Dragon’s Blood Sap Microencapsulation within Whey Protein Concentrate and Zein Using Electrospraying Assisted by Pressurized Gas Technology
Abstract
:1. Introduction
2. Results and Discussion
2.1. Morphology
2.2. Characterization of Polyphenol Content and Antioxidant Activity
2.3. Photo-Oxidation Stability
3. Materials and Methods
3.1. Determination of Total Solids
3.2. Solution Preparation
3.3. EAPG Process
3.4. Freeze-Drying (FD)
3.5. Humidity
3.6. Microscopy
3.7. Photo-Oxidation Stability of the DBS Capsules
3.8. Total Soluble Polyphenols
3.9. Antioxidant Activity
3.10. Attenuated Total Reflection–Fourier Transform Infrared (ATR-FTIR)
3.11. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Kesavan, P.; Banerjee, A.A.; Banerjee, A.A.; Murugesan, R.; Marotta, F.; Pathak, S. An Overview of Dietary Polyphenols and Their Therapeutic Effects, 2nd ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2018; ISBN 9780128130063. [Google Scholar]
- Achmadi, S.S.; Aguilar, C.N.; Aguirre, A.; Amenta, M.; Andabaka, Ž.; Aramouni, F.; Ašperger, D.; Ballistreri, G.; Barros, A.I.R.N.A.; Borneo, R.; et al. Polyphenols in Plants; Elsevier Inc.: Amsterdam, The Netherlands, 2019; pp. xi–xiii. [Google Scholar] [CrossRef]
- Niaz, K.; Khan, F. Chapter 3—Analysis of Polyphenolics. Recent Adv. Nat. Prod. Anal. 2020, 39–197. [Google Scholar] [CrossRef]
- Belščak-Cvitanović, A.; Durgo, K.; Huđek, A.; Bačun-Družina, V.; Komes, D. Overview of Polyphenols and Their Properties; Elsevier: Amsterdam, The Netherlands, 2018; ISBN 9780128135723. [Google Scholar]
- Thakur, M.; Singh, K.; Khedkar, R. Phytochemicals: Extraction Process, Safety Assessment, Toxicological Evaluations, and Regulatory Issues. In Functional and Preservative Properties of Phytochemicals; Elsevier: Amsterdam, The Netherlands, 2020; pp. 341–361. [Google Scholar] [CrossRef]
- Prakash, D.; Gupta, K.R. The Antioxidant Phytochemicals of Nutraceutical Importance. Open Nutraceuticals J. 2009, 2, 20–35. [Google Scholar] [CrossRef]
- Rahman, T.; Hosen, I.; Islam, M.M.T.; Shekhar, H.U. Oxidative Stress and Human Health. Adv. Biosci. Biotechnol. 2012, 3, 997–1019. [Google Scholar] [CrossRef]
- Pizzino, G.; Irrera, N.; Cucinotta, M.; Pallio, G.; Mannino, F.; Arcoraci, V.; Squadrito, F.; Altavilla, D.; Bitto, A. Oxidative Stress: Harms and Benefits for Human Health. Oxid Med. Cell Longev. 2017, 2017, 8416763. [Google Scholar] [CrossRef] [PubMed]
- Escobar, J.D.; Prieto, C.; Pardo-Figuerez, M.; Lagaron, J.M. Dragon’s Blood Sap: Storage Stability and Antioxidant Activity. Molecules 2018, 23, 2641. [Google Scholar] [CrossRef]
- Lock, O.; Perez, E.; Villar, M.; Flores, D.; Rojas, R. Bioactive Compounds from Plants Used in Peruvian Traditional Medicine. Nat. Prod. Commun. 2016, 11, 315–337. [Google Scholar]
- Lopes, M.I.L.E.; Saffi, J.; Echeverrigaray, S.; Henriques, J.A.P.; Salvador, M. Mutagenic and Antioxidant Activities of Croton Lechleri Sap in Biological Systems. J. Ethnopharmacol. 2004, 95, 437–445. [Google Scholar] [CrossRef]
- Gupta, D.; Gupta, R.K. Bioprotective Properties of Dragon’s Blood Resin: In Vitro Evaluation of Antioxidant Activity and Antimicrobial Activity. BMC Complement. Altern. Med. 2011, 11, 13. [Google Scholar] [CrossRef]
- Labuschagne, P. Impact of Wall Material Physicochemical Characteristics on the Stability of Encapsulated Phytochemicals: A Review. Food Res. Int. 2018, 107, 227–247. [Google Scholar] [CrossRef]
- McClements, D.J.J. Requirements for Food Ingredient and Nutraceutical Delivery Systems; Elsevier Masson SAS; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Guo, Y.; Qiao, D.; Zhao, S.; Zhang, B.; Xie, F. Starch-Based Materials Encapsulating Food Ingredients: Recent Advances in Fabrication Methods and Applications. Carbohydr. Polym. 2021, 270, 118358. [Google Scholar] [CrossRef]
- Nikkola, J. Smart Multifunctional Hybrid Coatings with Adjustable Permeability for Migration Barriers. In Smart Composite Coatings and Membranes: Transport, Structural, Environmental and Energy Applications; Woodhead Publishing: Soston, UK, 2016; pp. 351–370. ISBN 9781782422839. [Google Scholar]
- Oxley, J. Overview of Microencapsulation Process Technologies. In Microencapsulation in the Food Industry; Academic Press: Cambridge, MA, USA, 2014; pp. 35–46. ISBN 9780124045682. [Google Scholar]
- Rajan, V.K.; Muraleedharan, K.; Hussan, K.P.S. Structural Evaluation and Toxicological Study of a Bitter Masking Bioactive Flavanone, ‘Eriodictyol’, 2nd ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2018; ISBN 9780128130087. [Google Scholar]
- de Santos, P.D.F.; Rubio, F.T.V.; da Silva, M.P.; Pinho, L.S.; Favaro-Trindade, C.S. Microencapsulation of Carotenoid-Rich Materials: A Review. Food Res. Int. 2021, 147, 110571. [Google Scholar] [CrossRef] [PubMed]
- Heck, R.T.; Lorenzo, J.M.; Dos Santos, B.A.; Cichoski, A.J.; de Menezes, C.R.; Campagnol, P.C.B. Microencapsulation of Healthier Oils: An Efficient Strategy to Improve the Lipid Profile of Meat Products. Curr. Opin. Food Sci. 2021, 40, 6–12. [Google Scholar] [CrossRef]
- Ribeiro, J.S.; Veloso, C.M. Microencapsulation of Natural Dyes with Biopolymers for Application in Food: A Review. Food Hydrocoll 2021, 112, 106374. [Google Scholar] [CrossRef]
- Gómez-Mascaraque, L.G.; López-Rubio, A. Protein-Based Emulsion Electrosprayed Micro- and Submicroparticles for the Encapsulation and Stabilization of Thermosensitive Hydrophobic Bioactives. J. Colloid Interface Sci. 2016, 465, 259–270. [Google Scholar] [CrossRef] [PubMed]
- Prieto, C.; Evtoski, Z.; Pardo-Figuerez, M.; Lagaron, J.M. Bioavailability Enhancement of Nanostructured Microparticles of Carvedilol. J. Drug Deliv. Sci. Technol. 2021, 66, 102780. [Google Scholar] [CrossRef]
- Prieto, C.; Lagaron, J.M. Nanodroplets of Docosahexaenoic Acid-Enriched Algae Oil Encapsulated within Microparticles of Hydrocolloids by Emulsion Electrospraying Assisted by Pressurized Gas. Nanomaterials 2020, 10, 270. [Google Scholar] [CrossRef]
- Gómez-Mascaraque, L.G.; Martínez-Sanz, M.; Fabra, M.J.; López-Rubio, A. Development of Gelatin-Coated ι-Carrageenan Hydrogel Capsules by Electric Field-Aided Extrusion. Impact of Phenolic Compounds on Their Performance. Food Hydrocoll 2019, 90, 523–533. [Google Scholar] [CrossRef]
- Gómez-Mascaraque, L.G.; Lopez-Rubio, A. Production of Food Bioactive-Loaded Nanoparticles by Electrospraying. In Nanoencapsulation of Food Ingredients by Specialized Equipment: Volume 3 in the Nanoencapsulation in the Food Industry Series; Academic Press: Cambridge, MA, USA, 2019; pp. 107–149. [Google Scholar] [CrossRef]
- Basar, A.O.; Prieto, C.; Lagarón, J.M. Novel Encapsulation of Bioactives: Use of Electrohydrodynamic Processing and Applications. Importance Appl. Nanotechnol. 2021, 6, 24–46. [Google Scholar]
- Busolo, M.A.; Torres-Giner, S.; Prieto, C.; Lagaron, J.M. Electrospraying Assisted by Pressurized Gas as an Innovative High-Throughput Process for the Microencapsulation and Stabilization of Docosahexaenoic Acid-Enriched Fish Oil in Zein Prolamine. Innov. Food Sci. Emerg. Technol. 2019, 51, 12–19. [Google Scholar] [CrossRef]
- Miguel, G.A.; Jacobsen, C.; Prieto, C.; Kempen, P.J.; Lagaron, J.M.; Chronakis, I.S.; García-Moreno, P.J. Oxidative Stability and Physical Properties of Mayonnaise Fortified with Zein Electrosprayed Capsules Loaded with Fish Oil. J. Food Eng. 2019, 263, 348–358. [Google Scholar] [CrossRef]
- Torres-Giner, S.; Prieto, C.; Lagaron, J.M. Nanomaterials to Enhance Food Quality, Safety, and Health Impact. Nanomaterials 2020, 10, 941. [Google Scholar] [CrossRef] [PubMed]
- Escobar-García, J.D.; Prieto, C.; Pardo-Figuerez, M.; Lagaron, J.M. Room Temperature Nanoencapsulation of Bioactive Eicosapentaenoic Acid Rich Oil within Whey Protein Microparticles. Nanomaterials 2021, 11, 575. [Google Scholar] [CrossRef] [PubMed]
- Sharif, N.; Golmakani, M.T.; Niakousari, M.; Ghorani, B.; Lopez-Rubio, A. Food-Grade Gliadin Microstructures Obtained by Electrohydrodynamic Processing. Food Res. Int. 2019, 116, 1366–1373. [Google Scholar] [CrossRef] [PubMed]
- Bodnár, E.; Grifoll, J.; Rosell-Llompart, J. Polymer Solution Electrospraying: A Tool for Engineering Particles and Films with Controlled Morphology. J. Aerosol. Sci. 2018, 125, 93–118. [Google Scholar] [CrossRef]
- Boel, E.; Koekoekx, R.; Dedroog, S.; Babkin, I.; Vetrano, M.R.; Clasen, C.; Van den Mooter, G. Unraveling Particle Formation: From Single Droplet Drying to Spray Drying and Electrospraying. Pharmaceutics 2020, 12, 625. [Google Scholar] [CrossRef]
- Oliveira, R.N.; Mancini, M.C.; de Oliveira, F.C.S.; Passos, T.M.; Quilty, B.; da Thiré, R.M.S.M.; McGuinness, G.B. Análise Por FTIR e Quantificação de Fenóis e Flavonóides de Cinco Produtos Naturais Disponíveis Comercialmente Utilizados No Tratamento de Feridas. Rev. Mater. 2016, 21, 767–779. [Google Scholar] [CrossRef]
- Silva, P.M.; Torres-Giner, S.; Vicente, A.A.; Cerqueira, M.A. Electrohydrodynamic Processing for the Production of Zein-Based Microstructures and Nanostructures. Curr. Opin. Colloid Interface Sci. 2021, 56, 101504. [Google Scholar] [CrossRef]
- Mehra, R.; Kumar, H.; Kumar, N.; Ranvir, S.; Jana, A.; Buttar, H.S.; Telessy, I.G.; Awuchi, C.G.; Okpala, C.O.R.; Korzeniowska, M.; et al. Whey Proteins Processing and Emergent Derivatives: An Insight Perspective from Constituents, Bioactivities, Functionalities to Therapeutic Applications. J. Funct. Foods 2021, 87, 104760. [Google Scholar] [CrossRef]
- Minj, S.; Anand, S. Whey Proteins and Its Derivatives: Bioactivity, Functionality, and Current Applications. Dairy 2020, 1, 233–258. [Google Scholar] [CrossRef]
- De Souza, V.B.; Thomazini, M.; Balieiro, J.C.D.C.; Fávaro-Trindade, C.S. Effect of Spray Drying on the Physicochemical Properties and Color Stability of the Powdered Pigment Obtained from Vinification Byproducts of the Bordo Grape (Vitis labrusca). Food Bioprod. Process. 2015, 93, 39–50. [Google Scholar] [CrossRef]
- Wang, H.; Hao, L.; Niu, B.; Jiang, S.; Cheng, J.; Jiang, S. Kinetics and Antioxidant Capacity of Proanthocyanidins Encapsulated in Zein Electrospun Fibers by Cyclic Voltammetry. J. Agric. Food Chem. 2016, 64, 3083–3090. [Google Scholar] [CrossRef] [PubMed]
- Syiemlieh, I.; Asthana, M.; Asthana, S.K.; Kurbah, S.D.; Koch, A.; Lal, R.A. Water Soluble New Bimetallic Catalyst [CuZn(Bz)3(Bpy)2]PF6 in Hydrogen Peroxide Mediated Oxidation of Alcohols to Aldehydes/Ketones and C-N Functional Groups. J. Organomet Chem. 2018, 878, 48–59. [Google Scholar] [CrossRef]
- Merlic, C.A.; Strouse, J. Table of IR Absorptions. 2000. Available online: https://webspectra.chem.ucla.edu/irtable.html (accessed on 3 April 2023).
- de Souza, V.B.; Thomazini, M.; Echalar Barrientos, M.A.; Nalin, C.M.; Ferro-Furtado, R.; Genovese, M.I.; Favaro-Trindade, C.S. Functional Properties and Encapsulation of a Proanthocyanidin-Rich Cinnamon Extract (Cinnamomum zeylanicum) by Complex Coacervation Using Gelatin and Different Polysaccharides. Food Hydrocoll 2018, 77, 297–306. [Google Scholar] [CrossRef]
- Ping, L.; Pizzi, A.; Guo, Z.D.; Brosse, N. Condensed Tannins from Grape Pomace: Characterization by FTIR and MALDI TOF and Production of Environment Friendly Wood Adhesive. Ind. Crops. Prod. 2012, 40, 13–20. [Google Scholar] [CrossRef]
- Schulz, H.; Baranska, M. Identification and Quantification of Valuable Plant Substances by IR and Raman Spectroscopy. Vib. Spectrosc. 2007, 43, 13–25. [Google Scholar] [CrossRef]
- Karonen, M.; Imran, I.B.; Engström, M.T.; Salminen, J.P. Characterization of Natural and Alkaline-Oxidized Proanthocyanidins in Plant Extracts by Ultrahigh-Resolution UHPLC-MS/MS. Molecules 2021, 26, 1873. [Google Scholar] [CrossRef] [PubMed]
- Dangles, O.; Fenger, J.A. The Chemical Reactivity of Anthocyanins and Its Consequences in Food Science and Nutrition. Molecules 2018, 23, 1970. [Google Scholar] [CrossRef]
- Andrade, J.; Pereira, C.G.; de Almeida Junior, J.C.; Viana, C.C.R.; Neves, L.N.d.O.; da Silva, P.H.F.; Bell, M.J.V.; Anjos, V.d.C. dos FTIR-ATR Determination of Protein Content to Evaluate Whey Protein Concentrate Adulteration. LWT 2019, 99, 166–172. [Google Scholar] [CrossRef]
- He, Z.; Xu, M.; Zeng, M.; Qin, F.; Chen, J. Interactions of Milk α- And β-Casein with Malvidin-3-O-Glucoside and Their Effects on the Stability of Grape Skin Anthocyanin Extracts. Food Chem. 2016, 199, 314–322. [Google Scholar] [CrossRef]
- Torres, S.J.V.; Medeiros, G.B.; Rosário, F.; Yamashita, F.; Mattoso, L.H.C.; Corradini, E. Mechanical and Water Absorption Properties and Morphology of Melt Processed Zein/PVAl Blends. Polímeros 2021, 30, e2020042. [Google Scholar] [CrossRef]
Sample | Particle Size (μm) | TSP (mg GAE/g Natural DBS) | IP-DPPH (%) |
---|---|---|---|
Natural DBS | - | 2.05 ± 0.03 a | 93.39 ± 0.01 a |
DBS—FD | - | 2.06 ± 0.07 a | 96.02 ± 0.04 b |
DBS—EAPG | 11.38 ± 4.34 a | 2.03 ± 0.06 a | 95.27 ± 0.06 b |
WPC—DBS 1:1 | 11.28 ± 4.28 a | 2.07 ± 0.08 a | 80.29 ± 0.02 cd |
WPC—DBS 2:1 | 12.77 ± 4.54 a | 2.03 ± 0.05 a | 79.88 ± 0.02 d |
ZN—DBS 1:1 | 6.37 ± 1.67 b | 2.01 ± 0.12 a | 79.64 ± 0.03 d |
ZN—DBS 2:1 | 7.58 ± 2.54 b | 2.07 ± 0.11 a | 82.94 ± 0.01 c |
Sample | TSP Decay (%) | ||
---|---|---|---|
UV Light Exposure Time (Days) | |||
0 | 20 | 40 | |
DBS-FD | 100 | 78.44 ± 4.97 d | 59.19 ± 6.78 e |
DBS-EAPG | 100 | 85.41 ± 2.11 bc | 61.69 ± 7.56 e |
WPC-DBS 1:1 w/w | 100 | 77.01 ± 1.23 d | 60.87 ± 8.23 e |
WPC-DBS 2:1 w/w | 100 | 94.54 ± 2.13 a | 81.69 ± 4.76 ab |
ZN-DBS 1:1 w/w | 100 | 80.12 ± 5.15 bcd | 63.34 ± 2.34 e |
ZN-DBS 2:1 w/w | 100 | 94.27 ± 1.57 a | 91.92 ± 6.47 ab |
Sample | DPPH Inhibition Decay (%) | ||
---|---|---|---|
UV Light Exposure Time (Days) | |||
0 | 20 | 40 | |
DBS-FD | 100 | 87.92 ± 1.65 b | 70.07 ± 0.39 c |
DBS-EAPG | 100 | 87.84 ± 3.34 b | 72.56 ± 0.80 d |
WPC-DBS 1:1 w/w | 100 | 99.62 ± 2.78 a | 98.79 ± 4.88 a |
WPC-DBS 2:1 w/w | 100 | 100.28 ± 4.85 a | 98.35 ± 3.44 a |
ZN-DBS 1:1 w/w | 100 | 98.63 ± 3.66 a | 99.76 ± 3.11 a |
ZN-DBS 2:1 w/w | 100 | 99.50 ± 2.10 a | 98.92 ± 2.20 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Escobar-García, J.D.; Prieto, C.; Pardo-Figuerez, M.; Lagaron, J.M. Dragon’s Blood Sap Microencapsulation within Whey Protein Concentrate and Zein Using Electrospraying Assisted by Pressurized Gas Technology. Molecules 2023, 28, 4137. https://doi.org/10.3390/molecules28104137
Escobar-García JD, Prieto C, Pardo-Figuerez M, Lagaron JM. Dragon’s Blood Sap Microencapsulation within Whey Protein Concentrate and Zein Using Electrospraying Assisted by Pressurized Gas Technology. Molecules. 2023; 28(10):4137. https://doi.org/10.3390/molecules28104137
Chicago/Turabian StyleEscobar-García, Juan David, Cristina Prieto, Maria Pardo-Figuerez, and Jose M. Lagaron. 2023. "Dragon’s Blood Sap Microencapsulation within Whey Protein Concentrate and Zein Using Electrospraying Assisted by Pressurized Gas Technology" Molecules 28, no. 10: 4137. https://doi.org/10.3390/molecules28104137
APA StyleEscobar-García, J. D., Prieto, C., Pardo-Figuerez, M., & Lagaron, J. M. (2023). Dragon’s Blood Sap Microencapsulation within Whey Protein Concentrate and Zein Using Electrospraying Assisted by Pressurized Gas Technology. Molecules, 28(10), 4137. https://doi.org/10.3390/molecules28104137