vaccine to Prevent Coronavirus Disease 2019 (COVID-19). Available online: https://labeling.pfizer.com/ShowLabeling.aspx?id=14471 (accessed on 8 March 2022).
- Hall, R.E.; Havner, G.D.; Good, R.; Dunn, D.L. Ion chromatographic method for rapid and quantitative determination of tromethamine. J. Chromatogr. A 1995, 718, 305–308. [Google Scholar] [CrossRef]
- Gumbhir, K.; Mason, W.D. High-performance liquid chromatographic method for the determination of tris (hydroxymethyl) aminomethane (tromethamine) in human plasma. J. Chromatogr. B Biomed. Sci. Appl. 1992, 583, 99–104. [Google Scholar] [CrossRef] [PubMed]
- McArdle, F.A.; Meehan, C.J. Determination of tromethamine in an eye-care pharmaceutical by capillary electrophoresis. Analyst 1998, 123, 1757–1760. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Huang, A. A HILIC method for the analysis of tromethamine as the counter ion in an investigational pharmaceutical salt. J. Pharm. Biomed. Anal. 2003, 31, 1191–1201. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, S.A.; Qiu, F.; Mulcey, M.; Weigandt, K.; Tamblyn, T. Monitoring the chemical and physical stability for tromethamine excipient in a lipid based formulation by HPLC coupled with ELSD. J. Pharm. Biomed. Anal. 2015, 115, 245–253. [Google Scholar] [CrossRef] [PubMed]
- European Pharmacopoeia (Ph. Eur.), 10th ed.; Trometamol. 1/2017:1053; EDQM—European Directorate for the Quality of Medicines and Healthcare: Strasbourg, France, 2017; Volume III, pp. 4107–4108. Available online: https://www.edqm.eu/en/web/edqm/european-pharmacopoeia-ph-eur-10th-edition- (accessed on 17 December 2022).
- US Pharmacopeia. United States Pharmacopeia National Formulary, Official Monographs. In Tromethamine; USP 39, NF 34; United States Pharmacopeia: Rockville, MA, USA, 2016; Volume 3, pp. 6283–6284. [Google Scholar]
- Morris, M.J.; Hsieh, J.Y.-K. Determination of tris(hydroxymethyl)aminomethane (tromethamine) in human plasma and urine by high-performance liquid chromatography with fluorescence detection. J. Chromatogr. 1993, 622, 87–92. [Google Scholar] [CrossRef] [PubMed]
- Naidong, W.; Ghodbane, S. Development and validation of an HPLC method for the quantitation of tromethamine in iopamidol injection. J. Liq. Chromatogr. Relat. Technol. 1999, 22, 477–484. [Google Scholar] [CrossRef]
- Beck, T.I.H.; Toussaint, B.; Surget, E.; Herrenknecht, C.; Boudy, V.; Jaccoulet, E. Investigation of hydrophilic interaction liquid chromatography coupled with charged aerosol detector for the analysis of tromethamine. Talanta 2022, 238, 123050. [Google Scholar] [CrossRef] [PubMed]
- Shamai Yamin, T.; Prihed, H.; Weissberg, A. Challenges in the identification process of phenidate analogues in LC-ESI-MS/MS analysis: Information enhancement by derivatization with isobutyl chloroformate. J. Mass Spectrom 2019, 54, 266–273. [Google Scholar] [CrossRef] [PubMed]
- European Medicines Agency. ICH Topic Q 2 (R1)—Validation of Analytical Procedure: Text and Methodology; European Medicines Agency: Amsterdam, The Nederland, 1995.
- Stolker, A.A.M.; Stephany, R.; van Ginkel, L. Identification of residues by LCMS. The application of new EU guidelines. Analusis 2000, 28, 947–951. [Google Scholar] [CrossRef]
- Cino, J.; Mirro, R.; Kedzierski, S. An Update on the Advantages of Fibra-Cel® Disks for Cell Culture. 2011. Available online: https://www.eppendorf.com/uploads/media/Application_bioprocess_shakers_incubators_Application-Note-Boo.pdf (accessed on 13 November 2021).
Added TRIS | Spiking Level | Expected Conc. (mg/mL) | Obtained Conc. (mg/mL) | Recovery * |
---|---|---|---|---|
0% | 50% | 1.24 ± 0.07 | 1.30 ± 0.12 | 105% |
50% | 75% | 1.86 ± 0.05 | 1.72 ± 0.13 | 92% |
100% | 100% | 2.35 ± 0.14 | 2.42 ± 0.18 | 103% |
150% | 125% | 3.06 ± 0.12 | 2.92 ± 0.08 | 95% |
Method | Instrument | ||||
---|---|---|---|---|---|
Conc. (mg/mL) | Rt (min.) | Conc. (mg/mL) | Rt (min.) | ||
Experiment 1 | Mean | 2.33 | 5.98 | 2.40 | 5.99 |
SD | 0.12 | 0.01 | 0.03 | 0.01 | |
%CV | 5.2% | 0.09% | 1.2% | 0.09% | |
Experiment 2 | Mean | 2.51 | 5.98 | 2.50 | 5.98 |
SD | 0.30 | 0.004 | 0.03 | 0.00 | |
%CV | 11.9% | 0.07% | 1.2% | 0.00% | |
Experiment 3 | Mean | 2.25 | 5.99 | 2.25 | 5.99 |
SD | 0.23 | 0.004 | 0.04 | 0.005 | |
%CV | 10.4% | 0.07% | 1.7% | 0.09% |
Conc. in Vaccine (mg/mL) | Conc. in QC Sample (mg/mL) | |
---|---|---|
Experiment 1 | 2.33 ± 0.12 | 2.44 ± 0.26 |
Experiment 2 | 2.50 ± 0.30 | 2.39 ± 0.11 |
Experiment 3 | 2.25 ± 0.23 | 2.27 ± 0.15 |
Average | 2.36 ± 0.13 | 2.37 ± 0.09 |
%CV | 5.6% | 3.8% |
%RE a | −1.7% | −1.4% |
TRIS Conc. (mg/mL) | Distance from Target Conc. | %CV a | %CV b |
---|---|---|---|
1.8 | 75% | 8.8% | 9.3% |
2.4 | 100% | 10.1% | 9.5% |
3.0 | 125% | N.A. | 6.6% |
3.6 | 150% | 6.9% | N.A. |
Normal | Low Column Temp. | High Column Temp. | Low Flow Rate | High Flow Rate | 2nd Column | |
---|---|---|---|---|---|---|
Average peak area | 8.1 × 105 | 8.2 × 105 | 7.8 × 105 | 8.0 × 105 | 7.8 × 105 | 7.4 × 105 |
Peak area SD | 2.6 × 104 | 1.0 × 104 | 2.1 × 104 | 1.9 × 104 | 1.4 × 104 | 3.8 × 104 |
%CV | 3.2% | 2.3% | 2.7% | 2.4% | 1.8% | 5.2% |
%RE a | - | 2.0% | −2.8% | −0.4% | −2.8% | −8.1% |
Experiment | %CV a | %RE b |
---|---|---|
1 | 1.1% | 3.1% |
2 | 2.8% | 5.9% |
3 | 2.2% | 3.4% |
4 | 3.4% | 0.5% |
5 | 2.7% | 0.6% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Madmon, M.; Shamai Yamin, T.; Pitel, S.; Belay, C.; Segula, Y.; Toister, E.; Hindi, A.; Cherry, L.; Ophir, Y.; Zichel, R.; et al. Development and Validation of an Innovative Analytical Approach for the Quantitation of Tris(Hydroxymethyl)Aminomethane (TRIS) in Pharmaceutical Formulations by Liquid Chromatography Tandem Mass Spectrometry. Molecules 2023, 28, 73. https://doi.org/10.3390/molecules28010073
Madmon M, Shamai Yamin T, Pitel S, Belay C, Segula Y, Toister E, Hindi A, Cherry L, Ophir Y, Zichel R, et al. Development and Validation of an Innovative Analytical Approach for the Quantitation of Tris(Hydroxymethyl)Aminomethane (TRIS) in Pharmaceutical Formulations by Liquid Chromatography Tandem Mass Spectrometry. Molecules. 2023; 28(1):73. https://doi.org/10.3390/molecules28010073
Chicago/Turabian StyleMadmon, Moran, Tamar Shamai Yamin, Shani Pitel, Chen Belay, Yaniv Segula, Einat Toister, Ariel Hindi, Lilach Cherry, Yakir Ophir, Ran Zichel, and et al. 2023. "Development and Validation of an Innovative Analytical Approach for the Quantitation of Tris(Hydroxymethyl)Aminomethane (TRIS) in Pharmaceutical Formulations by Liquid Chromatography Tandem Mass Spectrometry" Molecules 28, no. 1: 73. https://doi.org/10.3390/molecules28010073
APA StyleMadmon, M., Shamai Yamin, T., Pitel, S., Belay, C., Segula, Y., Toister, E., Hindi, A., Cherry, L., Ophir, Y., Zichel, R., Mimran, A., Diamant, E., & Weissberg, A. (2023). Development and Validation of an Innovative Analytical Approach for the Quantitation of Tris(Hydroxymethyl)Aminomethane (TRIS) in Pharmaceutical Formulations by Liquid Chromatography Tandem Mass Spectrometry. Molecules, 28(1), 73. https://doi.org/10.3390/molecules28010073