Construction of N-Doped Carbon-Modified Ni/SiO2 Catalyst Promoting Cinnamaldehyde Selective Hydrogenation
Abstract
:1. Introduction
2. Results
2.1. Structure and Morphology of Ni/SiO2@NxC
2.2. Catalytic Reactions
2.2.1. Catalytic Performance of Catalysts
2.2.2. Construction of Mott–Schottky Effect on the Catalytic Performance of Ni/SiO2@N7C Catalysts
2.3. Catalytic Stability
3. Materials and Methods
3.1. Materials
3.2. Catalyst Preparation
3.2.1. Preparation of Ni/SiO2 Catalyst
3.2.2. Preparation of Ni/SiO2@NxC Series Catalysts
3.2.3. Preparation of M/SiO2@N7C Series Catalysts
3.3. Catalyst Characterization
3.4. Activity Evaluation
Selectivity (%) = target product (mol) × 100%/[CAL feed (mol) − CAL residue (mol)]
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Lv, Y.; Han, M.; Gong, W.; Wang, D.; Chen, C.; Wang, G.; Zhang, H.; Zhao, H. Fe-Co Alloyed Nanoparticles Catalyzing Efficient Hydrogenation of Cinnamaldehyde to Cinnamyl Alcohol in Water. Angew. Chem. Int. Ed. 2020, 59, 23521–23526. [Google Scholar] [CrossRef]
- Wang, X.; Liang, X.; Geng, P.; Li, Q. Recent Advances in Selective Hydrogenation of Cinnamaldehydeover Supported Metal-Based Catalysts. ACS Catal. 2020, 10, 2395–2412. [Google Scholar] [CrossRef]
- He, L.; Weniger, F.; Neumann, H.; Beller, M. Synthesis, characterization, and application of metal nanoparticles supported on nitrogen-doped carbon: Catalysis beyond electrochemistry. Angew. Chem. Int. Ed. Engl. 2016, 55, 12582–12594. [Google Scholar] [CrossRef] [PubMed]
- Bonita, Y.; Jain, V.; Geng, F.; O’Connell, T.P.; Ramos, N.X.; Rai, N.; Hicks, J.C. Hydrogenation of cinnamaldehyde to cinnamyl alcohol with metal phosphides: Catalytic consequences of product and pyridine doping. Appl. Catal. B 2020, 277, 119272. [Google Scholar] [CrossRef]
- Li, B.; Zeng, H. Formation combined with intercalation of Ni and its alloy nanoparticles within mesoporous silica for robust catalytic reactions. ACS Appl. Mater. Interfaces 2018, 10, 29435–29447. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Yao, W.; Jin, Y.; Jia, W.; Chen, X.; Chen, J.; Zheng, J.; Hu, Y.; Han, D.; Zhao, J. Selective hydrogenation of the CC bond in cinnamaldehyde over an ultra-small Pd-Ag alloy catalyst. Chem. Eng. J. 2018, 351, 995–1005. [Google Scholar] [CrossRef]
- Zhao, M.; Yuan, K.; Wang, Y.; Li, G.; Guo, J.; Gu, L.; Hu, W.; Zhao, H.; Tang, Z. Metal–organic frameworks as selectivity regulators for hydrogenation reactions. Nature 2016, 539, 76–80. [Google Scholar] [CrossRef]
- Zhou, Y.; Chen, C.; Li, Q.; Liu, Y.; Wei, T.; Liu, Y.; Zeng, Z.; Bradshaw, D.; Zhang, B.; Huo, J. Precise control of selective hydrogenation of α, β-unsaturated aldehydes in water mediated by ammonia borane. Appl. Catal. B 2022, 311, 121348. [Google Scholar] [CrossRef]
- Zhang, S.; Xia, Z.; Zhang, M.; Zou, Y.; Shen, H.; Li, J.; Chen, X.; Qu, Y. Boosting selective hydrogenation through hydrogen spillover on supported-metal catalysts at room temperature. Appl. Catal. B 2021, 297, 120418. [Google Scholar] [CrossRef]
- Kahsar, K.R.; Schwartz, D.K.; Medlin, J.W. Control of Metal Catalyst Selectivity through Specific Noncovalent Molecular Interactions. J. Am. Chem. Soc. 2014, 136, 520–526. [Google Scholar] [CrossRef]
- Woehrle, G.H.; Warner, M.G.; Hutchison, J.E. Ligand exchange reactions yield subnanometer, thiol-stabilized gold particles with defined optical transitions. J. Phys. Chem. B 2002, 106, 9979–9981. [Google Scholar] [CrossRef]
- Wu, B.; Huang, H.; Yang, J.; Zheng, N.; Fu, G. Selective hydrogenation of α, β-unsaturated aldehydes catalyzed by amine-capped platinum-cobalt nanocrystals. Angew. Chem. Int. Ed. Engl. 2012, 51, 3440–3443. [Google Scholar] [CrossRef]
- Zhu, Y.; Qian, H.; Drake, B.A.; Jin, R. Atomically precise Au25(SR)18 nanoparticles as catalysts for the selective hydrogenation of α, β-unsaturated ketones and aldehydes. Angew. Chem. Int. Ed. Engl. 2010, 122, 1317–1320. [Google Scholar] [CrossRef]
- Yuan, K.; Song, T.; Wang, D.; Zhang, X.; Gao, X.; Zou, Y.; Dong, H.; Tang, Z.; Hu, W. Effective and Selective Catalysts for Cinnamaldehyde Hydrogenation: Hydrophobic Hybrids of Metal–Organic Frameworks, Metal Nanoparticles, and Micro-and Mesoporous Polymers. Angew. Chem. Int. Ed. Engl. 2018, 130, 5810–5815. [Google Scholar] [CrossRef]
- Yang, X.; Chen, D.; Liao, S.; Song, H.; Li, Y.; Fu, Z.; Su, Y. High-performance Pd–Au bimetallic catalyst with mesoporous silica nanoparticles as support and its catalysis of cinnamaldehyde hydrogenation. J. Catal. 2012, 291, 36–43. [Google Scholar] [CrossRef]
- Zheng, Y.; Zhang, G.; Zhang, P.; Chu, S.; Wu, D.; Sun, C.; Qian, B.; Chen, S.; Tao, S.; Song, L. Structural investigation of metallic Ni nanoparticles with N-doped carbon for efficient oxygen evolution reaction. Chem. Eng. J. 2022, 429, 132122. [Google Scholar] [CrossRef]
- Fan, X.-Z.; Du, X.; Pang, Q.-Q.; Zhang, S.; Liu, Z.-Y.; Yue, X.-Z. In Situ Construction of Bifunctional N-Doped Carbon-Anchored Co Nanoparticles for OER and ORR. ACS Appl. Mater. Interfaces 2022, 14, 8549–8556. [Google Scholar] [CrossRef]
- Bisen, O.Y.; Atif, S.; Mallya, A.; Nanda, K.K. Self-Assembled TMD Nanoparticles on N-Doped Carbon Nanostructures for Oxygen Reduction Reaction and Electrochemical Oxygen Sensing Thereof. ACS Appl. Mater. Interfaces 2022, 14, 5134–5148. [Google Scholar] [CrossRef]
- Guo, F.; Zhang, M.; Yi, S.; Li, X.; Xin, R.; Yang, M.; Liu, B.; Chen, H.; Li, H.; Liu, Y. Metal-coordinated porous polydopamine nanospheres derived Fe3N-FeCo encapsulated N-doped carbon as a highly efficient electrocatalyst for oxygen reduction reaction. Nano Res. Energy 2022, 1, e9120027. [Google Scholar] [CrossRef]
- Wei, X.; Xiao, S.; Wu, R.; Zhu, Z.; Zhao, L.; Li, Z.; Wang, J.; Chen, J.S.; Wei, Z. Activating COOH* intermediate by Ni/Ni3ZnC0.7 heterostructure in porous N-doped carbon nanofibers for boosting CO2 electroreduction. Appl. Catal. B 2022, 302, 120861. [Google Scholar] [CrossRef]
- Huang, R.; Wu, J.; Zhang, M.; Liu, B.; Zheng, Z.; Luo, D. Strategies to enhance photocatalytic activity of graphite carbon nitride-based photocatalysts. Mater. Des. 2021, 210, 110040. [Google Scholar] [CrossRef]
- Pu, C.; Li, R.-D.; Chang, G.-G.; Chen, M.-J.; Yao, Y.; Li, J.-S.; Zhao, B.; Wu, L.; Zhang, Y.-X.; Yang, X.-Y. Hierarchical ZrO2@ N-doped carbon nano-networks anchored ultrafine Pd nanoparticles for highly efficient catalytic hydrogenation. Sci. China Chem. 2022, 65, 1661–1669. [Google Scholar] [CrossRef]
- Gong, W.; Chen, C.; Zhang, H.; Zhang, Y.; Zhang, Y.; Wang, G.; Zhao, H. Highly selective liquid-phase hydrogenation of furfural over N-doped carbon supported metallic nickel catalyst under mild conditions. Mol. Catal. 2017, 429, 51–59. [Google Scholar] [CrossRef]
- Wang, J.; Wei, Q.; Ma, Q.; Guo, Z.; Qin, F.; Ismagilov, Z.R.; Shen, W. Constructing Co@ N-doped graphene shell catalyst via Mott-Schottky effect for selective hydrogenation of 5-hydroxylmethylfurfural. Appl. Catal. B 2020, 263, 118339. [Google Scholar] [CrossRef]
- Li, X.; Pan, Y.; Yi, H.; Hu, J.; Yang, D.; Lv, F.; Li, W.; Zhou, J.; Wu, X.; Lei, A. Mott–Schottky effect leads to alkyne semihydrogenation over Pd-nanocube@ N-doped carbon. ACS Catal. 2019, 9, 4632–4641. [Google Scholar] [CrossRef]
- Huang, Y.; Yan, H.; Zhang, C.; Wang, Y.; Wei, Q.; Zhang, R. Interfacial Electronic Effects in Co@ N-Doped Carbon Shells Heterojunction Catalyst for Semi-Hydrogenation of Phenylacetylene. Nanomaterials 2021, 11, 2776. [Google Scholar] [CrossRef]
- Wei, Q.; Wang, J.; Shen, W. Atomically dispersed Feδ+ anchored on nitrogen-rich carbon for enhancing benzyl alcohol oxidation through Mott-Schottky effect. Appl. Catal. B 2021, 292, 120195. [Google Scholar] [CrossRef]
- Chen, L.; Chen, H.; Li, Y. One-pot synthesis of Pd@ MOF composites without the addition of stabilizing agents. Chem. Commun. 2014, 50, 14752–14755. [Google Scholar] [CrossRef]
- Liu, X.; Cheng, S.; Long, J.; Zhang, W.; Liu, X.; Wei, D. MOFs-Derived Co@CN bi-functional catalysts for selective transfer hydrogenation of α, β-unsaturated aldehydes without use of base additives. Mater. Chem. Front. 2017, 1, 2005–2012. [Google Scholar] [CrossRef]
- Xue, Z.H.; Han, J.T.; Feng, W.J.; Yu, Q.Y.; Li, X.H.; Antonietti, M.; Chen, J.S. Tuning the adsorption energy of methanol molecules along Ni-N-doped carbon phase boundaries by the Mott–Schottky effect for gas-phase methanol dehydrogenation. Angew. Chem. Int. Ed. Engl. 2018, 130, 2727–2731. [Google Scholar] [CrossRef]
- Xu, D.; Zhang, S.-N.; Chen, J.-S.; Li, X.-H. Design of the Synergistic Rectifying Interfaces in Mott–Schottky Catalysts. Chem. Rev. 2022, 123, 1–30. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Guo, S.; Yang, J.; Xu, Y.; Sun, J.; Wei, D.; Chen, Z.; Zhao, B.; Ding, W. Nitrogen-Doped Carbon Activated in Situ by Embedded Nickel through the Mott–Schottky Effect for the Oxygen Reduction Reaction. ChemPhysChem 2017, 18, 3454–3461. [Google Scholar] [CrossRef]
- Chang, Y.; Hong, F.; He, C.; Zhang, Q.; Liu, J. Nitrogen and sulfur dual-doped non-noble catalyst using fluidic acrylonitrile telomer as precursor for efficient oxygen reduction. Adv. Mater. 2013, 25, 4794–4799. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Han, M.; Wang, B.; Li, Y.; Lei, L.; Wang, K.; Wang, Y.; Zhang, L.; Feng, H. Superior supercapacitors based on nitrogen and sulfur co-doped hierarchical porous carbon: Excellent rate capability and cycle stability. J. Power Sources 2017, 358, 112–120. [Google Scholar] [CrossRef]
- Li, J.; Liu, G.; Long, X.; Gao, G.; Wu, J.; Li, F. Different active sites in a bifunctional Co@N-doped graphene shells based catalyst for the oxidative dehydrogenation and hydrogenation reactions. J. Catal. 2017, 355, 53–62. [Google Scholar] [CrossRef]
- Lo, P.H.; Tsai, W.T.; Lee, J.T.; Hung, M.P. The electrochemical behavior of electroless plated Ni-P alloys in concentrated NaOH solution. J. Electrochem. Soc. 1995, 142, 91. [Google Scholar] [CrossRef]
- Lamai, W.; Bunphung, A.; Junumpun, I.; Wongkaew, A. Synthesis and characterization of Ni@Pt core-shell catalyst over TiO2 support prepared by incipient wetness impregnation and electroless deposition. Mater. Today Proc. 2019, 17, 1396–1402. [Google Scholar] [CrossRef]
- Luo, S.; Li, X.; Gao, W.; Zhang, H.; Luo, M. An MOF-derived C@NiO@Ni electrocatalyst for N2 conversion to NH3 in alkaline electrolytes. Sustain. Energy Fuels 2020, 4, 164–170. [Google Scholar] [CrossRef]
- Li, Z.; Zheng, P.; Zhang, W.; Gong, S.; Zhu, L.; Xu, J.; Rao, F.; Xie, X.; Zhu, G. Constructing SrCO3/SrTiO3 nanocomposites with highly selective photocatalytic CO2-to-CO reduction. Colloids Surf. A Physicochem. Eng. Asp. 2022, 650, 129686. [Google Scholar] [CrossRef]
- Ma, P.; Zhang, X.; Wang, C.; Wang, Z.; Wang, K.; Feng, Y.; Wang, J.; Zhai, Y.; Deng, J.; Wang, L. Band alignment of homojunction by anchoring CN quantum dots on g-C3N4 (0D/2D) enhance photocatalytic hydrogen peroxide evolution. Appl. Catal. B 2022, 300, 120736. [Google Scholar] [CrossRef]
- Štěpanovská, E.; Malinský, P.; Matoušek, J.; Poustka, D.; Macková, A. Properties of polyamide 6 and polyvinylidene fluoride nanofibers irradiated by H+ ions. In Proceedings of the EPJ Web of Conferences, Sacramento, CA, USA, 24–29 July 2022; EDP Sciences: Washington, DC, USA, 2022; p. 02002. [Google Scholar] [CrossRef]
- Xue, Z.H.; Su, H.; Yu, Q.Y.; Zhang, B.; Wang, H.H.; Li, X.H.; Chen, J.S. Janus Co/CoP nanoparticles as efficient Mott–Schottky electrocatalysts for overall water splitting in wide pH range. Adv. Energy Mater. 2017, 7, 1602355. [Google Scholar] [CrossRef]
- Zhang, K.X.; Su, H.; Wang, H.H.; Zhang, J.J.; Zhao, S.Y.; Lei, W.; Wei, X.; Li, X.H.; Chen, J.S. Atomic-Scale Mott–Schottky Heterojunctions of Boron Nitride Monolayer and Graphene as Metal-Free Photocatalysts for Artificial Photosynthesis. Adv. Sci. 2018, 5, 1800062. [Google Scholar] [CrossRef] [PubMed]
- Ye, K.; Li, Y.; Yang, H.; Li, M.; Huang, Y.; Zhang, S.; Ji, H. An ultrathin carbon layer activated CeO2 heterojunction nanorods for photocatalytic degradation of organic pollutants. Appl. Catal. B 2019, 259, 118085. [Google Scholar] [CrossRef]
- Huang, Y.; Guo, Z.; Liu, H.; Zhang, S.; Wang, P.; Lu, J.; Tong, Y. Heterojunction architecture of N-doped WO3 nanobundles with Ce2S3 nanodots hybridized on a carbon textile enables a highly efficient flexible photocatalyst. Adv. Funct. Mater. 2019, 29, 1903490. [Google Scholar] [CrossRef]
- Li, Y.; Xia, Y.; Liu, K.; Ye, K.; Wang, Q.; Zhang, S.; Huang, Y.; Liu, H. Constructing Fe-MOF-derived Z-scheme photocatalysts with enhanced charge transport: Nanointerface and carbon sheath synergistic effect. ACS Appl. Mater. Interfaces 2020, 12, 25494–25502. [Google Scholar] [CrossRef]
Samples | BET (m2/g) | Pore Volume (cm3/g) | Average Pore Size (nm) a |
---|---|---|---|
Ni/SiO2 | 15.78 | 0.059 | 14.83 |
Ni/SiO2@N2C | 22.23 | 0.064 | 11.55 |
Ni/SiO2@N7C | 16.90 | 0.078 | 18.44 |
Ni/SiO2@N12C | 21.72 | 0.076 | 13.97 |
Entry | Catalyst | Solvent | CAL (Conv. %) | (Sel. %) | ||
---|---|---|---|---|---|---|
HCAL | HCOL | COL | ||||
1 | Blank | Ethanol | 0.35 | |||
2 | Ni/SiO2 | Ethanol | 100 | 2.1 | 97.9 | 0 |
3 | Ni/SiO2@N2C | Ethanol | 78.3 | 83.7 | 14.2 | 2.1 |
4 | Ni/SiO2@N7C | Ethanol | 98.9 | 83.1 | 16.9 | 0 |
5 | Ni/SiO2@N12C | Ethanol | 6.05 | 76.7 | 21.8 | 1.5 |
6 | Co/SiO2@N7C | Ethanol | 45.6 | 21.8 | 54.9 | 23.3 |
7 | Cu/SiO2@N7C | Ethanol | 24.8 | 45.6 | 47.8 | 6.6 |
8 | Fe/SiO2@N7C | Ethanol | 2.74 | 78.1 | 21.5 | 0.4 |
9 | Pd/C | Ethanol | 36.6 | 69.2 | 26.8 | 4.0 |
10 | Ni/SiO2@N7C | Water | 67.1 | 99.8 | 0 | 0.2 |
11 | Ni/SiO2@N7C | Methanol | 34.7 | 89.3 | 6.1 | 4.6 |
12 | Ni/SiO2@N7C | n-Heptane | 36.61 | 69.3 | 26.8 | 3.9 |
13 | Ni/SiO2@N7C | Isopropanol | 4.27 | 70.7 | 29.0 | 0.3 |
14 | Ni/SiO2@N7C | n-Hexane | 0.35 | |||
15 | Ni/SiO2@N7C | n-Propanol | 0.59 | 100 | 0 | 0 |
16 | Ni/SiO2@N7C | n-Butanol | 2.54 | 83.5 | 16.5 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, Y.; Xu, H.; Han, B.; Xu, J. Construction of N-Doped Carbon-Modified Ni/SiO2 Catalyst Promoting Cinnamaldehyde Selective Hydrogenation. Molecules 2023, 28, 4136. https://doi.org/10.3390/molecules28104136
Ren Y, Xu H, Han B, Xu J. Construction of N-Doped Carbon-Modified Ni/SiO2 Catalyst Promoting Cinnamaldehyde Selective Hydrogenation. Molecules. 2023; 28(10):4136. https://doi.org/10.3390/molecules28104136
Chicago/Turabian StyleRen, Yongwang, Huizhong Xu, Beibei Han, and Jing Xu. 2023. "Construction of N-Doped Carbon-Modified Ni/SiO2 Catalyst Promoting Cinnamaldehyde Selective Hydrogenation" Molecules 28, no. 10: 4136. https://doi.org/10.3390/molecules28104136
APA StyleRen, Y., Xu, H., Han, B., & Xu, J. (2023). Construction of N-Doped Carbon-Modified Ni/SiO2 Catalyst Promoting Cinnamaldehyde Selective Hydrogenation. Molecules, 28(10), 4136. https://doi.org/10.3390/molecules28104136