Fluoride Adsorption from Aqueous Solution by Modified Zeolite—Kinetic and Isotherm Studies
Abstract
:1. Introduction
2. Results and Discussion
2.1. Material Characterization
2.2. Influence of the Adsorbent Amount
2.3. Influence of the Stirring on Fluoride Adsorption (Dynamic vs. Static)
2.4. Influence of Fluoride Initial Concentration and Contact Time
- Between 5 min and 50 min, the removal rate is faster due to the higher number of available active sites on the adsorbent surface.
- Between 50 and 180 min there is the second zone, which is similar but with a plateau, where the removal rate decreases due to the synergic action, the lower number of available active sites, and fewer available fluoride ions; this behavior was also observed by Tan et al. [31] and was described as a phase of pseudo-equilibrium between the rates of adsorption and desorption.
2.5. Influence of pH on the Fluoride Ions Removal
2.6. Influence of Temperature on the Fluoride Ions Removal
2.7. Influence of Co-Existing Ions on the Fluoride Ions Adsorption
2.8. Kinetics of Adsorption
2.9. Adsorption Isotherms
2.10. Thermodynamic Study
3. Materials and Methods
3.1. Modified Zeolite
3.1.1. Feed Solution
3.1.2. Fluoride Ions Analysis
3.2. Structural and Composition Analysis of the Adsrobent
3.3. Batch Adsorption Studies and Influence of Adsorbent Mass
3.4. Influence of Contact Time
3.5. The pH and Temperature Influence
3.6. Effect of Co-Existing Ions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Benrabah, S.; Attoui, B.; Hannouche, M. Characterization of groundwater quality destined for drinking water supply of Khenchela City (eastern Algeria). J. Water Land Dev. 2016, 30, 13–20. [Google Scholar] [CrossRef]
- Elmabrok, F.M. Study of Fluoride Level in the Ground Water of Alagilat City, Libya: Correlation with Physicochemical Parameters. Int. Res. J. Pharm. 2015, 6, 616–622. [Google Scholar] [CrossRef]
- Agoubi, B.; Gzam, M. Adverse effects of phosphate industry on the environment and groundwater geochemistry in the Ghannouch field, Southeastern Tunisia. Am. J. Geophys. Geochem. Geosystems 2016, 2, 51–63. [Google Scholar]
- Guissouma, W.; Hakami, O.; Al-Rajab, A.J.; Tarhouni, J. Risk assessment of fluoride exposure in drinking water of Tunisia. Chemosphere 2017, 177, 102–108. [Google Scholar] [CrossRef]
- Karroum, M.; Elgettafi, M.; Elmandour, A.; Wilske, C.; Himi, M.; Casas, A. Geochemical processes controlling groundwater quality under semi-arid environment: A case study in central Morocco. Sci. Total Environ. 2017, 609, 1140–1151. [Google Scholar] [CrossRef]
- WHO. Guidelines for Drinking-Water Quality, 4th ed.; WHO: Geneva, Switzerland, 2011. [Google Scholar]
- Nasr, A.B. Performance of Physico-Chemical and Membrane Processes for Removal of Fluoride Ions in Drill Water: Application to Tunisian Waters. Ph.D. Thesis, Université Claude Bernard—Lyon I, Villeurbanne, France. University of Sfax, Sfax, Tunisia, 2013. [Google Scholar]
- Mastinu, A.; Kumar, A.; Maccarinelli, G.; Bonini, S.A.; Premoli, M.; Aria, F.; Gianoncelli, A.; Memo, M. Zeolite clinoptilolite: Therapeutic virtues of an ancient mineral. Molecules 2018, 24, 24081517. [Google Scholar] [CrossRef]
- Collins, F.; Rozhkovskaya, A.; Outram, J.G.; Millar, G.J. A critical review of waste resources, synthesis, and applications for Zeolite LTA. Microporous Mesoporous Mater. 2020, 291, 109667. [Google Scholar] [CrossRef]
- Cataldo, E.C.; Salvi, L.S.; Paoli, F.P.; Fucile, M.F.; Masciandaro, G.M.; Manzi, D.M.; Masini, C.M.M.; Mattii, G.B.M. Application of zeolites in agriculture and other potential uses: A review. Agronomy 2021, 11, 1547. [Google Scholar] [CrossRef]
- Ennaert, T.; Van Aelst, J.; Dijkmans, J.; De Clercq, R.; Schutyser, W.; Dusselier, M.; Verboekend, D.; Sels, B.F. Potential and challenges of zeolite chemistry in the catalytic conversion of biomass. Chem. Soc. Rev. 2016, 45, 584–611. [Google Scholar] [CrossRef] [PubMed]
- Enesca, A.; Andronic, L.; Duta, A. Optimization of Opto-Electrical and Photocatalytic Properties of SnO2 Thin Films Using Zn2+ and W6+ Dopant Ions. Catal. Lett. 2012, 142, 224–230. [Google Scholar] [CrossRef]
- Szerement, J.; Szatanik-Kloc, A.; Jarosz, R.; Bajda, T.; Mierzwa-Hersztek, M. Contemporary applications of natural and synthetic zeolites from fly ash in agriculture and environmental protection. J. Clean. Prod. 2021, 311, 127461. [Google Scholar] [CrossRef]
- Moshoeshoe, M.; Silas Nadiye-Tabbiruka, M.; Obuseng, V. A review of the chemistry, structure, properties and applications of zeolites. Am. J. Mater. Sci. 2017, 7, 196–221. [Google Scholar]
- Bandura, L.; Panek, R.; Madej, J.; Franus, W. Synthesis of zeolite-carbon composites using high-carbon fly ash and their adsorption abilities towards petroleum substances. Fuel 2021, 283, 119173. [Google Scholar] [CrossRef]
- Luo, H.; Law, W.W.; Wu, Y.; Zhu, W.; Yang, E.H. Hydrothermal synthesis of needle-like nanocrystalline zeolites from metakaolin and their applications for efficient removal of organic pollutants and heavy metals. Microporous Mesoporous Mater. 2018, 272, 8–15. [Google Scholar] [CrossRef]
- Saucedo-Delgado, B.; De Haro-Del Rio, D.A.G.; Gonzalez-Rodriguez, L.M.; Reynel-Avila, H.E.; Mendoza-Castillo, D.I.; Bonilla-Petriciolet, A.; de la Rosa, J.R. Fluoride adsorption from aqueous solution using a protonated clinoptilolite and its modeling with artificial neural network-based equations. J. Fluor. Chem. 2017, 204, 98–106. [Google Scholar] [CrossRef]
- Heidarian, M.H.; Nakhaei, M.; Vatanpour, V.; Rezaei, K. Evaluation of using clinoptilolite as a filter in drinking water wells for removal of lead (small-scale physical sand box model). J. Water Proc. Eng. 2023, 52, 103558. [Google Scholar] [CrossRef]
- Rouhani, M.; Ashrafi, S.D.; Taghavi, K.; Joubani, M.N.; Jaafari, J. Evaluation of tetracycline removal by adsorption method using magnetic iron oxide nanoparticles (Fe3O4) and clinoptilolite from aqueous solutions. J. Mol. Liq. 2022, 356, 119040. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, Y.; Chen, H.; Wu, Q.; Chi, D. Assessing the performance of clinoptilolite for controlling and releasing ammonium in agricultural applications. Energy Rep. 2021, 7, 887–895. [Google Scholar] [CrossRef]
- Kumari, U.; Behera, S.K.; Meikap, B.C. A novel acid modified alumina adsorbent with enhanced defluoridation property: Kinetics, isotherm study and applicability on industrial wastewater. J. Hazard. Mater. 2019, 365, 868–882. [Google Scholar] [CrossRef]
- Drouichea, N.; Aoudj, S.; Hecini, M.; Ghaffour, N.; Lounici, H.; Mameri, N. Study on the treatment of photovoltaic wastewater using electrocoagulation:Fluoride removal with aluminium electrodes, Characteristics of products. J. Hazard. Mater. 2009, 169, 65–69. [Google Scholar] [CrossRef]
- Bazrafshan, E.; Balarak, D.; Panahi, A.H.; Kamani, H.; Mahvi, A.H. Fluoride removal from aqueous solutions by Cupric oxide nanoparticles. Flouride 2016, 49, 233–244. [Google Scholar]
- Tang, D.; Zhang, G. Efficient removal of fluoride by hierarchical Ce–Fe bimetal oxides adsorbent: Thermodynamics, kinetics and mechanism. Chem. Eng. J. 2016, 283, 721–729. [Google Scholar] [CrossRef]
- Salih, A.M.; Khanaqal, W.C. Heavy metal removals from industrial wastewater using modified zeolite: Study the effect of pre-treatment. J. Univ. Garmian 2019, 6, 405–416. [Google Scholar] [CrossRef]
- Annan, E.; Nyankson, E.; Agyei-Tuffour, B.; Armah, S.K.; Nkrumah-Buandoh, G.; Hodasi, J.A.M.; Oteng-Peprah, M. Synthesis and Characterization of Modified Kaolin-Bentonite Composites for Enhanced Fluoride Removal from Drinking Water. Adv. Mater. Sci. Eng. 2021, 2021, 6679422. [Google Scholar] [CrossRef]
- Hamid, M.A.A.; Aziz, H.A.; Yusoff, M.S.; Rezan, S.A. Optimization and Analysis of Zeolite Augmented Electrocoagulation Process in the Reduction of High-Strength Ammonia in Saline Landfill Leachate. Water 2020, 12, 247. [Google Scholar] [CrossRef]
- Sing, K.S.W.; Everett, D.H.; Haul, R.A.W.; Moscou, L.; Pierotti, R.A.; Rouquerol, J. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Appl. Chem. 1984, 57, 603–619. [Google Scholar] [CrossRef]
- Papari, F.; Najafabadia, P.R.; Ramavandi, B. Fluoride ion removal from aqueous solution, groundwater, and seawater by granular and powdered Conocarpus erectus biochar. Desalination Water Treat. 2017, 65, 375–386. [Google Scholar] [CrossRef]
- Marina, P.; Monte-Blancoa Silvia, P.D.; Módenesb Aparecido, N.; Bergamascoa, R.; Yamaguchi Natália, U.; Coldebellaa Priscila, F.; Ribeiroc Rosa, M.; Paraisoa Paulo, R. Equilibrium and Kinetic Mechanisms of Fluoride Ions Adsorption onto Activated Alumina. Chem. Eng. Trans. 2017, 57, 607–612. [Google Scholar]
- Tan, T.L.; Krusnamurthy, P.A.P.; Nakajima, H.; Abdul Rashid, S. Adsorptive, kinetics and regeneration studies of fluoride removal from water using zirconium-based metal organic frameworks. RSC Adv. 2020, 10, 18740–18752. [Google Scholar] [CrossRef]
- Singh, K.; Lataye, D.H.; Wasewar, K.L. Removal of fluoride from aqueous solutions by using Bael (Aegle Marmelos) Shell activated carbon: Kinetic, equilibrium and thermodynamic study. J. Fluor. Chem. 2017, 194, 23–32. [Google Scholar] [CrossRef]
- Islamuddin, R.; Gautam, K.; Fatima, S. Removal of fluoride from drinking water by coconut husk as natural adsorbent. Int. J. Eng. Sci. Res. Technol. 2016, 5, 841–846. [Google Scholar]
- Gandhi, N.; Sirisha, D.; Chandra Sekhar, K.B. Adsorption of Fluoride(F-)from aqueous solution by using Horse gram(Macrotyloma uniflorum) seed powder. Int. J. Eng. Tech. Res. 2016, 5, 54–62. [Google Scholar]
- Kebede, B.; Beyene, A.; Fufa, F.; Megersa, M.; Behm, M. Experimental evaluation of sorptive removal of fluoride from drinking water using iron ore. Appl. Water Sci. 2016, 6, 57–65. [Google Scholar] [CrossRef]
- Hortigüela, L.G.; Pariente, J.P.; García, R.; Chebude, Y.; Díaz, I. Natural zeolites from Ethiopia for elimination of fluoride from drinking water. Sep. Purif. Technol. 2013, 120, 224–229. [Google Scholar] [CrossRef]
- Teutli-Sequeira, A.; Solache-Ríos, M.; Martínez-Miranda, V.; Linares-Hernández, I. Behavior of fluoride removal by aluminum modified zeolitic tuff and hematite in column systems and the thermodynamic parameters of the process. Water Air Soil Pollut. 2015, 226, 239. [Google Scholar] [CrossRef]
- Garcia-Sanchez, J.J.; Solache-Rios, M.; Martinez-Gutierres, J.M.; Arteaga-Larios, N.V.; Ojeda-Escamillac, M.C.; Rodriguez-Torresa, I. Modified natural magnetite with Al and La ions for the adsorption of fluoride ions from aqueous solutions. J. Fluor. Chem. 2016, 186, 115–124. [Google Scholar] [CrossRef]
- Mehta, D.; Mondal, P.; Saharan, V.K.; George, S. In-vitro synthesis of marble apatite as a novel adsorbent for removal of fluoride ions from ground water: An ultrasonic approach. Ultrason. Sonochem. 2018, 40, 664–674. [Google Scholar] [CrossRef] [PubMed]
- Vences-Alvarez, E.; Velazquez-Jimenez, L.H.; Chazaro-Ruiz, L.F.; Diaz-Flores, P.E.; Rangel-Mendez, J.R. Fluoride removal in water by a hybrid adsorbent lanthanum-carbon. J. Colloid Interface Sci. 2015, 455, 194–202. [Google Scholar] [CrossRef] [PubMed]
- Parashar, K.; Ballav, N.; Debnath, S.; Pillay, K.; Maity, A. Rapid and efficient removal of F- from aqueous solution using polypyrrole coated hydrous tin oxide composite. J. Colloid Interface Sci. 2016, 476, 103–118. [Google Scholar] [CrossRef]
- Mukhopadhyay, K.; Ghosh, A.; Das, S.K.; Show, B.; Sasikumar, P.; Ghosh, U.C. Synthesis and characterisation of cerium (IV)-incorporated hydrous iron (III) oxide as an adsorbent for fluoride removal from water. RSC Adv. 2017, 7, 26037–26051. [Google Scholar] [CrossRef]
- Esmaeeli, N.; Faghihian, H. Synthesis and characterization of magnetized ETS-4 modified with lanthanum and iron for fluoride adsorption. Environ Prog. Sustain. Energy 2020, 39, e13420. [Google Scholar] [CrossRef]
- Bazrafshan, E.; Alipour, M.R.; Mahvi, A.H. Textile wastewater treatment by application of combined chemical coagulation, electrocoagulation, and adsorption processes. Desalination Water Treat. 2016, 57, 9203–9215. [Google Scholar] [CrossRef]
- Bazrafshan, E.; Zarei, A.A.; Kord Mostafapour, F. Biosorption of cadmium from aqueous solutions by Trichoderma fungus: Kinetic, thermodynamic, and equilibrium study. Desalination Water Treat. 2016, 57, 14598–14608. [Google Scholar] [CrossRef]
- Naeimi, S.; Faghihian, H. Application of novel metal organic framework, MIL-53(Fe) and its magnetic hybrid: For removal of pharmaceutical pollutant, doxycycline from aqueous solutions. Environ. Toxicol. Pharmacol. 2017, 53, 121–132. [Google Scholar] [CrossRef]
- Onyango, M.S.; Kojima, Y.; Kumar, A.; Kuchar, D.; Matsuda, H. Uptake of fluoride by Al3+pretreated low-silica synthetic zeolites: Adsorption equilibrium and rate studies. Sep. Sci. Technol. 2006, 41, 683–704. [Google Scholar] [CrossRef]
- Zhijie, Z.; Yue, T.; Mingfeng, Z. Defluorination of wastewater by calcium chloride modified natural zeolite. Desalination 2011, 276, 246–252. [Google Scholar]
- Mourabet, M.; El Boujaady, H.; El Rhilassi, A.; Ramdane, H.; Bennani-Ziatni, M.; El Hamri, R.; Taitai, A. Defluoridation of water using Brushite: Equilibrium, kinetic and thermodynamic studies. Desalination 2011, 278, 1–9. [Google Scholar] [CrossRef]
- Kamble, S.P.; Deshpande, G.; Barve, P.P.; Rayalu, S.; Labhsetwar, N.K.; Malyshew, A.; Kulkarni, B.D. Adsorption of fluoride from aqueous solution by alumina of alkoxide nature: Batch and continuous operation. Desalination 2010, 264, 15–23. [Google Scholar] [CrossRef]
- Kamga, E.T.; Alonzo, V.; Njiki, C.P.N.; Audebrand, N.; Ngameni, E.; Darchen, A. Preparation and characterization of charcoals that contain dispersed aluminum oxide as adsorbents for removal of fluoride from drinking water. Carbon 2010, 48, 333–343. [Google Scholar] [CrossRef]
- Zeng, Y.; Xue, Y.; Liang, S.; Zhang, J. Removal of fluoride from aqueous solution by TiO2 and TiO2-SiO2 nanocomposite. Chem. Speciat. Bioavailab. 2017, 29, 25–32. [Google Scholar] [CrossRef]
- Chinnakoti, P.; Chunduri, A.L.; Vankayala, R.K.; Patnaik, S.; Kamisetti, V. Enhanced fluoride adsorption by nano crystalline γ-alumina: Adsorption kinetics, isotherm modeling and thermodynamic studies. Appl. Water Sci. 2017, 7, 2413–2423. [Google Scholar] [CrossRef]
- Kumar, R.; Sharma, P.; Aman, K.A.; Singh, K.R. Equilibrium sorption of fluoride on the activated alumina in aqueous solution. Desalination Water Treat. 2020, 197, 224–236. [Google Scholar] [CrossRef]
- Sahu, N.; Bhan, C.; Singh, J. Removal of fluoride from an aqueous solution by batch and column process using activated carbon derived from iron infused Pisum sativum peel: Characterization, Isotherm, kinetics study. Environ. Eng. Res. 2021, 26, 200241. [Google Scholar] [CrossRef]
- Visa, M.; Enesca, A. Opportunities for Recycling PV Glass and Coal Fly Ash into Zeolite Materials Used for Removal of Heavy Metals (Cd, Cu, Pb) from Wastewater. Materials 2023, 16, 239. [Google Scholar] [CrossRef] [PubMed]
- Rahmani, A.; Nouri, J.; Kamal Ghadiri, S.; Mahvi, A.H.; Zare, M.R. Adsorption of fluoride from water Al3+ and Fe3+ pretreated natural Iranian zeolites. J. Environ. Res. 2010, 4, 607–614. [Google Scholar]
- Paripurnanda, L.; Saravanamuthu, V.; Jaya, K.; Ravi, N. Defluoridation of drinking water using adsorption processes. J. Hazard. Mater. 2013, 248, 1–19. [Google Scholar]
Adsorbent Type | Adsorbent Dosage (g/L) | Adsorption Capacity (mg/g) | References |
---|---|---|---|
Acid-modified alumina | 14 | 69.52 | [21] |
Natural zeolites from Ethiopia | 60 | 0.47 | [36] |
Aluminum modified zeolite | 3 | 2.37 | [37] |
Lanthanum hydroxide modified magnetites | 100 | 1.42 | [38] |
Marble apatite-CM | 10 | 4.23 | [39] |
Lanthanum oxyhydroxides anchored commercial granular activated carbon | 3.33 | 9.98 | [40] |
Modified clinoptilolite | 0.5 | 1.74 | This work |
Kinetic Parameters | Initial Concentrations of Fluoride (mg/L) | ||
---|---|---|---|
5 | 8 | 10 | |
Pseudo-first-order model | |||
qeexp (mg/g) | 0.927 | 1.451 | 1.736 |
qeth (mg/g) | 0.108 | 0.326 | 0.384 |
K1 (min−1) | 0.039 | 0.032 | 0.053 |
R2 | 0.947 | 0.959 | 0.947 |
Pseudo-second-order model | |||
qeexp (mg/g) | 0.927 | 1.451 | 1.736 |
qeth (mg/g) | 0.931 | 1.468 | 1.785 |
K2 (g/mg min) | 1.516 | 0.376 | 0.337 |
R2 | 1 | 0.999 | 0.999 |
Intraparticle diffusion model | |||
Kid | 0.011 | 0.034 | 0.046 |
C | 0.813 | 1.101 | 1.302 |
R2 | 0.704 | 0.803 | 0.687 |
Langmuir Model | Freundlich Model | |||||
---|---|---|---|---|---|---|
q0 (mg/g) | KL (L/mg) | R2 | RL | Kf | n | R2 |
2.456 | 1.706 | 0.999 | 0.124 | 1.418 | 1.907 | 0.939 |
Thermodynamic Parameters | Temperature (°C) | ||
---|---|---|---|
25.2 | 47.5 | 58.7 | |
ΔG ° (K·J·mol−1) | −0.266 | −1.163 | −1.613 |
ΔH ° (K·J·mol−1) | 11.731 | 11.731 | 11.731 |
ΔS ° (J·mol−1·K−1) | 40.231 | 40.231 | 40.231 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Turki, T.; Hamdouni, A.; Enesca, A. Fluoride Adsorption from Aqueous Solution by Modified Zeolite—Kinetic and Isotherm Studies. Molecules 2023, 28, 4076. https://doi.org/10.3390/molecules28104076
Turki T, Hamdouni A, Enesca A. Fluoride Adsorption from Aqueous Solution by Modified Zeolite—Kinetic and Isotherm Studies. Molecules. 2023; 28(10):4076. https://doi.org/10.3390/molecules28104076
Chicago/Turabian StyleTurki, Thouraya, Abdelkader Hamdouni, and Alexandru Enesca. 2023. "Fluoride Adsorption from Aqueous Solution by Modified Zeolite—Kinetic and Isotherm Studies" Molecules 28, no. 10: 4076. https://doi.org/10.3390/molecules28104076
APA StyleTurki, T., Hamdouni, A., & Enesca, A. (2023). Fluoride Adsorption from Aqueous Solution by Modified Zeolite—Kinetic and Isotherm Studies. Molecules, 28(10), 4076. https://doi.org/10.3390/molecules28104076