Impact of the Addition of Fruits of Kamchatka Berries (L. caerulea var. kamtschatica) and Haskap (L. caerulea var. emphyllocalyx) on the Physicochemical Properties, Polyphenolic Content, Antioxidant Activity and Sensory Evaluation Craft Wheat Beers
Abstract
:1. Introduction
2. Results and Discussion
2.1. Physicochemical Characteristics of Wheat Beers
2.2. Content of Bioactive Compounds in Fruit Wheat Beers
2.3. Sensory Analysis of Fruity Wheat Beers
3. Materials and Methods
3.1. Material
3.2. Production of Beers
3.3. Analysis of Quality Indicators for Beers
3.4. Content of Bioactive Compounds in Fruit Beers
3.5. Antioxidant Activity
3.6. Sensory Analysis
3.7. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Belcar, J.; Gorzelany, J. Feasibility of Defatted Juice from Sea-Buckthorn Berries (Hippophae rhamnoides L.) as a Wheat Beer Enhancer. Molecules 2022, 27, 3916. [Google Scholar] [CrossRef] [PubMed]
- Byeon, Y.S.; Lim, S.-T.; Kim, H.-J.; Kwak, H.S.; Kim, S.S. Quality Characteristcs of Wheat Malts with Different Country of Origin and Their Effect on Beer Brewing. J. Food Qual. 2021, 2021, 2146620. [Google Scholar] [CrossRef]
- Hu, X.; Jin, Y.; Du, J. Differences in protein content and foaming properties of cloudy beers based on wheat malt content. J. Inst. Brew. 2019, 125, 235–241. [Google Scholar] [CrossRef]
- Wu, X.; Du, J.; Zhang, K.; Ju, Y.; Jin, Y. Changes in protein molecular weight during cloudy wheat beer brewing. J. Inst. Brew. 2015, 121, 137–144. [Google Scholar] [CrossRef]
- He, G.; Du, J.; Zhang, K.; Wei, G.; Wang, W. Antioxidant capability and potableness of fresh cloudy wheat beer stored at different temperatures. J. Inst. Brew. 2012, 118, 386–392. [Google Scholar] [CrossRef]
- Gorzelany, J.; Patyna, M.; Pluta, S.; Kapusta, I.; Balawejder, M.; Belcar, J. The Effect of the Addition of Ozonated and Non-Ozonated Fruits of the Saskatoon Berry (Amelanchier alnifolia Nutt.) on the Quality and Pro-Healthy Profile of Craft Wheat Beers. Molecules 2022, 27, 4544. [Google Scholar] [CrossRef]
- Baigts-Allende, D.K.; Pérez-Alva, A.; Ramírez-Rodrigues, M.A.; Palacios, A.; Ramírez-Rodrigues, M.M. A comparative study of polyphenolic and amino acids profiles of commercial fruit beers. J. Food Compos. Anal. 2021, 100, 103921. [Google Scholar] [CrossRef]
- Yang, Q.; Tu, J.; Chen, M.; Gong, X. Discrimination of Fruit Beer Based on Fingerprints by Static Headspace-Gas Chromatography-Ion Mobility Spectrometry. J. Am. Soc. Brew. Chem. 2022, 80, 298–304. [Google Scholar] [CrossRef]
- Patraşcu, L.; Banu, I.; Bejan, M.; Aprodu, I. Quality parameters of fruit beers available on Romanian market. Sci. Study Res. Chem. Chem. Eng. Biotechnol. Food Ind. 2018, 19, 323–335. [Google Scholar]
- Nardini, M.; Garaguso, I. Characterization of bioactive compounds and antioxidant activity of fruit beers. Food Chem. 2020, 305, 125437. [Google Scholar] [CrossRef]
- Martínez, A.; Vegara, S.; Martí, N.; Valero, M.; Saura, D. Physicochemical characterization of special persimmon fruit beers using bohemian pilsner malt as a base. J. Inst. Brew. 2017, 123, 319–327. [Google Scholar] [CrossRef]
- Szot, I.; Lipa, T.; Sosnowska, B. Kamchatka berry—Health-promoting properties of the fruit and the possibilities of their use. Food Sci. Technol. Qual. 2014, 4, 18–29. [Google Scholar] [CrossRef]
- Bieniek, A.; Grygorieva, O.; Bielska, N. Biological properties of honeysuckle (Lonicera caerulea L.): A review. Agrobiodiversity Improv. Nutr. Health Life Qual. 2021, 5, 287–295. [Google Scholar] [CrossRef]
- Jurčaga, L.; Bobko, M.; Kolesárová, A.; Bobková, A.; Demianová, A.; Haščík, P.; Belej, L’.; Mendelová, A.; Bučko, O.; Kročko, M.; et al. Blackcurrant (Ribes nigrum L.) and Kamchatka Honeysuckle (Lonicera caerulea var. Kamtschatica) Extract Effects on Technological Properties, Sensory Quality, and Lipid Oxidation of Raw-Cooked Meat Product (Frankfurters). Foods 2021, 10, 2957. [Google Scholar] [CrossRef] [PubMed]
- Kaniewska, J.; Gozdecka, G.; Domoradzki, M.; Szambowska, A. Processing suitability and characteristics of Kamchatka berries and their preserves. Eng. Sci. Technol. 2013, 4, 58–67. [Google Scholar]
- Ochmian, I.; Skupień, K.; Grajkowski, J.; Smolik, M.; Ostrowska, K. Chemical composition and physical characteristics of fruits of two cultivars of blue honeysuckle (Lonicera caerulea L.) in relation to their degree of maturity and harvest date. Not. Bot. Hortic. Agrobiol. 2012, 40, 155–162. [Google Scholar] [CrossRef]
- Skupień, K.; Oszmiański, J.; Ochmian, I.; Grajkowski, J. Characterization of selected physicochemical features of blue honeysuckle fruit cultivar Zielona. Pol. J. Nat. Sci. 2007, 4, 101–107. [Google Scholar]
- Myjavcová, R.; Marhol, P.; Křen, V.; Simánek, V.; Ulrichova, J.; Palíková, I.; Papoušková, B.; Lemr, K.; Bednář, P. Analysis of anthocyanin pigments in Lonicera (caerulea) extracts using chromatographic fractionation followed by microcolumn liquid chromatography-mass spectrometry. J. Chromatogr. A 2010, 1217, 7932–7941. [Google Scholar] [CrossRef]
- Szot, I.; Lipa, T. Influence of betokson super and fertilizers on chemical composition of fruits and leaves of blue honeysuckle. Acta Sci. Pol. Hort. Cult. 2012, 11, 113–126. [Google Scholar]
- Svarcova, I.; Heinrich, J.; Valentova, K. Berry fruits as a source of biologically active compounds: The case of Lonicera caerulea. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Repub. 2007, 151, 163–174. [Google Scholar] [CrossRef]
- Oszmiański, J.; Kucharska, A.Z. Effect of pre-treatment of blue honeysuckle berries on bioactive iridoid content. Food Chem. 2018, 240, 1087–1091. [Google Scholar] [CrossRef] [PubMed]
- Minami, M.; Takase, H.; Nakamura, M.; Makino, T. Effect of Lonicera caerulea var. emphyllocalyx Fruit on Biofilm Formed by Porphyromonas gingivalis. Hindawi BioMed Res. Int. 2019, 2019, 3547858. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, Y.; Hoshino, Y.; Masago, H.; Kawano, T. Attempt for postharvest ripening of immature fruits of Haskap (Lonicera caerulea L. var. emphyllocalyx Nakai), an emerging fruit in Northern Japan. Adv. Hort. Sci. 2014, 28, 244–249. [Google Scholar]
- Molina, A.K.; Vega, E.N.; Pereira, C.; Dias, M.I.; Heleno, S.A.; Rodrigues, P.; Fernandes, I.P.; Barreiro, M.F.; Kostić, M.; Soković, M.; et al. Promising Antioxidant and Antimicrobial Food Colourants from Lonicera caerulea L. var. Kamtschatica. Antioxidants 2019, 8, 394. [Google Scholar] [CrossRef]
- Nedyalkov, P.; Bakardzhiyski, I.; Dinkova, R.; Shopska, V.; Kaneva, M. Influence of the time of bilberry (Vaccinium myrtillus L.) addition on the phenolic and protein profile of beer. Acta Sci. Pol. Technol. Aliment. 2022, 21, 5–15. [Google Scholar] [CrossRef] [PubMed]
- Gasiński, A.; Kawa-Rygielska, J.; Szumny, A.; Czubaszek, A.; Gąsior, J.; Pietrzak, W. Volatile Compounds Content Physicochemical Parametrers and Antioxidant Activity of Beers with Addition of Mango Fruit (Mangifera indica). Molecules 2020, 25, 3033. [Google Scholar] [CrossRef]
- Habschied, K.; Košir, I.J.; Krstanović, V.; Kumrić, G.; Mastanjević, K. Beer Polyphenols—Bitterness, Astrigency, and Off-Flavors. Beverages 2021, 7, 38. [Google Scholar] [CrossRef]
- Gorzelany, J.; Basara, O.; Kapusta, I.; Paweł, K.; Belcar, J. Evaluation of the Chemical Composition of Selected Varieties of L. caerulea var. kamtschatica and L. caerulea var. emphyllocalyx. Molecules 2023, 28, 2525. [Google Scholar] [CrossRef]
- Bogdan, P.; Kordialik-Bogacka, E. Antioxidant activity of beers produced with the addition of unmalted quinoa and amaranth. Food Sci. Technol. Qual. 2016, 3, 118–126. (In Polish) [Google Scholar] [CrossRef]
- Ditrych, M.; Kordialik-Bogacka, E.; Czyżowska, A. Antiradical and Reducting Potential of Commercial Beer. Czech J. Food Sci. 2015, 33, 261–266. [Google Scholar] [CrossRef]
- Mikyška, A.; Dušek, M.; Slabý, M. How does fermentation, filtration and stabilization of beer affect polyphenols with health benefits. Kvas. Prum. 2019, 65, 120–126. [Google Scholar] [CrossRef]
- Ducruet, J.; Rébénaque, P.; Diserens, S.; Kosińska-Cagnazzo, A.; Héritier, I.; Andlauer, W. Amber ale beer enriched with goji berries—The effect on bioactive compound content and sensorial properties. Food Chem. 2017, 226, 109–118. [Google Scholar] [CrossRef] [PubMed]
- Adamenko, K.; Kawa-Rygielska, J.; Kucharska, A.Z. Characteristics of Cornelian cherry sour non-alcoholic beers brewed with the special yeast Saccharomycodes ludwigii. Food Chem. 2019, 312, 125968. [Google Scholar] [CrossRef] [PubMed]
- Lachowicz, S.; Oszmiański, J.; Pluta, S. The composition of bioactive compounds and antioxidant activity of Saskatoon berry (Amelanchier alnifolia Nutt.) genotypes grown in central Poland. Food Chem. 2017, 235, 234–243. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Yang, W.; Kallio, H.; Yang, B. Health promoting properties and sensory characteristics of phytochemicals in berries and leaves of sea buckthorn (Hippophaë rhamnoides). Crit. Rev. Food Sci. Nutr. 2022, 62, 3798–3816. [Google Scholar] [CrossRef]
- Radonjič, S.; Maraš, V.; Raičevič, J.; Košmerl, T. Wine or Beer? Comparison, Changes and Improvement of Polyphenolic Compounds during Technological Phases. Molecules 2020, 25, 4960. [Google Scholar] [CrossRef]
- Marova, I.; Parilova, K.; Friedl, Z.; Obruca, S.; Duronova, K. Analysis of phenolic compounds in lager beers of different origin: A contribution to potential determination of the authenticity of Czech beer. Chromatographia 2011, 73, 83–95. [Google Scholar] [CrossRef]
- Dvořáková, M.; Hulín, P.; Karabín, M.; Dostálek, P. Determination of polyphenols in beer by an effective method based on solid-phase extraction and high performance liquid chromatography with diode-array detection. Czech J. Food Sci. 2007, 25, 182–188. [Google Scholar] [CrossRef]
- Kellner, V.; Jurková, M.; Culík, J.; Horák, T.; Cejka, P. Some phenolic compounds in Czech hops and beer of pilsner type. Brew. Sci. 2007, 60, 31–37. [Google Scholar]
- Faltermaier, A.; Waters, D.; Becker, T.; Arendt, E.; Gastl, M. Common wheat (Triticum aestivum L.) and its use as a brewing cereal—A review. J. Inst. Brew. 2014, 120, 1–15. [Google Scholar] [CrossRef]
- Viejo, G.; Sigfredo, C.; Sigfredo, F.; Damir, T.; Amruta, G.; Frank, D. Chemical characterization of aromas in beer and their effect on consumers liking. Food Chem. 2019, 293, 479–485. [Google Scholar] [CrossRef]
- Adadi, P.; Kovaleva, E.G.; Glukhareva, T.V.; Shatunova, S.A.; Petrov, A.S. Production and analysis of non-traditional beer supplemented with sea buckthorn. Agron. Res. 2017, 15, 1831–1845. [Google Scholar] [CrossRef]
- Belcar, J.; Sekutowski, T.R.; Zardzewiały, M.; Gorzelany, J. Effect of malting process duration on malting losses and quality of wheat malts. Acta Univ. Cibin. Ser. E Food Technol. 2021, 25, 221–232. [Google Scholar] [CrossRef]
- Belcar, J.; Buczek, J.; Kapusta, I.; Gorzelany, J. Quality and Pro-Healthy Properties of Belgian Witbier-Style Beers Relative to the Cultivar of Winter Wheat and Raw Materials Used. Foods 2022, 11, 1150. [Google Scholar] [CrossRef] [PubMed]
- Analytica EBC (European Brewery Convention). 13.13—Sensory Analysis: Routine Descriptive Test Guideline; European Brewery Convention; Hans Carl Getränke-Fachverlag: Nürnberg, Germany, 2004. [Google Scholar]
Parameter | CB | BD | BA | BL | BW |
---|---|---|---|---|---|
Apparent extract (%; m/m) | 4.03 d ± 0.03 | 2.58 a ± 0.04 | 3.46 c ± 0.04 | 3.52 c ± 0.08 | 3.05 b ± 0.05 |
Real extract (%; m/m) | 5.60 b ± 0.10 | 5.57 b ± 0.03 | 5.80 c ± 0.10 | 5.63 b ± 0.03 | 3.86 a ± 0.01 |
Original extract (%; m/m) | 13.81 b ± 0.01 | 15.96 e ± 0.04 | 14.88 d ± 0.07 | 14.57 c ± 0.06 | 13.44 a ± 0.04 |
Degree of final apparent attenuation (%) | 70.82 a ± 0.10 | 83.83 e ± 0.03 | 76.75 c ± 0.05 | 75.84 b ± 0.04 | 77.31 d ± 0.01 |
Degree of final real attenuation (%) | 59.45 a ± 0.05 | 65.10 d ± 0.10 | 61.02 b ± 0.08 | 61.36 c ± 0.06 | 71.28 e ± 0.05 |
Content of alcohol (%; m/m) | 4.28 a ± 0.04 | 5.48 e ± 0.03 | 4.76 c ± 0.04 | 4.68 b ± 0.05 | 4.98 d ± 0.04 |
Content of alcohol (%; v/v) | 3.40 a ± 0.10 | 4.36 d ± 0.04 | 3.79 b ± 0.01 | 3.72 b ± 0.08 | 3.96 c ± 0.04 |
Colour (EBC units) | 22.4 a ± 0.4 | 29.7 c ± 0.3 | 31.5 e ± 0.5 | 28.4 b ± 0.2 | 30.5 d ± 0.4 |
Titratable acidity (0.1 M NaOH/100 cm3) | 2.71 a ± 0.01 | 3.33 b ± 0.03 | 4.18 d ± 0.04 | 4.10 d ± 0.10 | 3.95 c ± 0.05 |
pH | 4.83 c ± 0.02 | 4.19 b ± 0.07 | 4.01 a ± 0.06 | 4.04 a ± 0.04 | 4.16 b ± 0.04 |
Bitter substances (IBU) | 15.4 e ± 0.2 | 11.1 a ± 0.1 | 12.7 c ± 0.3 | 11.7 b ± 0.4 | 13.5 d ± 0.5 |
Content of carbon dioxide (%) | 0.46 a ± 0.04 | 0.47 a ± 0.02 | 0.44 a ± 0.04 | 0.47 a ± 0.02 | 0.48 a ± 0.02 |
Energy value (kcal/100 mL) | 52.85 b ± 0.05 | 61.13 e ± 0.13 | 57.05 d ± 0.05 | 55.78 c ± 0.05 | 50.53 a ± 0.07 |
Antioxidant Assay | CB | BD | BA | BL | BW |
---|---|---|---|---|---|
DPPH [mM TE/L] | 1.04 a ± 0.06 | 2.14 e ± 0.06 | 1.58 d ± 0.02 | 1.36 c ± 0.04 | 1.19 b ± 0.06 |
FRAP [mM Fe2+/L] | 0.86 a ± 0.04 | 2.07 b ± 0.03 | 2.09 b ± 0.05 | 2.47 c ± 0.03 | 2.71 d ± 0.04 |
ABTS+ [mM TE/L] | 1.01 a ± 0.04 | 1.37 c ± 0.03 | 1.27 b ± 0.06 | 1.97 d ± 0.03 | 1.44 c ± 0.04 |
CB | BD | BA | BL | BW | |||||
---|---|---|---|---|---|---|---|---|---|
Total polyphenols content (mg GAE/L) | 134.0 a ± 0.2 | 180.3 b ± 0.3 | 181.2 b ± 0.4 | 276.3 d ± 0.3 | 252.3 c ± 0.7 | ||||
Compound (mg/L) | Rt (min) | λmax (nm) | (M-H) m/z | ||||||
MS | MS/MS | ||||||||
Neo-chlorogenic acid | 2.15 | 288 sh, 324 | 353 | 191 | <LOQ | 0.82 c ± 0.05 | 0.68 b ± 0.01 | 0.48 a ± 0.02 | 0.67 b ± 0.03 |
Chlorogenic acid | 2.70 | 299 sh, 327 | 353 | 191 | <LOQ | 5.86 c ± 0.03 | 7.30 d ± 0.01 | 1.20 a ± 0.02 | 3.81 b ± 0.02 |
Unspecified caffeic acid derivative | 3.02 | 298 sh, 322 | 507 | 353, 161 | <LOQ | 0.25 b ± 0.08 | 0.26 b ± 0.09 | 0.17 a ± 0.02 | 0.53 c ± 0.08 |
K-3-O-p-hydroxybenzoyl-glc | 3.56 | 264, 347 | 567 | 447, 285 | 0.65 d ± 0.01 | 0.44 b ± 0.09 | 0.32 a ± 0.01 | 0.30 a ± 0.01 | 0.49 c ± 0.02 |
Caffeoylglucaric acid | 3.61 | 299 sh, 327 | 371 | 179 | 0.41 c ± 0.01 | 0.38 b ± 0.00 | 0.36 b ± 0.00 | 0.29 a ± 0.00 | 0.59 d ± 0.02 |
Dihydroquercetin 3-O-glc | 3.73 | 255, 354 | 465 | 303 | 0.98 d ± 0.02 | 0.80 c ± 0.02 | 0.42 a ± 0.02 | 0.41 a ± 0.02 | 0.70 b ± 0.03 |
Q-3-O-glc-pent | 3.88 | 253, 354 | 595 | 301 | 0.17 a ± 0.00 | 0.86 d ± 0.04 | 0.74 c ± 0.00 | 0.71 c ± 0.00 | 0.53 b ± 0.02 |
Q-3-O-rut | 4.16 | 255, 355 | 609 | 301 | 0.06 a ± 0.00 | 0.92 c ± 0.02 | 2.39 d ± 0.07 | <LOQ | 0.73 b ± 0.00 |
Q-3-O-glc | 4.35 | 253, 352 | 463 | 301 | 0.28 c ± 0.00 | 0.86 d ± 0.03 | 0.15 a ± 0.01 | <LOQ | 0.21 b ± 0.00 |
Total | 2.54 a ± 0.05 | 11.19 d ± 0.32 | 12,70 e ± 0.17 | 3.05 b ± 0.46 | 8.27 c ± 0.22 |
CB | BD | BA | BL | BW | |
---|---|---|---|---|---|
Aroma | 3.51 a ± 0.41 | 4.13 ab ± 0.25 | 4.20 b ± 0.60 | 3.96 a ± 0.57 | 4.52 b ± 0.68 |
Taste | 3.58 a ± 0.24 | 4.27 b ± 0.34 | 3.64 a ± 0.28 | 3.62 a ± 0.44 | 4.31 b ± 0.52 |
Foam stability | 3.42 a ± 0.13 | 3.82 a ± 0.30 | 3.94 a ± 0.17 | 4.14 b ± 0.33 | 3.71 a ± 0.26 |
Bitterness | 3.75 a ± 0.17 | 3.51 a ± 0.14 | 4.49 b ± 0.25 | 3.77 a ± 0.37 | 4.05 ab ± 0.34 |
Saturation | 3.96 a ± 0.34 | 3.55 a ± 0.17 | 4.13 ab ± 0.27 | 4.28 b ± 0.29 | 3.68 a ± 0.33 |
Overall impression | 3.56 a ± 0.12 | 3.97 b ± 0.34 | 3.94 b ± 0.50 | 3.81 ab ± 0.27 | 4.14 b ± 0.52 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Belcar, J.; Kapusta, I.; Sekutowski, T.R.; Gorzelany, J. Impact of the Addition of Fruits of Kamchatka Berries (L. caerulea var. kamtschatica) and Haskap (L. caerulea var. emphyllocalyx) on the Physicochemical Properties, Polyphenolic Content, Antioxidant Activity and Sensory Evaluation Craft Wheat Beers. Molecules 2023, 28, 4011. https://doi.org/10.3390/molecules28104011
Belcar J, Kapusta I, Sekutowski TR, Gorzelany J. Impact of the Addition of Fruits of Kamchatka Berries (L. caerulea var. kamtschatica) and Haskap (L. caerulea var. emphyllocalyx) on the Physicochemical Properties, Polyphenolic Content, Antioxidant Activity and Sensory Evaluation Craft Wheat Beers. Molecules. 2023; 28(10):4011. https://doi.org/10.3390/molecules28104011
Chicago/Turabian StyleBelcar, Justyna, Ireneusz Kapusta, Tomasz R. Sekutowski, and Józef Gorzelany. 2023. "Impact of the Addition of Fruits of Kamchatka Berries (L. caerulea var. kamtschatica) and Haskap (L. caerulea var. emphyllocalyx) on the Physicochemical Properties, Polyphenolic Content, Antioxidant Activity and Sensory Evaluation Craft Wheat Beers" Molecules 28, no. 10: 4011. https://doi.org/10.3390/molecules28104011
APA StyleBelcar, J., Kapusta, I., Sekutowski, T. R., & Gorzelany, J. (2023). Impact of the Addition of Fruits of Kamchatka Berries (L. caerulea var. kamtschatica) and Haskap (L. caerulea var. emphyllocalyx) on the Physicochemical Properties, Polyphenolic Content, Antioxidant Activity and Sensory Evaluation Craft Wheat Beers. Molecules, 28(10), 4011. https://doi.org/10.3390/molecules28104011