Brazil Nut (Bertholletia excelsa) Beverage Processed by High-Pressure Homogenization: Changes in Main Components and Antioxidant Capacity during Cold Storage
Abstract
:1. Introduction
2. Results and Discussion
2.1. Effect of HPH Process and Pasteurization on Protein Content
2.2. Effect of HPH Process and Pasteurization on Lipid Constituents
2.2.1. Fatty Acid Profile
2.2.2. Free Fatty Acids
2.2.3. Phytosterols, Tocopherols, and Squalene
2.3. Effect of HPH Process and Pasteurization on the Phenolic Compounds
2.4. Effect of HPH Process and Pasteurization on the Antioxidant Capacity
2.5. Effect of HPH Process and Pasteurization on the Minerals
3. Materials and Methods
3.1. Plant Material
3.2. Solvents, Reagents, and Standards
3.3. Production of Brazil Nut Beverage
3.4. HPH Treatment and Pasteurization of Brazil Nut Beverage
3.5. Total Protein, Total Carbohydrates, and Ash Determinations
3.6. Determination of Minor Lipid Compounds
3.6.1. Lipid Extraction
3.6.2. Fatty Acids Analysis
3.6.3. Free Fatty Acids, Tocopherol, Phytosterol, and Squalene Analysis
3.7. Determination of Phenolic Compounds
3.7.1. Extraction
3.7.2. Total Phenolic Content
3.7.3. Analysis of Individual Phenolic Compounds
3.8. Antioxidant Capacity
3.8.1. DPPH Assay
3.8.2. TEAC Assay
3.9. Minerals Analysis
3.10. Statistical Analyses
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- UN Food and Agriculture Organization. Brazil Nut Production in 2020: Crops/Regions/World List/Production Quantity (Pick Lists); Corporate Statistical Database (FAOSTAT): Rome, Italy, 2020; Available online: https://www.fao.org/3/cb1329en/CB1329EN.pdf (accessed on 17 May 2022).
- Cardoso, B.R.; Duarte, G.B.S.S.; Reis, B.Z.; Cozzolino, S.M.F.F. Brazil nuts: Nutritional composition, health benefits and safety aspects. Food Res. Int. 2017, 100, 9–18. [Google Scholar] [CrossRef] [PubMed]
- Godos, J.; Giampieri, F.; Micek, A.; Battino, M.; Forbes-Hernández, T.Y.; Quiles, J.L.; Paladino, N.; Falzone, L.; Grosso, G. Effect of Brazil Nuts on Selenium Status, Blood Lipids and Biomarkers of Oxidative Stress and Inflammation: A Systematic Review and Meta-Analysis of Randomized Clinical Trials. Antioxidants 2022, 11, 403. [Google Scholar] [CrossRef] [PubMed]
- McClements, D.J. Development of Next-Generation Nutritionally Fortified Plant-Based Milk Substitutes: Structural Design Principles. Foods 2020, 9, 421. [Google Scholar] [CrossRef] [Green Version]
- Vasquez-Rojas, W.V.; Martín, D.; Miralles, B.; Recio, I.; Fornari, T.; Cano, M.P. Composition of Brazil Nut (Bertholletia excels HBK), Its Beverage and By-Products: A Healthy Food and Potential Source of Ingredients. Foods 2021, 10, 3007. [Google Scholar] [CrossRef] [PubMed]
- McClements, D.J.; Newman, E.; McClements, I.F. Plant-based Milks: A Review of the Science Underpinning Their Design, Fabrication, and Performance. Compr. Rev. Food Sci. Food Saf. 2019, 18, 2047–2067. [Google Scholar] [CrossRef] [Green Version]
- Levy, R.; Okun, Z.; Shpigelman, A. High-Pressure Homogenization: Principles and Applications Beyond Microbial Inactivation. Food Eng. Rev. 2021, 13, 490–508. [Google Scholar] [CrossRef]
- Toro-Funes, N.; Bosch-Fusté, J.; Veciana-Nogués, M.T.; Vidal-Carou, M.C. Effect of ultra high pressure homogenization treatment on the bioactive compounds of soya milk. Food Chem. 2014, 152, 597–602. [Google Scholar] [CrossRef]
- Toro-Funes, N.; Bosch-Fusté, J.; Veciana-Nogués, M.T.; Vidal-Carou, M.C. Influence of ultra-high-pressure homogenization treatment on the phytosterols, tocopherols and polyamines of almond beverage. J. Agric. Food Chem. 2014, 62, 9539–9543. [Google Scholar] [CrossRef]
- Vasquez-Rojas, W.V.; Parralejo-Sanz, S.; Martin, D.; Fornari, T.; Cano, M.P. Validation of High-Pressure Homogenization Process to Pasteurize Brazil Nut (Bertholletia excelsa) Beverages: Sensorial and Quality Characteristics during Cold Storage. Beverages 2023, 9, 22. [Google Scholar] [CrossRef]
- Sartori, A.G.D.O.; Machado, M.C.; Bastos, D.H.M.; de Alencar, S.M.; Regitano-d’Arce, M.A.B. Water-extracted Brazil nut co-products: Nutritional value and estimation of nutrient losses during processing. J. Food Meas. Charact. 2020, 14, 1919–1925. [Google Scholar] [CrossRef]
- Chalupa-Krebzdak, S.; Long, C.J.; Bohrer, B.M. Nutrient density and nutritional value of milk and plant-based milk alternatives. Int. Dairy J. 2018, 87, 84–92. [Google Scholar] [CrossRef]
- Calder, P.C. Functional Roles of Fatty Acids and Their Effects on Human Health. J. Parenter. Enter. Nutr. 2015, 39, 18–32. [Google Scholar] [CrossRef] [PubMed]
- Manzoor, M.F.; Zeng, X.A.; Ahmad, N.; Ahmed, Z.; Rehman, A.; Aadil, R.M.; Roobab, U.; Siddique, R.; Rahaman, A. Effect of pulsed electric field and thermal treatments on the bioactive compounds, enzymes, microbial, and physical stability of almond milk during storage. J. Food Process. Preserv. 2020, 44, e14541. [Google Scholar] [CrossRef]
- Ferragut, V.; Hernández-Herrero, M.; Veciana-Nogués, M.T.; Borras-Suarez, M.; González-Linares, J.; Vidal-Carou, M.C.; Guamis, B. Ultra-high-pressure homogenization (UHPH) system for producing high-quality vegetable-based beverages: Physicochemical, microbiological, nutritional and toxicological characteristics. J. Sci. Food Agric. 2014, 95, 953–961. [Google Scholar] [CrossRef]
- Cardoso, C.F.; dos Santos, M.G.; Silva, Y.P.A.; Canedo, M.S.; Garcia, L.G.C.; da Silva, F.A. Processing, characterization and stability of Brazil nut (Bertholletia excelsa) extract. Res. Soc. Dev. 2020, 9, e137953292. [Google Scholar] [CrossRef]
- De Souza, M.L.; de Holanda, L.F.F.; Maia, G.A.; Gaspar Junior, J.C.; de Figueiredo, R.W. Processamento e estabilidade do leite de amêndoa de castanha-do-brasil (Bertholletia excelsa H.B.K.). Cienc. Agron. 1987, 18, 137–146. [Google Scholar]
- Kundu, P.; Dhankhar, J.; Sharma, A. Development of Non Dairy Milk Alternative Using Soymilk and Almond Milk. Curr. Res. Nutr. Food Sci. 2018, 6, 203–210. [Google Scholar] [CrossRef]
- Union Europea. Regulation (EU) No. 1308/2013. Establishing a Common Organisation of the Markets in Agricultural Products. Available online: https://eur-lex.europa.eu (accessed on 12 March 2020).
- Poliseli-Scopel, F.H.; Hernández-Herrero, M.; Guamis, B.; Ferragut, V. Comparison of ultra high pressure homogenization and conventional thermal treatments on the microbiological, physical and chemical quality of soymilk. LWT Food Sci. Technol. 2012, 46, 42–48. [Google Scholar] [CrossRef]
- Valencia-Flores, D.C.; Hernández-Herrero, M.; Guamis, B.; Ferragut, V. Comparing the Effects of Ultra-High-Pressure Homogenization and Conventional Thermal Treatments on the Microbiological, Physical and Chemical Quality of Almond Beverages. J. Food Sci. 2013, 78, E199–E205. [Google Scholar] [CrossRef]
- Codina-Torrella, I.; Guamis, B.; Ferragut, V.; Trujillo, A.J. Potential application of ultra-high pressure homogenization in the physico-chemical stabilization of tiger nuts’ milk beverage. Innov. Food Sci. Emerg. Technol. 2017, 40, 42–51. [Google Scholar] [CrossRef]
- Barros, M.; Fleuri, L.F.; MacEdo, G.A. Seed lipases: Sources, applications and properties—A review. Braz. J. Chem. Eng. 2010, 27, 15–29. [Google Scholar] [CrossRef] [Green Version]
- Adams, J.B. Review: Enzyme inactivation during heat processing of food-stuffs. Int. J. Food Sci. Technol. 1991, 26, 1–20. [Google Scholar] [CrossRef]
- Dos Santos Aguilar, J.G.; Cristianini, M.; Sato, H.H. Modification of enzymes by use of high-pressure homogenization. Food Res. Int. 2018, 109, 120–125. [Google Scholar] [CrossRef]
- Datta, N.; Hayes, M.G.; Deeth, H.C.; Kelly, A.L. Significance of frictional heating for effects of high pressure homogenisation on milk. J. Dairy Res. 2005, 72, 393–399. [Google Scholar] [CrossRef]
- Mesa, J.; Barrera, C.; Betoret, E.; Betoret, N. High Homogenization Pressures to Improve Food. Molecules 2020, 25, 3305. [Google Scholar] [CrossRef] [PubMed]
- Derewiaka, D.; Szwed, E.; Wołosiak, R. Physicochemical properties and composition of lipid fraction of selected edible nuts. Pak. J. Bot. 2014, 46, 337–343. [Google Scholar]
- Esche, R.; Müller, L.; Engel, K.H. Online LC-GC-based analysis of minor lipids in various tree nuts and peanuts. J. Agric. Food Chem. 2013, 61, 11636–11644. [Google Scholar] [CrossRef]
- Decloedt, A.I.; Van Landschoot, A.; Watson, H.; Vanderputten, D.; Vanhaecke, L. Plant-Based Beverages as Good Sources of Free and Glycosidic Plant Sterols. Nutrients 2018, 10, 21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cilla, A.; Alegría, A.; De Ancos, B.; Sánchez-Moreno, C.; Cano, M.P.; Plaza, L.; Clemente, G.; Lagarda, M.J.; Barberá, R. Bioaccessibility of tocopherols, carotenoids, and ascorbic acid from milk- and soy-based fruit beverages: Influence of food matrix and processing. J. Agric. Food Chem. 2012, 60, 7282–7290. [Google Scholar] [CrossRef]
- Lou-Bonafonte, J.M.; Martínez-Beamonte, R.; Sanclemente, T.; Surra, J.C.; Herrera-Marcos, L.V.; Sanchez-Marco, J.; Arnal, C.; Osada, J. Current Insights into the Biological Action of Squalene. Mol. Nutr. Food Res. 2018, 62, 1800136. [Google Scholar] [CrossRef]
- Xiao, S.; Zhang, Y.; Xie, J.; Wen, Z. Ultrasonic-assisted extraction of squalene and vitamin E based oil from Zizyphi spinosae Semen and evaluation of its antioxidant activity. J. Food Meas. Charact. 2018, 12, 2844–2854. [Google Scholar] [CrossRef]
- Lee, S.C.; Nkurunziza, D.; Kim, S.Y.; Surendhiran, D.; Singh, A.A.; Chun, B.S. Supercritical carbon dioxide extraction of squalene rich cod liver oil: Optimization, characterization and functional properties. J. Supercrit. Fluids 2022, 188, 105693. [Google Scholar] [CrossRef]
- González-Larena, M.; Cilla, A.; García-Llatas, G.; Barberá, R.; Lagarda, M.J. Plant sterols and antioxidant parameters in enriched beverages: Storage stability. J. Agric. Food Chem. 2012, 60, 4725–4734. [Google Scholar] [CrossRef]
- González-Larena, M.; Garcia-Llatas, G.; Clemente, G.; Barberá, R.; Lagarda, M.J. Plant sterol oxides in functional beverages: Influence of matrix and storage. Food Chem. 2015, 173, 881–889. [Google Scholar] [CrossRef] [PubMed]
- Shahidi, F.; Camargo, A.C. De Tocopherols and Tocotrienols in Common and Emerging Dietary Sources: Occurrence, Applications and Health Benefits. Int. J. Mol. Sci. 2016, 17, 1745. [Google Scholar] [CrossRef] [Green Version]
- Gomes, S.; Torres, A.G. Optimized extraction of polyphenolic antioxidant compounds from Brazil nut (Bertholletia excelsa) cake and evaluation of the polyphenol profile by HPLC. J. Sci. Food Agric. 2015, 96, 2805–2814. [Google Scholar] [CrossRef] [PubMed]
- Silva, J.G.S.; Rebellato, A.P.; dos Caramês, E.T.S.; Greiner, R.; Pallone, J.A.L. In vitro digestion effect on mineral bioaccessibility and antioxidant bioactive compounds of plant-based beverages. Food Res. Int. 2020, 130, 108993. [Google Scholar] [CrossRef]
- Xu, B.; Chang, S.K.C. Isoflavones, flavan-3-ols, phenolic acids, total phenolic profiles, and antioxidant capacities of soy milk as affected by ultrahigh-temperature and traditional processing methods. J. Agric. Food Chem. 2009, 57, 4706–4717. [Google Scholar] [CrossRef]
- Yong, S.X.M.; Song, C.P.; Choo, W.S. Impact of High-Pressure Homogenization on the Extractability and Stability of Phytochemicals. Front. Sustain. Food Syst. 2021, 4, 294. [Google Scholar] [CrossRef]
- Di Nunzio, M.; Betoret, E.; Taccari, A.; Dalla Rosa, M.; Bordoni, A. Impact of processing on the nutritional and functional value of mandarin juice. J. Sci. Food Agric. 2020, 100, 4558–4564. [Google Scholar] [CrossRef]
- He, Z.; Tao, Y.; Zeng, M.; Zhang, S.; Tao, G.; Qin, F.; Chen, J. High pressure homogenization processing, thermal treatment and milk matrix affect in vitro bioaccessibility of phenolics in apple, grape and orange juice to different extents. Food Chem. 2016, 200, 107–116. [Google Scholar] [CrossRef] [PubMed]
- Moscovici Joubran, A.; Katz, I.H.; Okun, Z.; Davidovich-Pinhas, M.; Shpigelman, A. The effect of pressure level and cycling in high-pressure homogenization on physicochemical, structural and functional properties of filtered and non-filtered strawberry nectar. Innov. Food Sci. Emerg. Technol. 2019, 57, 102203. [Google Scholar] [CrossRef]
- Toro-Funes, N.; Bosch-Fusté, J.; Latorre-Moratalla, M.L.; Veciana-Nogués, M.T.; Vidal-Carou, M.C. Isoflavone profile and protein quality during storage of sterilised soymilk treated by ultra high pressure homogenisation. Food Chem. 2015, 167, 78–83. [Google Scholar] [CrossRef]
- Castro-López, C.; Sánchez-Alejo, E.J.; Saucedo-Pompa, S.; Rojas, R.; Aranda-Ruiz, J.; Martínez-Avila, G.C.G. Fluctuations in phenolic content, ascorbic acid and total carotenoids and antioxidant activity of fruit beverages during storage. Heliyon 2016, 2, e00152. [Google Scholar] [CrossRef] [Green Version]
- Toro-Funes, N.; Bosch-Fusté, J.; Veciana-Nogués, M.T.; Vidal-Carou, M.C. Changes of isoflavones and protein quality in soymilk pasteurised by ultra-high-pressure homogenisation throughout storage. Food Chem. 2014, 162, 47–53. [Google Scholar] [CrossRef]
- Zhao, G.; Zhang, R.; Zhang, M. Effects of high hydrostatic pressure processing and subsequent storage on phenolic contents and antioxidant activity in fruit and vegetable products. Int. J. Food Sci. Technol. 2017, 52, 3–12. [Google Scholar] [CrossRef]
- Jacobo, Á.S.; Saldo, J.; Gervilla, R. Influence of high-pressure and ultra-high-pressure homogenization on antioxidants in fruit juice. In Processing and Impact on Antioxidants in Beverages; Academic Press: Cambridge, MA, USA, 2014; pp. 185–193. ISBN 9780124047389. [Google Scholar]
- Quan, W.; Tao, Y.; Qie, X.; Zeng, M.; Qin, F.; Chen, J.; He, Z. Effects of high-pressure homogenization, thermal processing and milk matrix on the in vitro bioaccessibility of phenolic compounds in pomelo and kiwi juices. J. Funct. Foods 2020, 64, 103633. [Google Scholar] [CrossRef]
- Tong, S.C.; Siow, L.F.; Tang, T.K.; Lee, Y.Y. Plant-based milk: Unravel the changes of the antioxidant index during processing and storage—A review. Crit. Rev. Food Sci. Nutr. 2022, 1–19. [Google Scholar] [CrossRef]
- Silván, J.M.; Amigo-Benavent, M.; Dolores del Castillo, M. Antioxidant properties of soy-based drinks and effects of processing. In Processing and Impact on Antioxidants in Beverages; Academic Press: Cambridge, MA, USA, 2014; pp. 225–232. ISBN 9780124047389. [Google Scholar]
- Yinusa, M.A.; Malomo, S.A.; Fagbemi, T.N. Storage Changes in Antioxidants and Qualities of Single Strength Beverage Produced from Blends of ZOBO (Hibiscus sabdarriffa), Carrots, Oranges and Pineapples. J. Culin. Sci. Technol. 2022, 1–25. [Google Scholar] [CrossRef]
- FAO; WHO. Vitamin and Mineral Requirements in Human Nutrition, 2nd ed.; World Health Organization, Ed.; World Health Organization: Hong Kong, China, 2004; ISBN 92-4-154612-3.
- Felberg, I.; Antoniassi, R.; Deliza, R.; de Freitas, S.C.; Modesta, R.C. Della Bebida de soja e castanha do Brasil: Processamento, composição, avaliação sensorial e de cor. Cienc. Tecnol. Aliment. 2009, 29, 609–617. [Google Scholar] [CrossRef] [Green Version]
- European Food Safety Authority (EFSA). Dietary Reference Values for nutrients Summary report. EFSA Support. Publ. 2017, 14, e15121E. [Google Scholar] [CrossRef] [Green Version]
- Andrés, V.; Villanueva, M.J.; Tenorio, M.D. Influence of high pressure processing on microbial shelf life, sensory profile, soluble sugars, organic acids and mineral content of milk- and soy-smoothies. LWT Food Sci. Technol. 2016, 65, 98–105. [Google Scholar] [CrossRef]
- Rodríguez-Salinas, P.A.; Muy-Rangel, D.; Urías-Orona, V.; Zavala-García, F.; Suárez-Jacobo, Á.; Heredia, J.B.; Rubio-Carrasco, W.; Niño-Medina, G. Thermal processing effects on the microbiological, physicochemical, mineral, and nutraceutical properties of a roasted purple maize beverage. Farmacia 2019, 67, 587–595. [Google Scholar] [CrossRef]
- Sun, A.; Li, H. Minerals. In Essentials of Food Chemistry; Jianquan Kan, K.C., Ed.; Springer: Singapore, 2021; pp. 291–325. [Google Scholar]
- Association of Official Analytical Chemists (AOAC). Official Method of Analysis, 18th ed.; AOAC International: Washington, DC, USA, 2005; ISBN 9780935584424. [Google Scholar]
- Masuko, T.; Minami, A.; Iwasaki, N.; Majima, T.; Nishimura, S.; Lee, Y.L. Carbohydrate analysis by a phenol-sulfuric acid method in microplate format. Anal. Biochem. 2005, 339, 69–72. [Google Scholar] [CrossRef]
- Mortensen, A.B.; Wallin, H. Gravimetric Determination of Ash in Foods: NMKL Collaborative Study. J. Assoc. Off. Anal. Chem. 1989, 72, 481–483. [Google Scholar] [CrossRef]
- Folch, J.; Lees, M.; Sloane Stanley, G.H. A simple technique to rule out occlusion of right coronary artery after aortic valve surgery. J. Biol. Chem. 1956, 226, 497–509. [Google Scholar] [CrossRef]
- Vasquez, W.V.; Hernández, D.M.; del Hierro, J.N.; Martin, D.; Cano, M.P.; Fornari, T. Supercritical carbon dioxide extraction of oil and minor lipid compounds of cake byproduct from Brazil nut (Bertholletia excelsa) beverage production. J. Supercrit. Fluids 2021, 171, 105188. [Google Scholar] [CrossRef]
- John, J.A.; Shahidi, F. Phenolic compounds and antioxidant activity of Brazil nut (Bertholletia excelsa). J. Funct. Foods 2010, 2, 196–209. [Google Scholar] [CrossRef]
- Cano, M.P.; Gómez-Maqueo, A.; García-Cayuela, T.; Welti-Chanes, J. Characterization of carotenoid profile of Spanish Sanguinos and Verdal prickly pear (Opuntia ficusindica, spp.) tissues. Food Chem. 2017, 237, 612–622. [Google Scholar] [CrossRef]
- García-Cayuela, T.; Gómez-Maqueo, A.; Guajardo-Flores, D.; Welti-Chanes, J.; Cano, M.P. Characterization and quantification of individual betalain and phenolic compounds in Mexican and Spanish prickly pear (Opuntia ficusindica L. Mill) tissues: A comparative study. J. Food Compos. Anal. 2019, 76, 1–13. [Google Scholar] [CrossRef]
Days | BNB | PAS | T1 | T2 | T3 |
---|---|---|---|---|---|
0 | 1.09 ± 0.04 A | 1.09 ± 0.04 Aa | 1.06 ± 0.00 Aa | 1.08 ± 0.03 Aa | 1.09 ± 0.01 Aa |
2 | N/A | 1.05 ± 0.05 a | 1.08 ± 0.05 a | 1.12 ± 0.01 a | 1.07 ± 0.07 a |
5 | N/A | 1.10 ± 0.10 a | 1.03 ± 0.04 a | 1.05 ± 0.09 a | 1.08 ± 0.03 a |
9 | N/A | 1.13 ± 0.09 a | 1.04 ± 0.09 a | 1.08 ± 0.16 a | 1.11 ± 0.01 a |
15 | N/A | 1.05 ± 0.07 a | 1.10 ± 0.13 a | 1.06 ± 0.07 a | 1.07 ± 0.11 a |
21 | N/A | 1.14 ± 0.02 a | 1.09 ± 0.14 a | 1.02 ± 0.13 a | 1.09 ± 0.05 a |
Fatty Acid (%) | Day | BNB | PAS | T1 | T2 | T3 |
---|---|---|---|---|---|---|
Palmitic acid | 0 | 14.9 ± 0.0 AB | 15.0 ± 0.0 Ba | 14.9 ± 0.0 Aba | 14.9 ± 0.0 Aba | 14.9 ± 0.0 Aa |
9 | 16.6 ± 0.0 b | 16.3 ± 0.1 b | 16.3 ± 0.1 b | 16.3 ± 0.0 b | ||
21 | 14.9 ± 0.1 a | 15.0 ± 0.0 a | 14.9 ± 0.0 a | 14.8 ± 0.0 a | ||
Oleic acid | 0 | 40.4 ± 0.4 A | 40.7 ± 0.3 Aa | 40.6 ± 0.0 Ab | 40.8 ± 0.3 Ab | 40.5 ± 0.0 Aa |
9 | 39.9 ± 0.3 a | 39.8 ± 0.1 a | 39.9 ± 0.1 a | 40.8 ± 1.1 a | ||
21 | 40.5 ± 0.1 a | 40.4 ± 0.3 ab | 40.0 ± 0.3 ab | 40.4 ± 0.1 a | ||
Linoleic acid | 0 | 34.3 ± 0.4 A | 34.0 ± 0.3 Aa | 34.1 ± 0.1 Aa | 33.8 ± 0.2 Aa | 34.4 ± 0.1 Aa |
9 | 33.4 ± 0.3 a | 33.8 ± 0.2 a | 33.8 ± 0.0 a | 32.8 ± 1.0 a | ||
21 | 34.2 ± 0.3 a | 34.3 ± 0.3 a | 34.7 ± 0.3 a | 34.5 ± 0.1 a | ||
Stearic acid | 0 | 10.4 ± 0.0 A | 10.4 ± 0.0 Aa | 10.4 ± 0.0 Ab | 10.4 ± 0.0 Ab | 10.3 ± 0.0 Ab |
9 | 10.0 ± 0.0 b | 10.1 ± 0.0 a | 10.0 ± 0.0 a | 10.1 ± 0.0 a | ||
21 | 10.4 ± 0.1 b | 10.4 ± 0.0 b | 10.4 ± 0.1 b | 10.3 ± 0.0 b |
Compound mg/L | Day | BNB (Control) | PAS | T1 | T2 | T3 |
---|---|---|---|---|---|---|
Squalene | 0 | 70.3 ± 4.5 B | 54.3 ± 3.7 Aa | 53.0 ± 1.6 Aa | 51.7 ± 3.3 Aa | 53.4 ± 2.7 Ab |
9 | 55.3 ± 3.4 a | 51.2 ± 0.5 a | 49.0 ± 4.1 a | 45.8 ± 0.1 a | ||
21 | 57.5 ± 2.2 a | 54.3 ± 3.6 a | 51.0 ± 1.4 a | 49.3 ± 0.7 ab | ||
Tocopherol | 0 | 10.4 ± 0.5 B | 7.4 ± 0.3 Aa | 7.5 ± 0.1 Ab | 7.1 ± 0.2 Aa | 6.7 ± 0.2 Aa |
9 | 7.4 ± 0.4 a | 6.9 ± 0.0 a | 6.9 ± 0.3 a | 6.4 ± 0.0 a | ||
21 | 7.9 ± 0.5 a | 7.4 ± 0.1 b | 7.1 ± 0.2 a | 6.8 ± 0.4 a | ||
β- Sitosterol | 0 | 35.6 ± 0.9 A | 35.4 ± 0.8 Ab | 34.3 ± 1.8 Aa | 33.9 ± 1.4 Aa | 33.7 ± 0.1 Ab |
9 | 29.4 ± 1.4 a | 28.6 ± 0.5 a | 30.4 ± 2.2 a | 29.4 ± 0.2 a | ||
21 | 33.2 ± 1.3 ab | 32.1 ± 1.7 a | 30.3 ± 1.7 a | 30.6 ± 0.6 a |
Peak | Phenolic Compound | RT (min) | BNB | PAS | T1 | T2 | T3 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Day 0 | Day 0 | Day 9 | Day 21 | Day 0 | Day 9 | Day 21 | Day 0 | Day 9 | Day 21 | Day 0 | Day 9 | Day 21 | |||
1 | Gallic acid | 5.7 | 2.5 ± 0.0 E | 1.9 ± 0.0 Da | 1.9 ± 0.0 a | 1.8 ± 0.0 a | 1.6 ± 0.0 Ba | 1.8 ± 0.0 b | 1.7 ± 0.1 ab | 1.7 ± 0.0 Cb | 1.7 ± 0.0 b | 1.5 ± 0.0 a | 1.5 ± 0.0 Aa | 1.6 ± 0.0 b | 1.6 ± 0.0 b |
2 | Gallic acid derivative | 6.2 | 2.5 ± 0.0 C | 1.5 ± 0.0 Aa | 1.7 ± 0.0 b | 1.8 ± 0.0 c | 1.6 ± 0.0 Ba | 1.8 ± 0.0 b | 1.6 ± 0.0 a | 1.6 ± 0.0 Bb | 1.6 ± 0.0 b | 1.5 ± 0.0 a | 1.4 ± 0.0 Aa | 1.5 ± 0.0 b | 1.5 ± 0.0 b |
3 | Catechin | 20.90 | 16.4 ± 0.5 B | 16.4 ± 0.1 ABa | 18.2 ± 0.2 b | 18.2 ± 0.3 b | 15.7 ± 0.1 ABa | 18.2 ± 0.1 b | 17.3 ± 0.4 b | 15.5 ± 0.7 ABa | 16.9 ± 0.3 a | 16.1 ± 0.2 a | 14.6 ± 0.5 Aa | 15.7 ± 0.2 a | 15.8 ± 0.9 a |
4 | Catechin derivative | 22.29 | 12.1 ± 0.7 B | 9.2 ± 0.2 Aa | 11.2 ± 0.2 b | 11.8 ± 0.6 b | 9.4 ± 0.7 Aa | 11.6 ± 0.4 b | 10.7 ± 0.2 ab | 9.5 ± 0.3 Aa | 10.9 ± 0.6 a | 10.8 ± 0.3 a | 8.6 ± 0.2 Aa | 9.8 ± 0.3 b | 9.9 ± 0.2 b |
5 | 4-hydroxybenzoic acid | 26.92 | 0.9 ± 0.0 C | 0.9 ± 0.1 Cab | 0.8 ± 0.0 a | 1.0 ± 0.0 b | 0.8 ± 0.0 BCa | 0.9 ± 0.0 b | 0.9 ± 0.0 ab | 0.7 ± 0.0 ABa | 0.9 ± 0.0 b | 0.7 ± 0.0 a | 0.6 ± 0.0 Aa | 0.5 ± 0.0 a | 0.8 ± 0.0 b |
6 | Vanillic acid | 29.04 | 1.6 ± 0.1 B | 1.6 ± 0.1 Ba | 1.7 ± 0.1 a | 1.6 ± 0.0 a | 1.5 ± 0.1 Ba | 1.8 ± 0.1 a | 1.6 ± 0.0 a | 1.6 ± 0.0 Ba | 1.9 ± 0.1 b | 1.7 ± 0.1 ab | 1.1 ± 0.1 Aa | 1.7 ± 0.0 b | 1.7 ± 0.1 b |
7 | Epicatechin | 29.94 | 15.3 ± 0.8 B | 9.4 ± 0.0 Aa | 10.2 ± 0.1 b | 10.3 ± 0.2 b | 9.6 ± 0.0 Aa | 10.5 ± 0.1 c | 10.0 ± 0.0 b | 9.5 ± 0.3 Aa | 9.8 ± 0.3 a | 9.4 ± 0.1 a | 8.8 ± 0.1 Aa | 9.5 ± 0.1 b | 9.6 ± 0.1 b |
8 | Vanillin | 31.6 | 0.8 ± 0.0 AB | 0.8 ± 0.1 Ba | 0.9 ± 0.0 a | 0.9 ± 0.0 a | 0.7 ± 0.0 ABa | 0.9 ± 0.0 b | 0.7 ± 0.0 a | 0.7 ± 0.1 ABa | 0.8 ± 0.0 b | 0.8 ± 0.0 ab | 0.6 ± 0.0 Aa | 0.7 ± 0.0 ab | 0.8 ± 0.0 b |
9 | Catechin gallate | 32.9 | 13.0 ± 0.7 B | 11.1 ± 0.5 Aa | 13.4 ± 0.2 b | 13.3 ± 0.1 b | 10.3 ± 0.2 Aa | 12.4 ± 0.3 b | 11.6 ± 0.3 b | 10.5 ± 0.5 Aa | 12.1 ± 0.1 b | 11.8 ± 0.3 ab | 10.8 ± 0.3 Aa | 12.6 ± 0.2 b | 12.2 ± 0.1 b |
10 | p-Coumaric acid | 35.02 | 1.1 ± 0.0 C | 0.8 ± 0.0 Aba | 1.0 ± 0.0 a | 0.9 ± 0.0 a | 0.8 ± 0.0 Aa | 0.9 ± 0.0 b | 1.0 ± 0.0 b | 0.9 ± 0.1 Ba | 0.9 ± 0.0 a | 0.9 ± 0.0 a | 0.8 ± 0.0 ABab | 0.7 ± 0.0 a | 0.9 ± 0.0 b |
11 | Ferulic acid | 36.08 | 0.7 ± 0.0 B | 0.5 ± 0.0 Aa | 0.6 ± 0.0 b | 0.6 ± 0.0 ab | 0.5 ± 0.0 Aa | 0.7 ± 0.0 b | 0.5 ± 0.0 a | 0.5 ± 0.0 Aa | 0.6 ± 0.0 a | 0.6 ± 0.0 a | 0.4 ± 0.0 Aa | 0.5 ± 0.0 ab | 0.7 ± 0.0 b |
12 | Ellagic acid derivative | 37.60 | 17.3 ± 0.0 C | 9.8 ± 0.0 Ba | 11.0 ± 0.0 c | 10.8 ± 0.0 b | 9.7 ± 0.0 ABa | 10.8 ± 0.0 c | 10.0 ± 0.0 b | 9.7 ± 0.1 ABa | 10.2 ± 0.1 c | 10.0 ± 0.0 b | 9.6 ± 0.0 Aa | 10.2 ± 0.0 b | 10.1 ± 0.0 b |
13 | Quercetin | 38.62 | 1.0 ± 0.0 C | 0.9 ± 0.0 Ba | 1.2 ± 0.1 b | 1.1 ± 0.0 b | 0.9 ± 0.0 Ba | 1.2 ± 0.0 b | 1.1 ± 0.0 b | 0.9 ± 0.1 BCa | 1.1 ± 0.0 a | 1.0 ± 0.1 a | 0.7 ± 0.0 Aa | 1.1 ± 0.1 b | 1.1 ± 0.0 b |
Total Phenolic acids | 26.7 ± 0.1 C | 16.9 ± 0.2 Ba | 18.6 ± 0.1 b | 18.6 ± 0.1 b | 16.4 ± 0.2 Ba | 18.8 ± 0.0 b | 17.2 ± 0.0 b | 16.8 ± 0.1 Ba | 17.7 ± 0.1 b | 17.0 ± 0.1 a | 15.4 ± 0.0 Aa | 16.8 ± 0.0 b | 17.2 ± 0.1 c | ||
Total Phenolic aldehydes | 0.8 ± 0.0 AB | 0.8 ± 0.1 Ba | 0.9 ± 0.0 a | 0.9 ± 0.0 a | 0.7 ± 0.0 ABa | 0.9 ± 0.0 b | 0.7 ± 0.0 b | 0.7 ± 0.1 ABa | 0.8 ± 0.0 b | 0.8 ± 0.0 ab | 0.6 ± 0.0 Aa | 0.7 ± 0.0 ab | 0.8 ± 0.0 b | ||
Total Flavonoids | 57.9 ± 1.3 B | 46.9 ± 0.6 Aa | 54.3 ± 0.8 b | 54.7 ± 0.7 b | 45.9 ± 0.7 Aa | 53.9 ± 0.0 b | 50.6 ± 0.9 b | 46.0 ± 1.2 Aa | 50.9 ± 0.1 b | 50.1 ± 0.2 ab | 43.5 ± 1.1 Aa | 48.8 ± 0.3 b | 48.6 ± 1.2 b | ||
Total Phenolic comp. | 85.3 ± 1.5 C | 64.7 ± 0.8 Ba | 73.7 ± 0.7 b | 74.2 ± 0.5 b | 62.9 ± 0.6 ABa | 73.6 ± 0.1 b | 68.6 ± 0.8 b | 63.4 ± 1.3 ABa | 69.5 ± 0.0 b | 67.7 ± 0.3 ab | 59.5 ± 1.1 Aa | 66.2 ± 0.3 b | 66.6 ± 1.1 b | ||
TPC (mg GAE/L) | 98.2 ± 5 B | 61.0 ± 2.5 Aa | 73.3 ± 1.2 bc | 75.9 ± 2.2 c | 58.2 ± 2.4 Aa | 74.8 ± 3.4 d | 67.2 ± 0.2 bc | 60.8 ± 3.7 Aa | 69.2 ± 3.7 b | 66.1 ± 1 ab | 60.6 ± 2.3 Aa | 72.7 ± 1 b | 69.2 ± 5.1 b |
Minerals | Day | BNB | PAS | T1 | T2 | T3 |
---|---|---|---|---|---|---|
Macrominerals (mg/100 mL) | ||||||
P | 0 | 22.1 ± 1.4 A | 22.2 ± 0.0 Aa | 21.1 ± 0.1 Aa | 19.1 ± 1.1 Aa | 21.2 ± 0.1 Aa |
9 | N/A | 22.5 ± 0.8 a | 22.4 ± 0.5 a | 23.2 ± 0.1 b | 23.7 ± 0.5 b | |
21 | N/A | 22.8 ± 1.4 a | 22.4 ± 0.4 a | 22.3 ± 0.9 ab | 21.0 ± 0.4 a | |
K | 0 | 55.5 ± 5.5 A | 50.5 ± 2.1 Aa | 56.8 ± 3.0 Aa | 45.3 ± 2.4 Aa | 47.6 ± 1.3 Aa |
9 | N/A | 45.3 ± 2.0 a | 49.1 ± 3.0 a | 47.0 ± 2.0 a | 48.5 ± 1.1 a | |
21 | N/A | 54.5 ± 3.5 a | 48.8 ± 2.7 a | 53.8 ± 1.6 a | 56.6 ± 2.8 b | |
Ca | 0 | 5.2 ± 0.0 C | 5.1 ± 0.1 BCa | 4.2 ± 0.3 ABa | 3.9 ± 0.2 Aa | 4.6 ± 0.3 ABCa |
9 | N/A | 5.0 ± 0.0 a | 5.0 ± 0.4 a | 5.3 ± 0.2 b | 4.0 ± 0.5 a | |
21 | N/A | 5.8 ± 0.2 b | 5.1 ± 0.0 a | 5.4 ± 0.1 b | 4.8 ± 0.5 a | |
Microminerals (µg/100 mL) | ||||||
Mn | 0 | 35.1 ± 0.7 A | 36.7 ± 8.2 Aa | 30.3 ± 6.1 Aa | 32.3 ± 6.6 Aa | 29.8 ± 3.4 Aa |
9 | N/A | 33.8 ± 3.4 a | 30.7 ± 0.5 ab | 37.9 ± 4.2 a | 34.6 ± 2.2 b | |
21 | N/A | 36.0 ± 1.2 a | 33.2 ± 2.4 b | 32.7 ± 2.5 a | 30.7 ± 4.5 b | |
Fe | 0 | 54.5 ± 4.4 A | 61.8 ± 5.4 Aa | 52.8 ± 4.0 Aa | 59.1 ± 5.4 ABa | 57.7 ± 4.4 ABa |
9 | N/A | 61.6 ± 1.7 a | 62.3 ± 5.0 a | 62.6 ± 0.8 a | 60.3 ± 4.5 a | |
21 | N/A | 60.6 ± 3.0 a | 62.4 ± 10 a | 55.8 ± 5.1 a | 59.5 ± 0.9 a | |
Cu | 0 | 163.7 ± 7.8 A | 170.0 ± 5.5 Aa | 173.6 ± 4.5 Aa | 158.8 ± 4.7 Aa | 167.4 ± 8.6 Aa |
9 | N/A | 167.5 ± 1.9 a | 166.8 ± 5.2 a | 170.8 ± 0.3 b | 150.6 ± 8.7 a | |
21 | N/A | 178.1 ± 1.7 a | 173.7 ± 1.0 a | 173.2 ± 1.2 b | 170.9 ± 3.0 a | |
Zn | 0 | 58.3 ± 4.6 A | 57.9 ± 5.5 Aa | 52.8 ± 4.0 Aa | 55.6 ± 5.3 Aa | 60.9 ± 4.3 Aa |
9 | N/A | 54.7 ± 4.4 a | 61.4 ± 6.3 a | 57.0 ± 7.1 a | 65.9 ± 7.1 a | |
21 | N/A | 60.5 ± 8.3 a | 60.5 ± 7.7 a | 55.8 ± 7.8 a | 63.3 ± 6.2 a | |
Se | 0 | 11.7 ± 0.2 A | 13.5 ± 2.7 Aa | 11.3 ± 0.3 Aa | 11.5 ± 0.5 Aa | 14.0 ± 1.7 Aa |
9 | N/A | 13.9 ± 2.6 a | 13.4 ± 2.5 a | 15.2 ± 0.4 b | 11.3 ± 0.1 a | |
21 | N/A | 14.2 ± 0.8 a | 11.7 ± 0.1 a | 11.2 ± 0.6 a | 11.5 ± 0.3 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vasquez-Rojas, W.V.; Martín, D.; Fornari, T.; Cano, M.P. Brazil Nut (Bertholletia excelsa) Beverage Processed by High-Pressure Homogenization: Changes in Main Components and Antioxidant Capacity during Cold Storage. Molecules 2023, 28, 4675. https://doi.org/10.3390/molecules28124675
Vasquez-Rojas WV, Martín D, Fornari T, Cano MP. Brazil Nut (Bertholletia excelsa) Beverage Processed by High-Pressure Homogenization: Changes in Main Components and Antioxidant Capacity during Cold Storage. Molecules. 2023; 28(12):4675. https://doi.org/10.3390/molecules28124675
Chicago/Turabian StyleVasquez-Rojas, Wilson Valerio, Diana Martín, Tiziana Fornari, and M. Pilar Cano. 2023. "Brazil Nut (Bertholletia excelsa) Beverage Processed by High-Pressure Homogenization: Changes in Main Components and Antioxidant Capacity during Cold Storage" Molecules 28, no. 12: 4675. https://doi.org/10.3390/molecules28124675
APA StyleVasquez-Rojas, W. V., Martín, D., Fornari, T., & Cano, M. P. (2023). Brazil Nut (Bertholletia excelsa) Beverage Processed by High-Pressure Homogenization: Changes in Main Components and Antioxidant Capacity during Cold Storage. Molecules, 28(12), 4675. https://doi.org/10.3390/molecules28124675