Ethnobotany, Biological Activities and Phytochemical Compounds of Some Species of the Genus Eryngium (Apiaceae), from the Central-Western Region of Mexico
Abstract
:1. Introduction
2. Ethnobotany: Description, Distribution, and Traditional Uses
2.1. The Genus Eryngium Worldwide and in Mexico
2.2. The Genus Eryngium Worldwide and in Mexico
Eryngium L.
2.3. Traditional Uses
Scientific Name | Common Name | Medicinal Uses | Preparation | References |
---|---|---|---|---|
E. beecheyanum | Hierba del sapo | Antipyretic | Infusion of the whole plant; fomento | [29] |
For kidney inflammation | NR | [10] | ||
For skin inflammation | Infusion of the aerial part, taken orally; additionally, it is used in the fomentation form on skin | [28] | ||
E. carlinae | Hierba del sapo, mosquitas | Aphrodisiac, anticrotalic, antispasmodic, antipodagric, antitumor, asystole, carminative, diuretic, tonic, and expectorant; in cold-caused diseases, it increases heat in the stomach; and to treat gastroenteritis | Infusion of the whole plant | [29] |
To treat type 2 diabetes, dyslipidemias, and digestive problems; and to control blood pressure | Infusion | [8,9] | ||
Diuretic and antipyretic; to treat kidney problems, “mal de orín” (cystitis), and kidney pain; to control bile (taken on an empty stomach); to treat stomach and intestine inflammation, pain in the back, bones, chest and hernia; for snake bites; and in piercing ears | Infusion, whole plant with or without root, it is taken orally | [33] | ||
For inflammations due to blows | It is applied topically, through hot fomentations adding salt to the infusion | [33] | ||
E. comosum | Hierba del sapo, piñitas | Aphrodisiac, antigonorrheal, antipyretic, antipodagric, diuretic, and oxytocic | Infusion of the whole plant | [29] |
Hypolipidic; to treat cystitis (“mal de orín”) | NR | [34] | ||
E. cymosum | To treat type 2 diabetes; and as a hypoglycemic | Infusion: as “agua de uso” | [8,9,40] | |
E. fluitans | Diuretic, emmenagogue, and alexiteric | NR | [38] | |
E. heterophyllum | Hierba del Sapo | To treat diabetes, arthritis, and hypercholesterolemia; and to control bile and reduce gallstones related to emotional problems (e.g., anger) | Infusion, whole plant | [4,41] |
To control of gallstones | NR | [23] | ||
E. longifolium | Piñuela | To treat type 2 diabetes; and as a diuretic, emmenagogue, and alexiteric | Infusion aerial part of the plant: as “agua de uso” | [35,36,37,38] |
E. nasturtiifolium | Hierba del sapo | To treat type 2 diabetes and cystitis (“mal de orín”) | Infusion whole plant: as “agua de uso” | [39] |
3. Biological and Pharmacological Activity
3.1. Eryngium carlinae
3.2. Eryngium comosum
3.3. Eryngium cymosum
3.4. Eryngium heterophyllum
3.5. Eryngium longifolium
4. Phytochemistry
4.1. Screening, Detection, and Identification of Metabolites
4.2. Properties of Phytochemical Compounds in Species of the Genus Eryngium
4.3. Tocixity of Phytochemical Compounds in Species of the Genus Eryngium
5. Eryngium spp. Propagation Strategies
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Farnsworth, N.R.; Akerele, O.; Bingel, A.S.; Soejarto, D.D.; Zhengang, G. Medicinal Plants in Therapy. Bull. WHO 1985, 63, 965–981. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. The Use of Essential Drugs Report of a WHO Expert Committee; World Health Organization Technical Report Series 685; WHO: Geneva, Switzerland, 1979; Volume 641, pp. 5–50. [Google Scholar]
- Akerele, O. Las Plantas Medicinales: Un Tesoro Que No Debemos Desperdiciar. Foro Mund. Salud 1993, 14, 390–395. [Google Scholar]
- Carreón-Sánchez, R.; Marroquín-Segura, R.; Mora-Guevara, J.L.A.; Valadez-Sánchez, C.S.; Flores-Cabrera, Y.; Flores-Pimentel, M.; Hernández-Abad, V.J. Estudio Del Extracto Etanólico de Eryngium heterophyllum (Hierba Del Sapo); Para Comprobar Su Actividad Hipoglucemiante y Anti-Inflamatoria. Rev. Mex. Cienc. Farm. 2013, 44, 41–45. [Google Scholar]
- Esquivel-Gutiérrez, E.R.; Noriega-Cisneros, R.; Bello-González, M.A.; Saavedra-Molina, A.; Salgado-Garciglia, R. Plantas Utilizadas En La Medicina Tradicional Mexicana Con Propiedades Antidiabéticas y Antihipertensivas. Biológicas 2012, 14, 45–52. [Google Scholar]
- García-Ruiz, I. Contribución al Conocimiento Del Género Eryngium (Apiaceae) En El Estado de Michoacán, México. Acta Bot. Mex. 2013, 118, 65–118. [Google Scholar] [CrossRef]
- Pérez-Muñoz, E.P.; Antunes-Ricardo, M.; Martínez-Ávila, M.; Guajardo-Flores, D. Eryngium Species as a Potential Ally for Treating Metabolic Syndrome and Diabetes. Front. Nutr. 2022, 9, 878306. [Google Scholar] [CrossRef]
- Espinoza-Hernández, F.; Andrade-Cetto, A.; Escandón-Rivera, S.; Mata-Torres, G.; Mata, R. Contribution of Fasting and Postprandial Glucose-Lowering Mechanisms to the Acute Hypoglycemic Effect of Traditionally Used Eryngium cymosum F. Delaroche. J. Ethnopharmacol. 2021, 279, 114339. [Google Scholar] [CrossRef]
- Espinoza-Hernández, F.A.; Andrade-Cetto, A. Chronic Antihyperglycemic Effect Exerted by Traditional Extracts of Three Mexican Medicinal Plants. Evid.-Based Complement. Altern. Med. 2022, 2022, 5970358. [Google Scholar] [CrossRef]
- Maldonado-Almanza, B.J. Aprovechamiento de Los Recursos Florísticos de La Sierra de Huautla Morelos, México. Master’s Thesis, Universidad Nacional Autónoma de México, Mexico City, Mexico, 1997. [Google Scholar]
- Knauth, P.; Acevedo-Hernández, G.J.; Cano, M.E.; Gutiérrez-Lomelí, M.; López, Z. In Vitro Bioactivity of Methanolic Extracts from Amphipterygium adstringens (Schltdl.) Schiede Ex Standl., Chenopodium ambrosioides, L., Cirsium mexicanum DC., Eryngium carlinae F. Delaroche, and Pithecellobium dulce (Roxb.) Benth. Used in Traditional Medi. Evid.-Based Complement. Altern. Med. 2018, 2018, 3610364. [Google Scholar] [CrossRef]
- Lemus-de la Cruz-Hurtado, J.; Trejo-Hurtado, M.; Landa-Moreno, C.; Peña-Montes, D.; Landeros-Páramo, J.L.; Cortés-Rojo, C.; Montoya-Pérez, R.; Rosas, G.; Saavedra-Molina, A. Antioxidant Effects of Silver Nanoparticles Obtained by Green Synthesis from the Aqueous Extract of Eryngium carlinae on the Brain Mitochondria of Streptozotocin-Induced Diabetic Rats. J. Bioenerg. Biomembr. 2023. preprint. [Google Scholar] [CrossRef]
- Pérez-Reyes, M.V. Determinación de la Probable Disminución de los Niveles de Colesterol y Triglicéridos en Rata Tratada con el Extracto Acuoso de Hierba de Sapo (Eryngium comosum Delar F). Bachelor’s Thesis, Investigación Curricular. Instituto Politécnico Nacional, Mexico City, Mexico, 2016. [Google Scholar]
- Mabberley, D.J. Mabberley’s Plant-Book, 4th ed.; Cambridge University Press: New York, NY, USA, 2017; ISBN 9781107115026. [Google Scholar]
- Wörz, A. A Taxonomic Index of the Species of Eryngium L. (Apiaceae: Saniculoideae). Stuttg. Beitr. Naturkd. A Biologie 1999, 48, 1–48. [Google Scholar]
- Wörz, A. On the Distribution and Relationships of the South-West Asian Species of Eryngium L. (Apiaceae-Saniculoideae). Turk. J. Bot. 2004, 28, 85–92. [Google Scholar]
- Wörz, A. A New Subgeneric Classification of the Genus Eryngium L. (Apiaceae, Saniculoideae). Bot. Jahrb. Syst. Pflanzengesch. Pflanzengeogr. 2005, 126, 253–259. [Google Scholar] [CrossRef]
- Calviño, C.I.; Martínez, S.G.; Downie, S.R. The Evolutionary History of Eryngium (Apiaceae, Saniculoideae): Rapid Radiations, Long Distance Dispersals, and Hybridizations. Mol. Phylogenet. Evol. 2008, 46, 1129–1150. [Google Scholar] [CrossRef]
- Wolff, H. Umbelliferae-Saniculoidae. In Das Pflanzenreich, Regni Vegetabilis Conspectus; Engelmann, V.v.W., Ed.; Auftrage der Königl. preuss; Akademie der Wissenschaften: Leipzig, Germany; Berlin, Germany, 1913. [Google Scholar]
- Mathias, M.E.; Constance, L. North American Flora; The New York Botanical Garden: New York, NY, USA, 1945; Volume 28B. [Google Scholar]
- Cházaro, B.M.; Lomelí, M.E.; Flores, H.M.; Ellembergm, R.S. Antología Botánica Del Occidente de México. Dep. Geogr. Ord. Territ. 2002, 1, 184. [Google Scholar]
- Mora-Navarro, M.R.; Vargas-Rodríguez, Y.L.; Hernández-Herrera, R.M. Algas del Occidente de México: Florística y Ecología; Universidad de Guadalajara: Guadalajara, Mexico, 2006. [Google Scholar]
- Astudillo-Vásquez, A.; Ortega-Delgado, M.L.; Hernández-Xolocotzi, E.; Estrada-Lugo, E.; Ramírez-Torres, L. Estudio Químico-Farmacológico de Eryngium heterophyllum (Yerba Del Sapo), Relacionado Con La Prevención de Cálculos Biliares. C. Bot. 1985, 7–19. [Google Scholar]
- Khoshbakht, K.; Hammer, K.; Pistrick, K. Eryngium caucasicum Trautv. Cultivated as a Vegetable in the Elburz Mountains (Northern Iran). Genet. Resour. Crop. Evol. 2006, 54, 445–448. [Google Scholar] [CrossRef]
- Paul, J.H.A.; Seaforth, C.E.; Tikasingh, T. Eryngium foetidum L.: A Review. Fitoterapia 2011, 82, 302–308. [Google Scholar] [CrossRef]
- Medbouhi, A.; Benbelaïd, F.; Djabou, N.; Beaufay, C.; Bendahou, M.; Quetin-Leclercq, J.; Tintaru, A.; Costa, J.; Muselli, A. Essential Oil of Algerian Eryngium campestre: Chemical Variability and Evaluation of Biological Activities. Molecules 2019, 24, 2575. [Google Scholar] [CrossRef]
- Redouan, F.Z.; Cheikh, Y.; Crisafulli, A.; Picone, R.M.; Merzouki, A. Ethnopharmacological Preparations Used for Digestive System Disorders by the Population in Talassemtane National Park (North of Morocco). Ethnobot. Res. Appl. 2022, 24, 1–25. [Google Scholar] [CrossRef]
- Esquivel-García, R.; Pérez-Calix, E.; Ochoa-Zarzosa, A.; García-Pérez, M.E. Ethnomedicinal Plants Used for the Treatment of Dermatological Affections on the Purépecha Plateau, Michoacán, Mexico. Acta Bot. Mex. 2018, 2018, 95–132. [Google Scholar] [CrossRef]
- Díaz, J.L. Usos de Las Plantas Medicinales de México; Instituto Mexicano para el Estudio de las Plantas Medicinales, IMEPLAM, A.C.: México City, Mexico, 1976. [Google Scholar]
- Peña-Montes, D.J.; Huerta-Cervantes, M.; Ríos-Silva, M.; Trujillo, X.; Huerta, M.; Noriega-Cisneros, R.; Salgado-Garciglia, R.; Saavedra-Molina, A. Protective Effect of the Hexanic Extract of Eryngium carlinae Inflorescences In Vitro, in Yeast, and in Streptozotocin-Induced Diabetic Male Rats. Antioxidants 2019, 8, 73. [Google Scholar] [CrossRef] [PubMed]
- Noriega-Cisneros, R.; Pena-Montes, D.J.; Huerta-Cervantes, M.; Torres-Martinez, R.; Huerta, M.; Manzo-Avalos, S.; Salgado-Garciglia, R.; Saavedra-Molina, A. Eryngium carlinae Ethanol Extract Corrects Lipid Abnormalities in Wistar Rats with Experimental Diabetes. J. Med. Food 2020, 23, 827–833. [Google Scholar] [CrossRef] [PubMed]
- Montes-Moreno, L.A.R. Efecto Del Extracto Acuoso de Eryngium carlinae (Hierba Del Sapo) Sobre Marcadores Bioquímicos de Enfermedades No Transmisibles. Master’s Thesis, Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Santiago de Querétaro, Mexico, 2017. [Google Scholar]
- Atlas de las Plantas de la Medicina Tradicional Mexicana. Hierba Del Sapo. Available online: http://www.medicinatradicionalmexicana.unam.mx/apmtm/termino.php?l=3&t=eryngium-carlinae (accessed on 30 March 2023).
- Ávila-Uribe, M.M.; García-Zárate, S.N.; Sepúlveda-Barrera, A.S.; Godínez-Rodríguez, M.A. Plantas Medicinales En Dos Poblados Del Municipio De San Martín De Las Pirámides, Estado De México. Polibotanica 2016, 1, 215–245. [Google Scholar] [CrossRef]
- Andrade-Cetto, A.; Espinoza-Hernández, F.; Mata-Torres, G.; Escandón-Rivera, S. Hypoglycemic Effect of Two Mexican Medicinal Plants. Plants 2021, 10, 2060. [Google Scholar] [CrossRef]
- Andrade-Cetto, A. Ethnobotanical Study of the Medicinal Plants from Tlanchinol, Hidalgo, México. J. Ethnopharmacol. 2009, 122, 163–171. [Google Scholar] [CrossRef]
- Palá-Paúl, J. Contribución al Conocimiento de Los Aceites Esenciales Del Género “Eryngium” L., en la Península Ibérica. Ph.D. Thesis, Universidad Complutense de Madrid, Madrid, Spain, 2002. [Google Scholar]
- Morales, M.M.L. Interés Terapéutico de Eryngium (Cardo Corredor) En Oncología. Rev. Médica Homeopat. 2012, 5, 18–21. [Google Scholar]
- Lehman, R.L. Eryngium Nasturtiifolium; Texas A & M University Press: College Station, TX, USA, 2005. [Google Scholar]
- Romo-Pérez, A.; Escandón-Rivera, S.M.; Miranda, L.D.; Andrade-Cetto, A. Phytochemical Study of Eryngium cymosum F. Delaroche and the Inhibitory Capacity of Its Main Compounds on Two Glucose-Producing Pathway Enzymes. Plants 2022, 11, 992. [Google Scholar] [CrossRef]
- García-Hernández, K.Y.; Vibrans, H.; Rivas-Guevara, M.; Aguilar-Contreras, A. This Plant Treats That Illness? The Hot-Cold System and Therapeutic Procedures Mediate Medicinal Plant Use in San Miguel Tulancingo, Oaxaca, Mexico. J. Ethnopharmacol. 2015, 163, 12–30. [Google Scholar] [CrossRef]
- Fowler, M.W. Plants, Medicines and Man. J. Sci. Food Agric. 2006, 86, 1797–1804. [Google Scholar] [CrossRef]
- Rodrigues, T.L.M.; Silva, M.E.P.; Gurgel, E.S.C.; Oliveira, M.S.; Lucas, F.C.A. Eryngium foetidum L. (Apiaceae): A Literature Review of Traditional Uses, Chemical Composition, and Pharmacological Activities. Evid.-Based Complement. Altern. Med. 2022, 2022, 2896895. [Google Scholar] [CrossRef]
- Cortés-Fernández, I.; Sureda, A.; Adrover, M.; Caprioli, G.; Maggi, F.; Gil-Vives, L.; Capó, X. Antioxidant and Anti-Inflammatory Potential of Rhizome Aqueous Extract of Sea Holly (Eryngium maritimum L.) on Jurkat Cells. J. Ethnopharmacol. 2023, 305. [Google Scholar] [CrossRef]
- Price III, J.A. An in Vitro Evaluation of the Native American Ethnomedicinal Plant Eryngium Yuccifolium as a Treatment for Snakebite Envenomation. J. Intercult. Ethnopharmacol. 2016, 5, 219–225. [Google Scholar] [CrossRef]
- González, J.A.; Vallejo, J.R. The Scorpion in Spanish Folk Medicine: A Review of Traditional Remedies for Stings and Its Use as a Therapeutic Resource. J. Ethnopharmacol. 2013, 146, 62–74. [Google Scholar] [CrossRef]
- Kremer, D.; Končić, M.Z.; Kosalec, I.; Košir, I.J.; Potočnik, T.; Čerenak, A.; Srečec, S.; Dunkić, V.; Vuko, E. Phytochemical Traits and Biological Activity of Eryngium amethystinum and E. Alpinum (Apiaceae). Horticulturae 2021, 7, 364. [Google Scholar] [CrossRef]
- Sadiq, A.; Rashid, U.; Ahmad, S.; Zahoor, M.; AlAjmi, M.F.; Ullah, R.; Noman, O.M.; Ullah, F.; Ayaz, M.; Khan, I.; et al. Treating Hyperglycemia from Eryngium Caeruleum M. Bieb: In-Vitro α-Glucosidase, Antioxidant, in-Vivo Antidiabetic and Molecular Docking-Based Approaches. Front. Chem. 2020, 8, 558641. [Google Scholar] [CrossRef]
- Forouhandeh, H.; Rezaei Param, Z.; Molavi, O.; Asgharian, P.; Tarhriz, V. Evaluation of Anti-Proliferative Activity of Eryngium caucasicum on Melanoma Cancer Cells. BMC Complement. Med. Ther. 2022, 22, 134. [Google Scholar] [CrossRef]
- Noriega-Cisneros, R.; Ortiz-Vila, O.; Esquivel-Gutiérrez, E.; Clemente-Guerrero, M.; Manzo-Avalos, S.; Salgado-Garciglia, R.; Cortés-Rojo, C.; Boldogh, I.; Saavedra-Molina, A. Hypolipidemic Activity of Eryngium carlinae on Streptozotocin-Induced Diabetic Rats. Biochem. Res. Int. 2012, 2012, 603501. [Google Scholar] [CrossRef]
- Noriega-Cisneros, R. Evaluación de la Actividad Hipoglucémica, Hipolipidémica y Antioxidante de Eryngium carlinae en Ratas Diabéticas. Ph.D. Thesis, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico, 2013. [Google Scholar]
- García-Cerrillo, D.; Noriega-Cisneros, R.; Peña-Montes, D.; Huerta-Cervantes, M.; Ríos-Silva, M.; Salgado-Garciglia, R.; Montoya-Pérez, R.; Saavedra-Molina, A. Antioxidant Effects of Eryngium carlinae in Diabetic Rats. Asian J. Appl. Sci. 2018, 6, 308–314. [Google Scholar] [CrossRef]
- Castro-Torres, I.G.; De la O-Arciniega, M.; Naranjo-Rodríguez, E.B.; Castro-Torres, V.A.; Domínguez-Ortíz, M.Á.; Martínez-Vázquez, M. The Hypocholesterolemic Effects of Eryngium carlinae F. Delaroche Are Mediated by the Involvement of the Intestinal Transporters ABCG5 and ABCG. Evid.-Based Complement. Altern. Med. 2017, 2017, 3176232. [Google Scholar] [CrossRef]
- DrugBank Online Mannitol: Uses, Interactions, Mechanism of Action. Available online: https://go.drugbank.com/drugs/DB00742 (accessed on 23 March 2023).
- Pérez-Ramírez, I.F.; Enciso-Moreno, J.A.; Guevara-González, R.G.; Gallegos-Corona, M.A.; Loarca-Piña, G.; Reynoso-Camacho, R. Modulation of Renal Dysfunction by Smilax Cordifolia and Eryngium carlinae, and Their Effect on Kidney Proteome in Obese Rats. J. Funct. Foods 2016, 20, 545–555. [Google Scholar] [CrossRef]
- Valdivia-Mares, L.E. Capacidad Disolutiva Sobre Cálculos Biliares de Colesterol de Cuatro Especies Medicinales in Vitro. Master’s Thesis, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico, 2021. [Google Scholar]
- Pérez-Gutiérrez, R.M.; Vargas-Solís, R. γ-Lactone Isolated from Methanol Extract of the Leaves of Eryngium carlinae and Their Antispasmodic Effect on Rat Ileum. Bol. Latinoam. Caribe Plantas Med. Aromat. 2006, 5, 51–56. [Google Scholar]
- Galindo-Hernández, M.E. Obtención y Caracterización Fitoquímica de Extractos Vegetales y Su Evaluación Antimicótica para Su Aplicación en Odontopediatría. Master’s Thesis, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico, 2018. [Google Scholar]
- Espino-Garibay, D.F. Clasificación Molecular de Satureja Macrostema (Benth) Briq. y Eryngium carlinae Delar F. y Evaluación de La Actividad Antimicrobiana de Sus Terpenoides. Master’s Thesis, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico, 2010. [Google Scholar]
- Ronquillo de Jesus, E. Estudio de la Actividad Antioxidante y Toxicológica de Diferentes Extractos de Plantas Medicinales. Ph.D. Thesis, Tecnología Avanzada. Instituto Politécnico Nacional, Mexico City, Mexico, 2013. [Google Scholar]
- Díaz-Alvarado, T.; Mariezcurrena-Berasain, M.D.; Salem, A.Z.M.; Pinzón-Martínez, D.L. Antimicrobial and Antioxidant Activities of Two Medicinal Plants Cuphea aequipetala var. Hispida (Cav.) Koehne and Eryngium comosum Delaroche F against Bacteria Related to Equine Infections. J. Equine Vet. Sci. 2020, 94, 103269. [Google Scholar] [CrossRef] [PubMed]
- Díaz Alvarado, T. Análisis de los Compuestos Bioactivos, Actividad Antimicrobiana y Relación con el Territorio de Tres Plantas Medicinales de la Región Mazahua del Estado de México. Master’s Thesis, Universidad Autónoma del Estado de México, Toluca, Mexico, 2020. [Google Scholar]
- Navarrete, A.; Niño, D.; Reyes, B.; Sixtos, C.; Aguirre, E.; Estrada, E. On the Hypocholesteremic Effect of Eryngium heterophyllum. Fitoterapia 1990, 61, 182–184. [Google Scholar]
- Miranda-Velázquez, L.G. Actividad Hipocolesterolémica de Plantas de Uso Etnobotánico en México. Ph.D. Thesis, Ciencias, con Acentuación en Química de Productos Naturales. Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico, 2010. [Google Scholar]
- García-Gómez, Y.; Mendieta-Alcántara, M.R.; Mendieta-Zerón, H. Eryngium heterophyllum and Amphipterygium Adstringens Tea Effect on Triglyceride Levels: A Clinical Trial. Tradit. Integr. Med. 2019, 4, 22–27. [Google Scholar] [CrossRef]
- Molina-Garza, Z.J.; Bazaldúa-Rodríguez, A.F.; Quintanilla-Licea, R.; Galaviz-Silva, L. Anti-Trypanosoma Cruzi Activity of 10 Medicinal Plants Used in Northeast Mexico. Acta Trop. 2014, 136, 14–18. [Google Scholar] [CrossRef]
- Khani, S.; Abdollahi, M.; Asadi, Z.; Nazeri, M.; Nasiri, M.; Yusefi, H.; Moghadam, A.; Heidari, H. Hypoglycemic, Hepatoprotective, and Hypolipidemic Effects of Hydroalcoholic Extract of Eryngium Billardieri Root on Nicotinamide/Streptozotocin-Induced Type II Diabetic Rats. Res. Pharm. Sci. 2021, 16, 193–202. [Google Scholar] [CrossRef]
- Chandira, R.M.; Jaykar, B. Extraction, Pharmacological Evaluation and Formulation of Selected Medicinal Herbs for Antidiabetic Activity Pharmacological Evaluation and Formulation of Selected Medicinal Herbs for Antidiabetic Activity. Int. J. Pharm. Teach. Pract. 2013, 4, 458–482. [Google Scholar]
- Alzoreky, N.S.; Nakahara, K. Antibacterial Activity of Extracts from Some Edible Plants Commonly Consumed in Asia. Int. J. Food Microbiol. 2003, 80, 223–230. [Google Scholar] [CrossRef]
- Darriet, F.; Bendahou, M.; Desjobert, J.M.; Costa, J.; Muselli, A. Bicyclo[4.4.0]Decane Oxygenated Sesquiterpenes from Eryngium maritimum Essential Oil. Planta Med. 2012, 78, 386–389. [Google Scholar] [CrossRef]
- Meot-Duros, L.; Le Floch, G.; Magné, C. Radical Scavenging, Antioxidant and Antimicrobial Activities of Halophytic Species. J. Ethnopharmacol. 2008, 116, 258–262. [Google Scholar] [CrossRef]
- Erdem, S.A.; Nabavi, S.F.; Orhan, I.E.; Daglia, M.; Izadi, M.; Nabavi, S.M. Blessings in Disguise: A Review of Phytochemical Composition and Antimicrobial Activity of Plants Belonging to the Genus Eryngium. DARU J. Pharm. Sci. 2015, 23, 53. [Google Scholar] [CrossRef]
- Pant, D.R.; Pant, N.D.; Saru, D.B.; Yadav, U.N.; Khanal, D.P. Phytochemical Screening and Study of Antioxidant, Antimicrobial, Antidiabetic, Anti-Inflammatory and Analgesic Activities of Extracts from Stem Wood of Pterocarpus Marsupium Roxburgh. J. Intercult. Ethnopharmacol. 2017, 6, 170–176. [Google Scholar] [CrossRef]
- Farhan, H.; Malli, F.; Rammal, H.; Hijazi, A.; Bassal, A.; Ajouz, N.; Badran, B. Phytochemical Screening and Antioxidant Activity of Lebanese Eryngium creticum L. Asian Pac. J. Trop. Biomed. 2012, 2, S1217–S1220. [Google Scholar] [CrossRef]
- Kikowska, M.; Chanaj-Kaczmarek, J.; Derda, M.; Budzianowska, A.; Thiem, B.; Ekiert, H.; Szopa, A. The Evaluation of Phenolic Acids and Flavonoids Content and Antiprotozoal Activity of Eryngium Species Biomass Produced by Biotechnological Methods. Molecules 2022, 27, 363. [Google Scholar] [CrossRef]
- Thiem, B.; Goślińska, O.; Kikowska, M.; Budzianowski, J. Antimicrobial Activity of Three Eryngium L. Species (Apiaceae). Herba Pol. 2010, 56, 53–58. [Google Scholar]
- Kikowska, M.; Kruszka, D.; Derda, M.; Hadas, E.; Thiem, B. Phytochemical Screening and Acanthamoebic Activity of Shoots from in Vitro Cultures and in Vivo Plants of Eryngium alpinum L.—The Endangered and Protected Species. Molecules 2020, 25, 1416. [Google Scholar] [CrossRef]
- Mejri, H.; Tir, M.; Feriani, A.; Ghazouani, L.; Salah Allagui, M.; Saidani-Tounsi, M. Does Eryngium maritimum Seeds Extract Protect against CCl4 and Cisplatin Induced Toxicity in Rats: Preliminary Phytochemical Screening and Assessment of Its in Vitro and in Vivo Antioxidant Activity and Antifibrotic Effect. J. Funct. Foods 2017, 37, 363–372. [Google Scholar] [CrossRef]
- Weber, F.; Passon, M. Characterization and Quantification of Polyphenols in Fruits. In Polyphenols in Plants; Elsevier: Amsterdam, The Netherlands, 2019; pp. 111–121. [Google Scholar]
- Meyer, V.R. Practical High-Performance Liquid Chromatography, 5th ed.; John Wiley and Sons: St. Gallen, Switzerland, 2013; ISBN 9780470682180. [Google Scholar]
- López-Luengo, M.T. Fitoesteroles y Fitoestanoles. Offarm 2005, 24, 90–94. [Google Scholar]
- Juang, Y.-P.; Liang, P.-H. Biological and Pharmacological Effects of Synthetic Saponins. Molecules 2020, 25, 4974. [Google Scholar] [CrossRef]
- Rojas-Silva, P.; Graziose, R.; Vesely, B.; Poulev, A.; Mbeunkui, F.; Grace, M.H.; Kyle, D.E.; Lila, M.A.; Raskin, I. Leishmanicidal Activity of a Daucane Sesquiterpene Isolated from Eryngium foetidum. John M. Pezzuto Pharm. Biol. 2014, 52, 398–401. [Google Scholar] [CrossRef] [PubMed]
- Merghache, D.; Boucherit-Otmani, Z.; Merghache, S.; Chikhi, I.; Selles, C.; Boucherit, K. Chemical Composition, Antibacterial, Antifungal and Antioxidant Activities of Algerian Eryngium Tricuspidatum L. Essential Oil. Nat. Prod. Res. 2014, 28, 795–807. [Google Scholar] [CrossRef] [PubMed]
- Landoulsi, A.; Roumy, V.; Duhal, N.; Skhiri, F.H.; Ere, R.; Sahpaz, S.; Neut, C.; Benhamida, J.; Hennebelle, T. Chemical Composition and Antimicrobial Activity of the Essential Oil from Aerial Parts and Roots of Eryngium Barrelieri BOISS. and Eryngium Glomeratum LAM. from Tunisia. Chem. Biodivers. 2016, 13, 1720–1729. [Google Scholar] [CrossRef] [PubMed]
- Paw, M.; Gogoi, R.; Sarma, N.; Saikia, S.; Kumar Chanda, S.; Lekhak, H.; Lal, M. Antimicrobial, Antioxidant, Antidiabetic Study of Leaf Essential Oil of Eryngium foetidum L. Along with the Chemical Profiling Collected from North East India. J. Essent. 2022, 25, 1229–1241. [Google Scholar] [CrossRef]
- Arana-Argáez, V.; Alonso-Castro, A.J.; Yáñez-Barrientos, E.; Euan-Canto, A.; Torres-Romero, J.C.; Isiordia-Espinoza, M.A.; Brennan-Bourdon, L.M.; Juárez-Vázquez, M.d.C.; González-Ibarra, A.A. In Vitro and in Vivo Anti-Inflammatory Effects of an Ethanol Extract from the Aerial Parts of Eryngium carlinae F. Delaroche (Apiaceae). J. Ethnopharmacol. 2021, 266, 113406. [Google Scholar] [CrossRef]
- Nejati, M.; Masoudi, S.; Dastan, D.; Masnabadi, N. Phytochemical Analysis and Antibacterial Activity of Eryngium Boiss. & Hausskn. J. Chil. Chem. Soc. 2021, 66, 5230–5236. [Google Scholar]
- Singh, S.; Singh, D.R.; Banu, S.; Salim, K.M. Determination of Bioactives and Antioxidant Activity in Eryngium foetidum L.: A Traditional Culinary and Medicinal Herb. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 2013, 83, 453–460. [Google Scholar] [CrossRef]
- Rjeibi, I.; Saad, A.B.; Ncib, S.; Souid, S. Phenolic Composition and Antioxidant Properties of Eryngium maritimum (Sea Holly). J. Coast. 2017, 5, 212–215. [Google Scholar] [CrossRef]
- Kikowska, M.; Budzianowski, J.; Krawczyk, A.; Thiem, B. Accumulation of Rosmarinic, Chlorogenic and Caffeic Acids in in Vitro Cultures of Eryngium planum L. Acta Physiol. Plant. 2012, 34, 2425–2433. [Google Scholar] [CrossRef]
- Kikowska, M.; Thiem, B.; Szopa, A.; Ekiert, H. Accumulation of Valuable Secondary Metabolites: Phenolic Acids and Flavonoids in Different in Vitro Systems of Shoot Cultures of the Endangered Plant Species—Eryngium alpinum L. Plant. Cell Tissue Organ. Cult. 2020, 141, 381–391. [Google Scholar] [CrossRef]
- Budzianowski, J.; Romaniuk-Drapała, A.; Kikowska, M.; Budzianowska, A.; Thiem, B.; Lisiak, N.; Rubiś, B.; Jacczak, B.; Kosmalska, I.; Totoń, E. Rosmarinic Acid 4′-O-β-Glucoside—A Compound with Prospective Medicinal and Cosmetological Applications—Its Isolation from Callus and Root Cultures of Eryngium Species and Biological Activity. Ind. Crops Prod. 2023, 193, 116138. [Google Scholar] [CrossRef]
- Dalar, A.; Türker, M.; Zabaras, D.; Konczak, I. Phenolic Composition, Antioxidant and Enzyme Inhibitory Activities of Eryngium bornmuelleri Leaf. Plant. Foods Hum. Nutr. 2014, 69, 30–36. [Google Scholar] [CrossRef]
- García, M.D.; Sáenz, M.T.; Gómez, M.A.; Fernández, M.A. Topical Antiinflammatory Activity of Phytosterols Isolated from Eryngium foetidum on Chronic and Acute Inflammation Models. Phytother. Res. 1999, 13, 78–80. [Google Scholar] [CrossRef]
- Hatami, M.; Karimi, M.; Aghaee, A.; Bovand, F.; Ghorbanpour, M. Morphological Diversity, Phenolic Acids, and Antioxidant Properties in Eryngo (Eryngium caucasicum Trautv): Selection of Superior Populations for Agri-Food Industry. Food Sci. Nutr. 2022, 10, 3905–3919. [Google Scholar] [CrossRef]
- Palá-Paúl, J.; Pérez-Alonso, M.J.; Velasco-Negueruela, A.; Varadé, J.; Villa, A.M.; Sanz, J.; Brophy, J.J. Analysis of the Essential Oil Composition from the Different Parts of Eryngium glaciale Boiss. from Spain. J. Chromatogr. 2005, 1094, 179–182. [Google Scholar] [CrossRef]
- Flamini, G.; Tebano, M.; Cioni, P.L. Composition of the Essential Oils from Leafy Parts of the Shoots, Flowers and Fruits of Eryngium amethystinum from Amiata Mount (Tuscany, Italy). Food Chem. 2008, 107, 671–674. [Google Scholar] [CrossRef]
- Celik, A.; Aydınlık, N.; Arslan, I. Phytochemical Constituents and Inhibitory Activity towards Methicillin-Resistant Staphylococcus aureus Strains of Eryngium Species (Apiaceae). Chem. Biodivers. 2011, 8, 454–459. [Google Scholar] [CrossRef]
- Silva Fernandes, L.; Ferreira Garcia da Costa, Y.; Eunice de Bessa, M.; Lucia Pires Ferreira, A.; Otávio do Amaral Corrêa, J.; Del-Vechio Vieira, G.; Vieira de Sousa, O.; Lúcia Santos de Matos Araújo, A.; Castilho, P.C.; Silvana Alves, M.; et al. Metabolic Profiling and Antibacterial Activity of Eryngium Pristis Cham. & Schltdl.—Prospecting for Its Use in the Treatment of Bacterial Infections. Arch. Pharm. Pharm. Sci. 2021, 5, 020–028. [Google Scholar] [CrossRef]
- Kikowska, M.; Kalemba, D.; Dlugaszewska, J.; Thiem, B. Chemical Composition of Essential Oils from Rare and Endangered Species—Eryngium maritimum L. and E. Alpinum L. Plants 2020, 9, 417. [Google Scholar] [CrossRef]
- Palá-Paúl, J.; Copeland, L.M.; Brophy, J.J.; Goldsack, R.J. Essential Oil Composition of Eryngium rosulatum P.W. Michael Ined.: A New Undescribed Species from Eastern Australia. Biochem. Syst. Ecol. 2006, 34, 796–801. [Google Scholar] [CrossRef]
- Nacef, S.; Jannet, H.B.; Hamza, M.A.; Mighri, Z. Contribution to the Phytochemical Investigation of the Plant Eryngium dichotomum Desf. (Apiaceae) from Tunisia. J. Soc. Chim. Tunisie 2008, 10, 141–148. [Google Scholar]
- Cádiz-Gurrea, M.d.l.L.; Fernández-Arroyo, S.; Joven, J.; Segura-Carretero, A. Comprehensive Characterization by UHPLC-ESI-Q-TOF-MS from an Eryngium bourgatii Extract and Their Antioxidant and Anti-Inflammatory Activities. Food Res. Int. 2013, 50, 197–204. [Google Scholar] [CrossRef]
- Dunkić, V.; Vuko, E.; Bezić, N.; Kremer, D.; Ruščić, M. Composition and Antiviral Activity of the Essential Oils of Eryngium alpinum and E. amethystinum. Chem. Biodivers. 2013, 10, 1894–1902. [Google Scholar] [CrossRef] [PubMed]
- Mohammadhosseini, M.; Mahdavi, B.; Akhlaghi, H. Characterization and Chemical Composition of the Volatile Oils from Aerial Parts of Eryngium bungei Bioss. (Apiaceae) by Using Traditional Hydrodistillation, Microwave Assisted Hydrodistillation and Head Space Solid Phase Microextraction Methods Prior to GC and GC/MS Analyses: A Comparative Approach. J. Essent. 2013, 16, 613–623. [Google Scholar] [CrossRef]
- Dawilai, S.; Muangnoi, C.; Praengamthanachoti, P.; Tuntipopipat, S. Anti-Inflammatory Activity of Bioaccessible Fraction from Eryngium foetidum Leaves. BioMed Res. Int. 2013, 2013, 958567. [Google Scholar] [CrossRef]
- Altemimi, A.; Lakhssassi, N.; Baharlouei, A.; Watson, D.G.; Lightfoot, D.A. Phytochemicals: Extraction, Isolation, and Identification of Bioactive Compounds from Plant Extracts. Plants 2017, 6, 42. [Google Scholar] [CrossRef]
- Williams, O.J.; Raghavan, G.S.V.; Orsat, V.; Dai, J. Microwave-Assisted Extraction of Capsaicinoids from Capsicum Fruit. J. Food Biochem. 2004, 28, 113–122. [Google Scholar] [CrossRef]
- Garcia-Salas, P.; Morales-Soto, A.; Segura-Carretero, A.; Fernández-Gutiérrez, A. Phenolic-Compound-Extraction Systems for Fruit and Vegetable Samples. Molecules 2010, 15, 8813–8826. [Google Scholar] [CrossRef]
- Routray, W.; Orsat, V. Microwave-Assisted Extraction of Flavonoids: A Review. Food Bioprocess Technol. 2012, 5, 409–424. [Google Scholar] [CrossRef]
- Tzanova, M.; Atanasov, V.; Yaneva, Z.; Ivanova, D.; Dinev, T. Selectivity of Current Extraction Techniques for Flavonoids from Plant Materials. Processes 2020, 8, 1222. [Google Scholar] [CrossRef]
- Coelho, J.P.; Robalo, M.P.; Boyadzhieva, S.; Stateva, R.P. Microwave-Assisted Extraction of Phenolic Compounds from Spent Coffee Grounds. Process Optimization Applying Design of Experiments. Molecules 2021, 26, 7320. [Google Scholar] [CrossRef]
- Zhang, Y.; Cai, P.; Cheng, G.; Zhang, Y. A Brief Review of Phenolic Compounds Identified from Plants: Their Extraction, Analysis, and Biological Activity. Nat. Prod. Commun. 2022, 17, 1934578X211069721. [Google Scholar] [CrossRef]
- Ajitha, B.; Reddy, Y.A.K.; Lee, Y.; Kim, M.J.; Ahn, C.W. Biomimetic Synthesis of Silver Nanoparticles Using Syzygium aromaticum (Clove) Extract: Catalytic and Antimicrobial Effects. Appl. Organomet. 2019, 33, e4867. [Google Scholar] [CrossRef]
- Vanlalveni, C.; Lallianrawna, S.; Biswas, A.; Selvaraj, M.; Changmai, B.; Rokhum, S.L. Green Synthesis of Silver Nanoparticles Using Plant Extracts and Their Antimicrobial Activities: A Review of Recent Literature. RSC Adv. 2021, 11, 2804–2837. [Google Scholar] [CrossRef]
- Begum, S.; Ahmaruzzaman, M.; Adhikari, P.P. Ecofriendly Bio-Synthetic Route to Synthesize ZnO Nanoparticles Using Eryngium foetidum L. and Their Activity against Pathogenic Bacteria. Mater. Lett. 2018, 228, 37–41. [Google Scholar] [CrossRef]
- Hitl, M.; Kladar, N.; Gavarić, N.; Božin, B. Rosmarinic Acid-Human Pharmacokinetics and Health Benefits. Planta Med. 2020, 87, 273–282. [Google Scholar] [CrossRef]
- Lin, D.; Jin, B.; Liu, J.; Gao, D.; Xu, Y.; He, L.; Zang, Y.; Li, N. Detailed Studies on the Anticancer Action of Rosmarinic Acid in Human Hep-G2 Liver Carcinoma Cells: Evaluating Its Effects on Cellular Apoptosis, Caspase Activation and Suppression of Cell Migration and Invasion. J. BUON 2020, 25, 1383–1389. [Google Scholar]
- Cardullo, N.; Catinella, G.; Floresta, G.; Muccilli, V.; Rosselli, S.; Rescifina, A.; Bruno, M.; Tringali, C. Synthesis of Rosmarinic Acid Amides as Antioxidative and Hypoglycemic Agents. J. Nat. Prod. 2019, 82, 573–582. [Google Scholar] [CrossRef]
- Ivanov, M.; Kostić, M.; Stojković, D.; Soković, M. Rosmarinic Acid–Modes of Antimicrobial and Antibiofilm Activities of a Common Plant Polyphenol. S. Afr. J. Bot. 2022, 146, 521–527. [Google Scholar] [CrossRef]
- Nadeem, M.; Imran, M.; Gondal, T.A.; Imran, A.; Shahbaz, M.; Amir, R.M.; Sajid, M.W.; Qaisrani, T.B.; Atif, M.; Hussain, G.; et al. Therapeutic Potential of Rosmarinic Acid: A Comprehensive Review. Appl. Sci. 2019, 2019, 3139. [Google Scholar] [CrossRef]
- Jia, J.Y.; Lu, Y.L.; Li, X.C.; Liu, G.Y.; Li, S.J.; Liu, Y.; Liu, Y.M.; Yu, C.; Wang, Y.P. Pharmacokinetics of Depside Salts from Salvia Miltiorrhiza in Healthy Chinese Volunteers: A Randomized, Open-Label, Single-Dose Study. Curr. Ther. Res. Clin. Exp. 2010, 71, 260–271. [Google Scholar] [CrossRef] [PubMed]
- Hernandes, L.C.; Thomazela Machado, A.R.; Tuttis, K.; Ribeiro, D.L.; Ferro Aissa, A.; Pícoli Dévoz, P.; Greggi Antunes, L.M. Caffeic Acid and Chlorogenic Acid Cytotoxicity, Genotoxicity and Impact on Global DNA Methylation in Human Leukemic Cell Lines. Genet. Mol. Biol. 2020, 43, 20190347. [Google Scholar] [CrossRef] [PubMed]
- Alam, M.; Ahmed, S.; Elasbali, A.M.; Adnan, M.; Alam, S.; Hassan, M.I.; Pasupuleti, V.R. Therapeutic Implications of Caffeic Acid in Cancer and Neurological Diseases. Front. Oncol. 2022, 12, 860508. [Google Scholar] [CrossRef] [PubMed]
- Elsbaey, M.; Ibrahim, M.A.A.; Shawky, A.M.; Miyamoto, T. Eryngium creticum L.: Chemical Characterization, SARS-CoV-2 Inhibitory Activity, and In Silico Study. ACS Omega 2022, 7, 22725–22734. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Fang, X.; Ge, L.; Cao, F.; Zhao, L.; Wang, Z.; Xiao, W. Antitumor, Antioxidant and Anti-Inflammatory Activities of Kaempferol and Its Corresponding Glycosides and the Enzymatic Preparation of Kaempferol. PLoS ONE 2018, 13, e0197563. [Google Scholar] [CrossRef] [PubMed]
- Calderón-Montaño, J.M.; Burgos-Morón, E.; Pérez-Guerrero, C.; López-Lázaro, M. A Review on the Dietary Flavonoid Kaempferol. Med. Chem. Rev. 2011, 11, 298–344. [Google Scholar] [CrossRef]
- Gervasi, T.; Calderaro, A.; Barreca, D.; Tellone, E.; Trombetta, D.; Ficarra, S.; Smeriglio, A.; Mandalari, G.; Gattuso, G. Biotechnological Applications and Health-Promoting Properties of Flavonols: An Updated View. Int. J. Mol. Sci. 2022, 23, 1. [Google Scholar] [CrossRef]
- Gupta, A.; Singh, A.K.; Kumar, R.; Jamieson, S.; Pandey, A.K.; Bishayee, A. Neuroprotective Potential of Ellagic Acid: A Critical Review. Adv. Nutr. 2021, 12, 1211–1238. [Google Scholar] [CrossRef]
- Bae, J.; Kim, N.; Shin, Y.; Kim, S.-Y.; Kim, Y.-J. Activity of Catechins and Their Applications. Biomed. Derm. 2020, 4, 8. [Google Scholar] [CrossRef]
- Evtyugin, D.D.; Magina, S.; Evtuguin, D.V. Recent Advances in the Production and Applications of Ellagic Acid and Its Derivatives. A Review. Molecules 2020, 25, 2745. [Google Scholar] [CrossRef]
- Gullón, B.; Lú-Chau, T.A.; Moreira, M.T.; Lema, J.M.; Eibes, G. Rutin: A Review on Extraction, Identification and Purification Methods, Biological Activities and Approaches to Enhance Its Bioavailability. Trends Food Sci. Technol. 2017, 67, 220–235. [Google Scholar] [CrossRef]
- Luz, M.S.; Gadelha, D.D.A.; Andrade, K.J.S.; Travassos, R.A.; Ribeiro, J.D.; Carvalho-Galvão, A.; Cruz, J.C.; Balarini, C.M.; Braga, V.A.; França-Falcão, M.S. Borneol Reduces Sympathetic Vasomotor Hyperactivity and Restores Depressed Baroreflex Sensitivity in Rats with Renovascular Hypertension. Hypertens. Res. 2022, 45, 802–813. [Google Scholar] [CrossRef]
- Salehi, B.; Upadhyay, S.; Orhan, I.E.; Jugran, A.K.; Jayaweera, S.L.D.; Dias, D.A.; Sharopov, F.; Taheri, Y.; Martins, N.; Baghalpour, N.; et al. Therapeutic Potential of α- and β-Pinene: A Miracle Gift of Nature. Biomolecules 2019, 9, 738. [Google Scholar] [CrossRef]
- Gupta, S.; Variyar, P.S. Nanoencapsulation of Essential Oils for Sustained Release: Application as Therapeutics and Antimicrobials. In Encapsulations; Elsevier: Amsterdam, The Netherlands, 2016; pp. 641–672. [Google Scholar]
- Agiorgiti, M.S.; Evangelou, A.; Vezyraki, P.; Hadjikakou, S.K.; Kalfakakou, V.; Tsanaktsidis, I.; Batistatou, A.; Zelovitis, J.; Simos, Y.V.; Ragos, V.; et al. Cytotoxic Effect, Antitumour Activity and Toxicity of Organotin Derivatives with Ortho- or Para-Hydroxy-Benzoic Acids. Med. Chem. Res. 2018, 27, 1122–1130. [Google Scholar] [CrossRef]
- Petric, Z.; Ruzic, J.; Zuntar, I. The Controversies of Parabens-an Overview Nowadays. Acta Pharm. 2021, 17–32. [Google Scholar] [CrossRef]
- Downs, C.A.; Amin, M.M.; Tabatabaeian, M.; Chavoshani, A.; Amjadi, E.; Afshari, A.; Kelishadi, R. Parabens Preferentially Accumulate in Metastatic Breast Tumors Compared to Benign Breast Tumors and the Association of Breast Cancer Risk Factors with Paraben Accumulation. Environ. Adv. 2023, 11, 100325. [Google Scholar] [CrossRef]
- Hameed, H.; Aydin, S.; Başaran, N. Sinapic Acid: Is It Safe for Humans? J. Pharm. Sci. 2016, 41, 39–49. [Google Scholar]
- Zheng, L.F.; Dai, F.; Zhou, B.; Yang, L.; Liu, Z.L. Prooxidant Activity of Hydroxycinnamic Acids on DNA Damage in the Presence of Cu(II) Ions: Mechanism and Structure-Activity Relationship. Food Chem. Toxicol. 2008, 46, 149–156. [Google Scholar] [CrossRef]
- Pandi, A.; Kalappan, V.M. Pharmacological and Therapeutic Applications of Sinapic Acid—An Updated Review. Mol. Biol. Rep. 2021, 48, 3733–3745. [Google Scholar] [CrossRef]
- Maistro, E.L.; Angeli, J.P.; Andrade, S.F.; Mantovani, M.S. In Vitro Genotoxicity Assessment of Caffeic, Cinnamic and Ferulic Acids. Genet. Mol. Res. 2011, 10, 1130–1140. [Google Scholar] [CrossRef]
- Tasaki, M.; Umemura, T.; Maeda, M.; Ishii, Y.; Okamura, T.; Inoue, T.; Kuroiwa, Y.; Hirose, M.; Nishikawa, A. Safety Assessment of Ellagic Acid, a Food Additive, in a Subchronic Toxicity Study Using F344 Rats. Food Chem. Toxicol. 2008, 46, 1119–1124. [Google Scholar] [CrossRef] [PubMed]
- Marcarini, J.C.; Ferreira Tsuboy, M.S.; Cabral Luiz, R.; Regina Ribeiro, L.; Hoffmann-Campo, C.B.; Ségio Mantovani, M. Investigation of Cytotoxic, Apoptosis-Inducing, Genotoxic and Protective Effects of the Flavonoid Rutin in HTC Hepatic Cells. Exp. Toxicol. Pathol. 2011, 63, 459–465. [Google Scholar] [CrossRef] [PubMed]
- Ganeshpurkar, A.; Saluja, A.K. The Pharmacological Potential of Rutin. Saudi Pharm. J. 2017, 25, 149–164. [Google Scholar] [CrossRef] [PubMed]
- Rashed, K. Beta-Sitosterol Medicinal Properties: A Review Article. Int. J. Sci. Innov. Technol. 2020, 9, 208–212. [Google Scholar]
- Assmann, G.; Cullen, P.; Erbey, J.; Ramey, D.R.; Kannenberg, F.; Schulte, H. Plasma Sitosterol Elevations Are Associated with an Increased Incidence of Coronary Events in Men: Results of a Nested Case-Control Analysis of the Prospective Cardiovascular Münster (PROCAM) Study. Nutr. Metab. Cardiovasc. Dis. 2006, 16, 13–21. [Google Scholar] [CrossRef]
- Paniagua-Pérez, R.; Madrigal-Bujaidar, E.; Reyes-Cadena, S.; Molina-Jasso, D.; Pérez Gallaga, J.; Silva-Miranda, A.; Velazco, O.; Hernández, N.; Chamorro, G. Genotoxic and Cytotoxic Studies of Beta-Sitosterol and Pteropodine in Mouse. J. Biomed. Biotechnol. 2005, 2005, 242–247. [Google Scholar] [CrossRef]
- Nieminen, P.; Pölönen, I.; Ikonen, K.; Määttänen, M.; Mustonen, A.M. Evaluation of Reproductive Safety of β-Sitosterol on the American Mink (Neovison Vison). Chemosphere 2007, 71, 493–499. [Google Scholar] [CrossRef]
- Li, J.; Wang, X.; Liu, H.; Guo, H.; Zhang, M.; Mei, D.; Liu, C.; He, L.; Liu, L.; Liu, X. Impaired Hepatic and Intestinal ATP-Binding Cassette Transporter G5/8 Was Associated with High Exposure of β-Sitosterol and the Potential Risks to Blood-Brain Barrier Integrity in Diabetic Rats. J. Pharm. Pharm. Sci. 2013, 66, 428–436. [Google Scholar] [CrossRef]
- Rashidi, R.; Rezaee, R.; Shakeri, A.; Hayes, A.W.; Karimi, G. A Review of the Protective Effects of Chlorogenic Acid against Different Chemicals. J. Food Biochem. 2022, 46, e14254. [Google Scholar] [CrossRef]
- Cos, P.; Calomme, M.; Sindambiwe, J.-B.; De Bruyne, T.; Cimanga, K.; Pieters, L.; Vlietinck, A.J.; Berghe, D. Vanden Cytotoxicity and Lipid Peroxidation-Inhibiting Activity of Flavonoids. Planta Med. 2001, 67, 515–519. [Google Scholar] [CrossRef]
- Spagnuolo, C.; Russo, M.; Bilotto, S.; Tedesco, I.; Laratta, B.; Russo, G.L. Dietary Polyphenols in Cancer Prevention: The Example of the Flavonoid Quercetin in Leukemia. Ann. N. Y. Acad. Sci. 2012, 1259, 95–103. [Google Scholar] [CrossRef]
- Vanhees, K.; De Bock, L.; Godschalk, R.W.L.; Van Schooten, F.J.; Barjesteh, V.W.; Van Doorn-Khosrovani, S. Prenatal Exposure to Flavonoids: Implication for Cancer Risk. Toxicol. Sci. 2010, 120, 59–67. [Google Scholar] [CrossRef]
- Utesch, D.; Feige, K.; Dasenbrock, J.; Broschard, T.H.; Harwood, M.; Danielewska-Nikiel, B.; Lines, T.C. Evaluation of the Potential in Vivo Genotoxicity of Quercetin. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2008, 654, 38–44. [Google Scholar] [CrossRef]
- Ferry, D.R.; Smith, A.; Malkhandi, J.; Fyfe, D.W.; de Takats, P.G.; Anderson, D.; Baker, J.; Kerr, D.J. Phase I Clinical Trial of the Flavonoid Quercetin: Pharmacokinetics and Evidence for in Vivo Tyrosine Kinase Inhibition. Clin. Cancer Res. 1996, 2, 659–668. [Google Scholar]
- Mozumder, S.N.; Haque, M.I.; Kamal, M.M.; Akter, S.; Banik, B.R. Effect of Storage, Growth Regulator Treatment and Seed Priming on Germination of Eryngium foetidum. Int. J. Adv. Multidiscip. 2017, 4, 16–21. [Google Scholar] [CrossRef]
- Mozumder, S.N.; Moniruzzaman, M.; Rahman, S.M.M.; Sarker, P.C.; Faisal, S.M. Influence of Seed Rate and Method of Sowing on the Performance of Bilatidhonia (Eryngium foetidum L.). Bangladesh J. Agric. Res. 2010, 35, 227–234. [Google Scholar] [CrossRef]
- Mozumder, S.N.; Hossain, M.M.; Akter, S.; Goswami, B.K. Seed Germination and Viability Improvement in Eryngium foetidum through Priming and Chemicals. Int. J. Adv. Innov. Res. 2017, 6, 94–98. [Google Scholar]
- Mozumder, S.N.; Kabir, A.H.M.F.; Hossain, M.M. Influence of Seed Treatment and Priming on Growth Performance of Eryngium foetidum. Int. J. Adv. Multidiscip. 2017, 4, 45–55. [Google Scholar] [CrossRef]
- Mozumder, S.N.; Haque, M.I.; Zaman, M.M.; Shahiduzzaman, M. Effect of Shade and Sowing Method on Eryngium foetidum Production. Int. J. Res.-Granthaalayah 2020, 8, 251–261. [Google Scholar] [CrossRef]
- Kuttan, A.J. Performance of Spiny Coriander (Eryngium foetidum L.) under Different Shade Regimes. Master’s Thesis, Kerala Agricultural University, Thrissur, India, 2008. [Google Scholar]
- Carrera-Quirino, Y.G.; Colohua-Citlahua, B. Diseño Inicial de Una Propuesta Metodológica para la Reproducción de Plantas del Género Eryngium; Orizaba: Veracruz, Mexico, 2014. [Google Scholar]
- Martin, K.P. In Vitro Propagation of the Herbal Spice Eryngium foetidum L. on Sucrose-Added and Sucrose-Free Medium without Growth Regulators and CO2 Enrichment. Sci. Hortic. 2004, 102, 277–282. [Google Scholar] [CrossRef]
- Samad, A.; Singh, B.; Gajurel, P.R. Influence of Propagules and Groth Regulators on the Performance of Underutilized Spice—Spiny Coriander (Eryngium foetidum L.). J. Spices Aromat. 2021, 30, 204–209. [Google Scholar] [CrossRef]
- Ayuso, M.; García-Pérez, P.; Ramil-Rego, P.; Gallego, P.P.; Barreal, M.E. In Vitro Culture of the Endangered Plant Eryngium Viviparum as Dual Strategy for Its Ex Situ Conservation and Source of Bioactive Compounds. Plant. Cell Tissue Organ. Cult. 2019, 138, 427–435. [Google Scholar] [CrossRef]
- Martin, K.P. Organogenesis on Root, Leaf, Stem-Disc, and Scape Explants of Eryngium foetidum L., a Rare Medicinal Plant. J. Herbs Spices Med. Plants 2006, 11, 9–17. [Google Scholar] [CrossRef]
- Nagananda, G.S.; Rajath, S.; Mathew, R.K.; Rajan, S.S. Effect of Adjuvants and Nitrogen Sources on in Vitro Shoot Regeneration and Clonal Propagation of Medicinally Important Plant Eryngium foetidum L. Res. Biotechnol. 2012, 3, 21–25. [Google Scholar]
- Jena, B.; Biswal, B.; Giri, A.K.; Parida, R.; Acharya, L. Rapid In Vitro Propagation and Genetic Fidelity Evaluation of Medicinally Important Mexican Coriander (Eryngium foetidum L.). Plant Cell Biotechnol. Mol. Biol. 2020, 21, 79–88. [Google Scholar]
Specie | Distribution |
---|---|
E. alternatum | State of Mexico, Jalisco, and Michoacán |
E. beecheyanum | State of Mexico, Guanajuato, Jalisco, and Michoacán |
E. bonplandii | State of Mexico, Jalisco, Guanajuato, and Michoacán |
E. carlinae | State of Mexico, Guanajuato, Jalisco, and Michoacán |
E. cervantesii | State of Mexico, Jalisco, Guanajuato, and Michoacán |
E. columnare | State of Mexico, Jalisco, and Michoacán |
E. comosum | State of Mexico and Michoacán |
E. cymosum | State of Mexico, Jalisco, and Michoacán |
E. ferrisiae | Jalisco and Nayarit |
E. fluitans (E. mexicanum) | State of Mexico and Michoacán |
E. ghiesbreghtii | State of Mexico, Jalisco, and Michoacán |
E. gracile | State of Mexico, Jalisco, and Michoacán |
E. haenkei (E. spiculosum) | State of Mexico, Michoacán, and Guerrero |
E. heterophyllum | State of Mexico, Jalisco, and Michoacán |
E. jaliscience | Jalisco |
E. longifolium | State of Mexico, Jalisco, and Michoacán |
E. mexiae | State of Mexico, Jalisco, and Michoacán |
E. nasturtiifolium | State of Mexico, Jalisco, and Michoacán |
E. monocephalum | Guanajuato and Michoacán |
E. palmeri (E. globosum) | Jalisco and Nayarit |
E. pectinatum | State of Mexico and Michoacán |
E. phyteumae | State of Mexico and Michoacán |
E. proteaeflorum | State of Mexico and Michoacán |
E. pugae | Jalisco and Aguascalientes |
E. serratum | State of Mexico, Guanajuato, and Michoacán |
E. sparganophyllum | Jalisco and Michoacán |
E. subacaule (E. ranunculoides) | State of Mexico and Michoacán |
E. yuccifolium | Michoacán (exotic) |
Section | Subsection | Specie |
---|---|---|
Carliniformia | Comosa | E. carlinae |
E. comosum | ||
E. beecheyanum | ||
Madrensia | Setoso-dentata | E. heterophyllum |
E. fluitans | ||
Reptantia | E. nasturtiifolium | |
Panniculata | E. longifolium | |
Spinescentia | E. cymosum |
Specie | Habitat | Altitude (m·asl) | Phenology | Known Distribution |
---|---|---|---|---|
E. beecheyanum | grassland, tropical deciduous forest, and oak-pine forest | 1600–2550 | flowers from April to May and bears fruit from June to January | Chiapas, Chihuahua, Tepic, Sinaloa, Zacatecas, the State of Mexico, Jalisco, Colima, Michoacán, Oaxaca, and Sonora; Central America |
E.carlinae | prairies, pastures, disturbed oak, pine-oak and coniferous forest | 1500–3500 | flowers from May to July and bears fruit from August to January | Chihuahua, Federal District, Durango, State of Mexico, Michoacán, Hidalgo, and Oaxaca; Central and South América Guatemala, and Costa Rica |
E. comosum | plains and grasslands from thorny scrub and oak forest clearings | 1900–2300 | flowers from June to August and bears fruit from September to November | Federal District, Guerrero, Hidalgo, Michoacán, and Querétaro |
E. cymosum | slopes and understory of oak forest and coniferous forests | 2000–3200 | flowers from July to October and bears fruit from October to January | State of Mexico, Guerrero, Hidalgo, and Michoacán |
E. fluitans | humid and flooded grasslands, plains and clearings within oak, pine-oak forests | 2250–2700 | flowers from July to August and bears fruit from September to November | Chihuahua, Durango, the State of Mexico, Michoacán, and Morelos |
E. heterophyllum | grassland and secondary vegetation, tropical deciduous, and oak forests | 1800–2000 | flowers from July to August and bears fruit from September to October | Louisiana, Texas, and Arizona in the United States of America; in Mexico it is in Chihuahua, Durango, San Luis Potosí, Jalisco, Michoacán, State of Mexico, and Oaxaca |
E. longifolium | plains and slopes of oak, oak-pine forests, and grasslands | 1500–2400 | flowers from July to August and bears fruit from September to December | Durango, the State of Mexico, Guerrero, Hidalgo, Jalisco, Michoacán, and Oaxaca |
E. nasturtiifolium | semi-humid environments on the edges of cultivated and disturbed lands, grasslands, and scrublands | 1000–1800 | blooms from February to May and bears fruit from May to August | Southern Arizona and Texas in the United States of America; Mexico: Baja California, Sonora, Sinaloa, Tamaulipas, Veracruz, Nuevo León, Nayarit, Jalisco, and Michoacán to Oaxaca; Cuba, and Central America |
Eryngium sp. | Biological Activity Confirmed | Type of Extract | Plant Tissue | Model | Reference |
---|---|---|---|---|---|
E. carlinae | Hypolipidemic | Ethanolic | Plant | In vivo | [31,50] |
Aqueous | Plant | Clinical trial | [32] | ||
Hexanic | Inflorescence | In vitro and in vivo | [52] | ||
Hypocholesterolemic | Ethanolic | Plant | In vivo | [31,51] | |
Hydroalcoholic | Aerial parts | In vivo | [53] | ||
Hypoglycemic | Hexanic | Inflorescence | In vivo | [52] | |
Hexanic | Inflorescence | I vitro and in vivo | [30] | ||
Antioxidant | Hydroalcoholic | Aerial parts | In vivo | [53] | |
Ethanolic | Plant | In vivo | [51] | ||
Hexanic | Inflorescence | In vitro and in vivo | [30] | ||
Diuretic-Renoprotective | Decoction | Plant | In vivo | [55] | |
Antimicrobiane (Pyhytophtora cinnamomi) | Ethanolic | Aerial parts | In vitro | [59] | |
Anticholelithiasis | Hydroalcoholic | Plant | In vitro | [56] | |
Antispasmodic | Methanolic | Aerial parts | In vivo | [57] | |
E. comosum | Hypocholesterolemic | Aqueous | Plant | In vivo | [13] |
Antioxidant | Aqueous and ethanolic | Plant | In vitro | [60] | |
Ethanolic | Plant | In vitro | [62] | ||
Antimicrobiane (Equine pathogens) | Ethanolic | Plant | In vitro | [61] | |
Cytotoxicity | Ethanolic | Plant | In vitro | [62] | |
Aqueous and ethanolic | Plant | In vitro and in vivo | [60] | ||
E. cymosum | Hypoglycemic | Aqueous | Aerial parts | In vivo | [8] |
Antihyperglycemic | Infusion | Plant | In vivo | [36] | |
E. heterophyllum | Trypanocide | Methanolic | Aerial parts | [66] | |
Hypocholesterolemic | Aqueous | Plant | In vivo | [64] | |
Hypocholesterolemic | Decoction | Plant | Clinical trial | [65] | |
E. longifolium | Hypoglycemic | Aqueous and ethanolic | Aerial parts | In vivo | [35] |
Species Analyzed | Plant Tissue Analyzed; Type of Extract | Analysis Technique | Group of Metabolites Detected | Compounds Detected | Quantification | Reference | Other Eryngium Species Containing |
---|---|---|---|---|---|---|---|
E. carlinae | Aerial parts (stem, leaves, and inflorescences); methanolic | Phytochemical screening | Tannins Saponins Flavonoids | NA | Detection only | [11] | E. pyramidale, E. foetidum, and E. creticum [74,88,89] |
E. carlinae | Aerial parts; aqueous (infusion) | UV-Vis | Total Phenol (Folin–Ciocalteu method) Total flavonoids Total terpenoids | NA | 0.0038 mg GAE/mL 3.3032 mg QE/mL 0.0424 mg LE/mL | [12] | E. creticum and E. maritimum [74,90] |
E. carlinae | Aerial parts; aqueous (infusions at 1 and 2% m/v; decoctions at 5 and 10 min) | UV-Vis | Total Phenol (Folin–Ciocalteu method) Total flavonoids | NA | ≥2.5 mg GAE/mL ≤0.2 mg QE/mL | [32] | E. pyramidale, E. creticum, and E. foetidum [74,88] |
HPLC-DAD-MS | Hydroxybenzoic acids | Gallic acid 4-Hydroxybenzoic acid Protocateuic acid | 1.3–2.6 µg/mL 212–332 µg/mL 105–210 mg/mL | [32] | E. planum, E. campestre, E. maritumum, E. alpinum, E. foetidum, E. bornmuelleri, and E. caucasicum [75,91,92,93,94,95,96] | ||
Hydroxycinnamic acids | Chlorogenic acid Rosmarinic acid Caffeic acid Ellagic acid P-coumaric acid Ferulic acid Synapic acid | 400–700 μg/mL 40–58 μg/mL 12–21 μg/mL 78–116 μg/mL 19–32 μg/mL 10–16.5 μg/mL 2–3.5 μg/mL | [32] | ||||
Flavanols | Galocatequin gallate Catechin Epicatechin Epigallocatechin gallate | 600–1600 μg/mL 68–97 μg/mL 11–16.5 μg/mL 6–10 μg/mL | [32] | ||||
Flavanones | Quercetin Rutin Kaempferol | 89–179 μg/mL 9–156 μg/mL 9–15 μg/mL | [32] | ||||
Hydroxybenzaldehydes | Eriocitrin Hesperidin Naringenin Vanillin | 0.2–0.5 μg/mL 0.4–0.6 μg/mL 0.2–04 μg/mL 4.7–8.4 μg/mL | [32] | ||||
E. carlinae | Aerial parts; aqueous (infusion) | HPLC-DAD | Phenolic acids Flavonoids Phytosterols Saponins | Ellagic acid Caffeic acid Protocateuic acid P-hydroxybenzoic acid Rutin Catechin Epicatechin α-7-stigmasterol β-sitosterol β-campesterol Stigmastanol Campsteryl β-d-glucopyranoside Sitosteryl β-d-glucopyranoside | 38.3 mA 20.3 mA 11.9 mA 9.8 mA 14.1 mA 12.1 mA 11.7 mA 18.7 mA 11.1 mA 8.7 mA 8.4 mA 28.9 mA 20.1 mA | [55] | |
E. carlinae | Inflorescence; hexanic | GC-MS | Terpenes Sesquiterpenes | (Z) β-farnesene β-pinene Calamenene α-farnesene | 38.79% 17.53% 13.3% 10.38% | [30] | E. glaciale, E. amethystinum, E. campestre, E. thorifolium, E. Creticum, E. pristis, E. maritimum, E. alpinum, and E. rosulatum [97,98,99,100,101,102] |
E. carlinae | Aerial parts; ethanolic | GC-MS | Sesquiterpenes Fatty acids | α-selinene β-selinene Palmitic acid Stearic acid Humulene Stigmasterol Elemol Elemene α-cedrene | 17.54% 26.04% 14.43% 14.53% ≤5% | [31] | |
E. carlinae | Aerial parts; hydroalcoholic (EtOH-H20, 7:3 v/v) | GC-MS | Saccharides Polyols | Hexa-O-acetyl-d-mannitol, acetylated derivatives thereof | Detection only | [53] | E. dichotomum [103] |
E. carlinae | Leaves and stems; ethanolic | GC-MS | Saccharides Polyols Organic acids | D-(−)-fructofuranose D-(−)-fructopyranose D-(−)-tagatofuranosa 1,5-anhydro-d-sorbitol Cinnamic acid | Detection only | [87] | E. dichotomum and E. bourgatii [103,104] |
E. carlinae | Aerial parts (leaves + inflorescences); ethanolic | GC-MS | Terpenoids | Borneol α-pinene Myrcene Caryophyllene β-pinene | 367 mg/L 278 mg/L 256 mg/mL 225 mg/mL 120 mg/mL | [59] | E. alpinum, E. amethystinum, and E. bungei [105,106] |
E. carlinae | Aerial parts; ethanolic | Phytochemical screening | Triterpenoids Sterols Tannins Coumarins Carboxyls Flavonoids Carbohydrates | NA | Detection only | [58] | E. pyramidale, E. foetidum, and E. creticum [74,88,89] |
E. comosum | Aerial parts; aqueous (decoction) | Phytochemical screening | Alkaloids Flavonoids (flavones and xanthones) Triterpenoid saponins Reducing sugars Tannins derived from catechol Phenolic compounds Benzoquinones | NA | NA | [13] | |
E. comosum | Aerial parts; aqueous, and hidroethanolic 50% and 70% | UV-Vis | Total Phenol Total Phenol (Folin–Ciocalteu method) Total saponins | NA | 8.0–13.3 mg/mg 0.69–4.33 mg GAE/mg 0–29.33 mg/g DW | [62] | E. creticum and E. maritimum [74,90] |
E. comosum | Aerial parts; ethanolic | UV-Vis | Total Phenol Total Phenol (Folin–Ciocalteu method) Total saponins | NA | 22.1 mg/mg 4.33 mg GAE/g dry weight (DW) 62.2 mg/g DW | [61] | |
E. longifolium | Aerial parts; aqueous (infusion) | HPLC | Phenolic acids Isoflavones Glycosylated flavonoids | Caffeic, chlorogenic acid, and rosmarinic acid | Detection only | [35] | E. planum, E. campestre, E. maritumum, E. alpinum, E. foetidum, E. bornmuelleri, and E. caucasicum [43,75,91,92,93,94,95,96,107] |
E. cymosum | Aerial parts; aqueous (infusion) | HPLC | Phenolic acids | Caffeic, chlorogenic acid, and rosmarinic acid | Detection only | [8] | |
E. cymosum | Aerial parts; aqueous (infusion), ethanolic, and organic (butanol) | HPLC, NMR | Phenolic acids Flavonoids | Chlorogenic and rosmarinic acid (EA) Caffeic and protocateuic acid Kaempferol-3-O-(2,6-di-O-trans-p-coumaryl)-β-d-glucopyranoside | Detection only | [40] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cárdenas-Valdovinos, J.G.; García-Ruiz, I.; Angoa-Pérez, M.V.; Mena-Violante, H.G. Ethnobotany, Biological Activities and Phytochemical Compounds of Some Species of the Genus Eryngium (Apiaceae), from the Central-Western Region of Mexico. Molecules 2023, 28, 4094. https://doi.org/10.3390/molecules28104094
Cárdenas-Valdovinos JG, García-Ruiz I, Angoa-Pérez MV, Mena-Violante HG. Ethnobotany, Biological Activities and Phytochemical Compounds of Some Species of the Genus Eryngium (Apiaceae), from the Central-Western Region of Mexico. Molecules. 2023; 28(10):4094. https://doi.org/10.3390/molecules28104094
Chicago/Turabian StyleCárdenas-Valdovinos, Jeanette G., Ignacio García-Ruiz, María V. Angoa-Pérez, and Hortencia G. Mena-Violante. 2023. "Ethnobotany, Biological Activities and Phytochemical Compounds of Some Species of the Genus Eryngium (Apiaceae), from the Central-Western Region of Mexico" Molecules 28, no. 10: 4094. https://doi.org/10.3390/molecules28104094
APA StyleCárdenas-Valdovinos, J. G., García-Ruiz, I., Angoa-Pérez, M. V., & Mena-Violante, H. G. (2023). Ethnobotany, Biological Activities and Phytochemical Compounds of Some Species of the Genus Eryngium (Apiaceae), from the Central-Western Region of Mexico. Molecules, 28(10), 4094. https://doi.org/10.3390/molecules28104094