H2O Derivatives Mediate CO Activation in Fischer–Tropsch Synthesis: A Review
Abstract
:1. Introduction
2. H2O Derivatives Mediate CO Activation
2.1. CO Dissociation Activation
2.2. H2O Molecules-Assisted CO Activation
2.3. H-Assisted CO Activation
2.4. OH-Assisted CO Activation
2.5. O-Assisted CO Activation
3. Concluding Remarks and Future Perspectives
- The positive mechanism of action of H2O facilitates partial transport of syngas and hydrocarbons and influences the kinetics of the reaction. H2O increased the coverage C* species by preferentially increasing the rate of CO activation.
- H-assisted CO dissociation activation is easier on the surface of Fe- and Co-based catalysts than unassisted CO. H-assisted pathways are more advantageous for kinetic formation of COH* species than direct dissociation of CO. The co-adsorption H* has a stabilizing effect in the system, and increasing the adsorption energy of CO helps its recombination.
- OH groups can induce changes in the electronic structure of catalyst surfaces. The presence of OH group contributes to improve the C-O bond breaking ability and can also be used as a surface hydrogenated species of active hydrogen species and participate in the conversion reaction of oxygen-containing compounds.
- The O atoms promote the breaking of O-H bond. H2O and CO2 molecules were discussed as carriers of O atoms. The removal pathways of four oxygen species in FTS were analyzed.
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, Z.; Mai, K.; Kumar, N.; Elder, T.; Groom, L.H.; Spivey, J.J. Effect of steam during Fischer–Tropsch synthesis using biomass-derived syngas. Catal. Lett. 2017, 147, 62–70. [Google Scholar] [CrossRef]
- Eschemann, T.O.; De Jong, K.P. Deactivation behavior of Co/TiO2 catalysts during Fischer–Tropsch synthesis. ACS Catal. 2015, 5, 3181–3188. [Google Scholar] [CrossRef]
- Torres Galvis, H.M.; de Jong, K.P. Catalysts for production of lower olefins from synthesis gas: A review. ACS Catal. 2013, 3, 2130–2149. [Google Scholar] [CrossRef]
- Schulz, H. Short history and present trends of Fischer−Tropsch synthesis. Appl. Catal. A-Gen. 1999, 186, 3–12. [Google Scholar] [CrossRef]
- Okoye-Chine, C.G.; Mubenesha, S. The use of iron are as a catalyst in Fischer–Tropsch synthesis-A review. Crystals 2022, 12, 1349. [Google Scholar] [CrossRef]
- De Smit, E.; Weckhuysen, B.M. The renaissance of iron-based Fischer–Tropsch synthesis: On the multifaceted catalyst deactivation behaviour. Chem. Soc. Rev. 2008, 37, 2758. [Google Scholar] [CrossRef] [PubMed]
- Davis, B.H. Fischer–Tropsch synthesis: Comparison of performances of iron and cobalt catalysts. Ind. Eng. Chem. Res. 2007, 46, 8938–8945. [Google Scholar] [CrossRef]
- Mousavi, S.; Zamaniyan, A.; Irani, M.; Rashidzadeh, M. Generalized kinetic model for iron and cobalt based Fischer–Tropsch synthesis catalysts: Review and model evaluation. Appl. Catal. A-Gen. 2015, 506, 57–66. [Google Scholar] [CrossRef]
- Mitchell, W.J.; Xie, J.; Wang, Y.; Weinberg, W.H. Carbon monoxide hydrogenation on the Ru(001) surface at low temperature using gas-phase atomic hydrogen. J. Electron Spectrosc. Relat. Phenom. 1993, 64–65, 427–433. [Google Scholar] [CrossRef]
- Rytter, E.; Holmen, A. Deactivation and regeneration of commercial type Fischer–Tropsch Co-catalysts-A mini-review. Catalysts 2015, 5, 478–499. [Google Scholar] [CrossRef] [Green Version]
- Rytter, E.; Tsakoumis, N.E.; Holmen, A. On the selectivity to higher hydrocarbons in Co-based Fischer–Tropsch synthesis. Catal. Today 2016, 261, 3–16. [Google Scholar] [CrossRef]
- Rytter, E.; Holmen, A. On the support in cobalt Fischer–Tropsch synthesis−emphasis on alumina and aluminates. Catal. Today 2016, 275, 11–19. [Google Scholar] [CrossRef]
- Li, H.; Shi, L.; Ye, R.; Zhang, R.; Feng, G.; Zhang, J. Theoretical investigation of high coverage water adsorption on Co and Ni doped γ-Al2O3 surface. J. Mater. Sci. 2022, 57, 16710–16724. [Google Scholar] [CrossRef]
- Dry, M.E. Fischer–Tropsch synthesis over iron catalysts. Catal. Lett. 1990, 7, 241–251. [Google Scholar] [CrossRef]
- Dry, M.E. Practical and theoretical aspects of the catalytic FTS. Appl. Catal. A-Gen. 1996, 138, 319–344. [Google Scholar] [CrossRef]
- Michaelides, A.; Hu, P. A density functional theory study of hydroxyl and the intermediate in the water formation reaction on Pt. J. Chem. Phys. 2001, 114, 513. [Google Scholar] [CrossRef] [Green Version]
- Michaelides, A.; Hu, P. Catalytic water formation on platinum: A first-principles study. J. Am. Chem. Soc. 2001, 123, 4235–4242. [Google Scholar] [CrossRef] [PubMed]
- Clay, C.; Hodgson, A. Water and mixed OH/water adsorption at close packed metal surfaces. Curr. Opin. Solid State Mater. Sci. 2005, 9, 11–18. [Google Scholar] [CrossRef]
- Fajín, J.L.C.; DS Cordeiro, M.N.; Gomes, J.R.B. Density functional theory study of the water dissociation on platinum surfaces: General trends. J. Phys. Chem. A 2014, 118, 5832–5840. [Google Scholar] [CrossRef]
- Karlberg, G.S.; Olsson, F.E.; Persson, M.; Wahnström, G. Energetics, vibrational spectrum, and scanning tunneling microscopy images for the intermediate in water production reaction on Pt(111) from density functional calculations. J. Chem. Phys. 2003, 119, 4865–4872. [Google Scholar] [CrossRef]
- Chang, C.R.; Huang, Z.Q.; Li, J. The promotional role of water in heterogeneous catalysis: Mechanism insights from computational modeling. Wires. Comput. Mol. Sci. 2016, 6, 679–693. [Google Scholar] [CrossRef]
- Minderhoud, J.K.; Post, M.F.M.; Sie, S.T.; Sudholter, E.J.R. Process for the Preparation of Hydrocarbons from a Mixture of CO and H. sub. 2. U.S. Patent 4,628,133, 9 December 1986. [Google Scholar]
- Kim, C.J. Process for catalytic hydrocarbon synthesis from CO and H2 over metallic cobalt. Eur. Pat. Appl. 1990, 218, A1. [Google Scholar]
- Iglesia, E. Design, synthesis, and use of cobalt-based Fischer–Tropsch synthesis catalysts. Appl. Catal. A-Gen. 1997, 161, 59–78. [Google Scholar] [CrossRef]
- Hammer, B.; Nørskov, J.K. Electronic factors determining the reactivity of metal surfaces. Surf. Sci. 1995, 343, 211–220. [Google Scholar] [CrossRef]
- Rothaemel, M.; Hanssen, K.F.; Blekkan, E.A.; Schanke, D.; Holmen, A. The effect of water on cobalt Fischer–Tropsch catalysts studied by steady-state isotopic transient kinetic analysis (ssitka). Catal. Today 1997, 38, 79–84. [Google Scholar] [CrossRef]
- Banerjee, A.; Van Bavel, A.P.; Kuipers, H.P.; Saeys, M. CO activation on realistic cobalt surfaces: Kinetic role of hydrogen. ACS Catal. 2017, 7, 5289–5293. [Google Scholar] [CrossRef]
- Rytter, E.; Holmen, A. Perspectives on the effect of water in cobalt Fischer–Tropsch synthesis. ACS Catal. 2017, 7, 5321–5328. [Google Scholar] [CrossRef]
- Borg, Ø.; Storsæter, S.; Eri, S.; Wigum, H.; Rytter, E.; Holmen, A. The effect of water on the activity and selectivity for γ-alumina supported cobalt Fischer–Tropsch catalysts with different pore sizes. Catal. Lett. 2006, 107, 95–102. [Google Scholar] [CrossRef]
- Lögdberg, S.; Boutonnet, M.; Walmsley, J.C.; Järås, S.; Holmen, A.; Blekkan, E.A. Effect of water on the space-time yield of different supported cobalt catalysts during Fischer–Tropsch synthesis. Appl. Catal. A-Gen. 2011, 393, 109–121. [Google Scholar] [CrossRef]
- Enger, B.C.; Fossan, Å.; Borg, Ø.; Rytter, E.; Holmen, A. Modified alumina as catalyst support for cobalt in the Fischer–Tropsch synthesis. J. Catal. 2011, 284, 9–22. [Google Scholar] [CrossRef]
- Storsæter, S.; Borg, Ø.; Blekkan, E.A.; Tøtdal, B.; Holmen, A. Fischer–Tropsch synthesis over re-promoted Co supported on Al2O3, SiO2 and TiO2: Effect of water. Catal. Today 2005, 100, 343–347. [Google Scholar] [CrossRef]
- Gunasooriya, G.K.K.; Van Bavel, A.P.; Kuipers, H.P.; Saeys, M. Key role of surface hydroxyl groups in C-O activation during Fischer–Tropsch synthesis. ACS Catal. 2016, 6, 3660–3664. [Google Scholar] [CrossRef]
- Visconti, C.G.; Tronconi, E.; Lietti, L.; Forzatti, P.; Rossini, S.; Zennaro, R. Detailed kinetics of the Fischer–Tropsch synthesis on cobalt catalysts based on H-assisted CO activation. Top. Catal. 2011, 54, 786–800. [Google Scholar] [CrossRef]
- Jung, S.C.; Kang, M.H. Adsorption of a water molecule on Fe(100): Density-functional calculations. Phys. Rev. B 2010, 81, 115460. [Google Scholar] [CrossRef] [Green Version]
- Yuzawa, T.; Higashi, T.; Kubota, J.; Kondo, J.N.; Domen, K.; Hirose, C. CO coadsorption-induced recombination of surface hydroxyls to water on Ni(110) surface by iras and tpd. Surf. Sci. 1995, 325, 223–229. [Google Scholar] [CrossRef]
- Li, J.; Zhan, X.; Zhang, Y.; Jacobs, G.; Das, T.; Davis, B.H. Fischer–Tropsch synthesis: Effect of water on the deactivation of Pt promoted Co/Al2O3 catalysts. Appl. Catal. A-Gen. 2002, 228, 203–212. [Google Scholar] [CrossRef]
- Hilmen, A.M.; Lindvåg, O.A.; Bergene, E.; Schanke, D.; Eri, S.; Holmen, A. Selectivity and activity changes upon water addition during Fischer-Tropsch synthesis. Stud. Surf. Sci. Catal. 2001, 136, 295–300. [Google Scholar]
- Shetty, S.; van Santen, R.A. CO dissociation on Ru and Co surfaces: The initial step in the Fischer–Tropsch synthesis. Catal. Today 2011, 171, 168–173. [Google Scholar] [CrossRef]
- Bromfield, T.C.; Curulla Ferré, D.; Niemantsverdriet, J.W. A DFT study of the adsorption and dissociation of CO on Fe(100): Influence of surface coverage on the nature of accessible adsorption states. ChemPhysChem 2005, 6, 254–260. [Google Scholar] [CrossRef]
- Sorescu, D.C.; Thompson, D.L.; Hurley, M.M.; Chabalowski, C.F. First-principles calculations of the adsorption, diffusion, and dissociation of a CO molecule on the Fe(100) surface. Phys. Rev. B 2002, 66, 35416. [Google Scholar] [CrossRef]
- Wang, T.; Tian, X.; Li, Y.; Wang, J.; Beller, M.; Jiao, H. Coverage-dependent CO adsorption and dissociation mechanisms on iron surfaces from DFT computations. ACS Catal. 2014, 4, 1991–2005. [Google Scholar] [CrossRef]
- Zhang, C.H.; Chen, B.; Sun, D.B. A DFT study of H2O dissociation on metal-precovered Fe(100) surface. Surf. Interface Anal. 2018, 50, 420–429. [Google Scholar] [CrossRef]
- Helden, P.V.; Steen, E.V. Coadsorption of CO and H on Fe(100). J. Phys. Chem. C 2008, 112, 16505–16513. [Google Scholar] [CrossRef]
- Ojeda, M.; Nabar, R.; Nilekar, A.U.; Ishikawa, A. CO activation pathways and the mechanism of Fischer–Tropsch synthesis. J. Catal. 2010, 272, 287–297. [Google Scholar] [CrossRef]
- Li, J.; Jacobs, G.; Das, T.; Zhang, Y.; Davis, B. Fischer–Tropsch synthesis: Effect of water on the catalytic properties of a Co/SiO2 catalyst. Appl. Catal. A-Gen. 2002, 236, 67–76. [Google Scholar] [CrossRef]
- Gong, X.; Raval, R.; Hu, P. Co dissociation and O removal on Co(0001): A density functional theory study. Surf. Sci. 2004, 562, 247–256. [Google Scholar] [CrossRef]
- Krishnamoorthy, S.; Tu, M.; Ojeda, M.P.; Pinna, D.; Iglesia, E. An investigation of the effects of water on rate and selectivity for the Fischer–Tropsch synthesis on cobalt-based catalysts. J. Catal. 2002, 211, 422–433. [Google Scholar] [CrossRef]
- Bai, Y.; Liu, J.; Wang, T. Theoretical study about adsorbed oxygen reduction over χ-Fe5C2: Formation of H2O and CO2. Mol. Catal. 2022, 524, 112236. [Google Scholar] [CrossRef]
- Van Steen, E.; Schulz, H. Polymerisation kinetics of the Fischer–Tropsch CO hydrogenation using iron and cobalt based catalysts. Appl. Catal. A-Gen. 1999, 186, 309–320. [Google Scholar] [CrossRef]
- Das, T.K.; Conner, W.A.; Li, J.; Jacobs, G.; Dry, M.E.; Davis, B.H. Fischer–Tropsch synthesis: Kinetics and effect of water for a Co/SiO2 catalyst. Energy Fuels 2005, 19, 1430–1439. [Google Scholar] [CrossRef]
- Rohde, M.P.; Schaub, G.; Khajavi, S.; Jansen, J.C.; Kapteijn, F. Fischer–Tropsch synthesis with in situ H2O removal–directions of membrane development. Microporous Mesoporous Mater. 2008, 115, 123–136. [Google Scholar] [CrossRef]
- Dalai, A.K.; Das, T.K.; Chaudhari, K.V.; Jacobs, G.; Davis, B.H. Fischer–Tropsch synthesis: Water effects on Co supported on narrow and wide-pore silica. Appl. Catal. A-Gen. 2005, 289, 135–142. [Google Scholar] [CrossRef]
- Blekkan, E.A.; Borg, Ø.; Frøseth, V.; Holmen, A. Fischer–Tropsch synthesis on cobalt catalysts: The effect of water. Catalysis 2007, 20, 13–32. [Google Scholar]
- Henderson, M.A. The interaction of water with solid surfaces: Fundamental aspects revisited. Surf. Sci. Rep. 2002, 46, 1–308. [Google Scholar] [CrossRef]
- Rofer-depoorter, C.K. A comprehensive mechanism for the Fischer–Tropsch synthesis. Chem. Rev. 1981, 81, 447–474. [Google Scholar] [CrossRef]
- Gorimbo, J.; Muleja, A.; Liu, X.; Hildebrandt, D. Fischer–Tropsch synthesis: Product distribution, operating conditions, iron catalyst deactivation and catalyst speciation. Int. J. Ind. Chem. 2018, 9, 317–333. [Google Scholar] [CrossRef]
- Dalai, A.K.; Davis, B.H. Fischer–Tropsch synthesis: A review of water effects on the performances of unsupported and supported Co catalysts. Appl. Catal. A-Gen. 2008, 348, 1–15. [Google Scholar] [CrossRef]
- Inderwildi, O.R.; Jenkins, S.J.; King, D.A. Fischer–Tropsch mechanism revisited: Alternative pathways for the production of higher hydrocarbons from synthesis gas. J. Phys. Chem. C 2008, 112, 1305–1307. [Google Scholar] [CrossRef]
- Bertole, C.J.; Mims, C.A.; Kiss, G. The effect of water on the cobalt-catalyzed Fischer–Tropsch synthesis. J. Catal. 2002, 210, 84–96. [Google Scholar] [CrossRef]
- Hibbitts, D.D.; Loveless, B.T.; Neurock, M.; Iglesia, E. Mechanistic role of water on the rate and selectivity of Fischer–Tropsch synthesis on ruthenium catalysts. Angew. Chem. Int. Ed. 2013, 52, 12273–12278. [Google Scholar] [CrossRef]
- Bertole, C. Support and rhenium effects on the intrinsic site activity and methane selectivity of cobalt Fischer–Tropsch catalysts. J. Catal. 2004, 221, 191–203. [Google Scholar] [CrossRef]
- Leung, L.W.H.; Goodman, D.W. Modeling the metal-solution interface under ultrahigh vacuum: Vibrational studies of the coadsorption of water and carbon monoxide on Rh(100). Langmuir 1991, 7, 493–496. [Google Scholar] [CrossRef]
- Nakamura, M.; Ito, M. Coadsorption of water monomers with Co on Ru(001) and charge transfer during hydration processes. Chem. Phys. Lett. 2001, 335, 170–175. [Google Scholar] [CrossRef]
- Rytter, E.; Holmen, A. Consorted vinylene mechanism for cobalt Fischer–Tropsch synthesis encompassing water or hydroxyl assisted CO-activation. Top. Catal. 2018, 61, 1024–1034. [Google Scholar] [CrossRef]
- Filot, I.A.W.; Van Santen, R.A.; Hensen, E.J.M. The optimally performing Fischer–Tropsch catalyst. Angew. Chem. Int. Ed. 2014, 53, 12746–12750. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, H.; Dong, X.; Yu, Y.; Zhang, M. Hydrogen-assisted versus hydroxyl-assisted CO dissociation over co-doped Cu(111): A DFT study. Surf. Sci. 2018, 669, 114–120. [Google Scholar] [CrossRef]
- Liu, S.; Li, Y.; Wang, J.; Jiao, H. Mechanisms of H-and OH-assisted co activation as well as C-C coupling on the flat Co(0001) surface-revisited. Catal. Sci. Technol. 2016, 6, 8336–8343. [Google Scholar] [CrossRef]
- Benziger, J.B.; Madix, R.J. The coadsorption of CO and H2 on Fe(100). Surf. Sci. 1982, 115, 279–289. [Google Scholar] [CrossRef]
- Freund, H.J.; Roberts, M.W. Surface chemistry of carbon dioxide. Surf. Sci. Rep. 1996, 8, 225–273. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Zhao, J.; Luo, L.; Du, J.; Zeng, J. Symmetry-breaking sites for activating linear carbon dioxide molecules. Acc. Chem. Res. 2021, 54, 1454–1464. [Google Scholar] [CrossRef]
- Mitchell, W.J.; Xie, J.; Jachimowski, T.A.; Weinberg, W.H. Carbon monoxide hydrogenation on the Ru(001) surface at low temperature using gas-phase atomic hydrogen: Spectroscopic evidence for the carbonyl insertion mechanism on a transition metal surface. J. Am. Chem. Soc. 1995, 117, 2606–2617. [Google Scholar] [CrossRef]
- Amaya-Roncancio, S.; Linares, D.H.; Duarte, H.A.; Sapag, K. DFT study of hydrogen-assisted dissociation of CO by HCO, COH, and HCOH formation on Fe(100). J. Phys. Chem. C 2016, 120, 10830–10837. [Google Scholar] [CrossRef]
- Elahifard, M.R.; Jigato, M.P.; Niemantsverdriet, J.W. Direct versus hydrogen-assisted CO dissociation on the Fe(100) surface: A DFT study. ChemPhysChem 2012, 13, 89–91. [Google Scholar] [CrossRef]
- Hilmen, A.M.; Schanke, D.; Hanssen, K.F.; Holmen, A. Study of the effect of water on alumina supported cobalt Fischer–Tropsch catalysts. Appl. Catal. A-Gen. 1999, 186, 169–188. [Google Scholar] [CrossRef]
- Li, T.; Wen, X.; Li, Y.W.; Jiao, H. Mechanisms of CO activation, surface oxygen removal, surface carbon hydrogenation, and C–C coupling on the stepped Fe(710) surface from computation. J. Phys. Chem. C 2018, 122, 15505–15519. [Google Scholar] [CrossRef]
- Zhang, M.; Guan, X.; Yu, Y. Theoretical insights into the removal pathways of adsorbed oxygen on the surface of χ-Fe5C2(510). Chem. Eng. Sci. 2023, 271, 118576. [Google Scholar] [CrossRef]
- Gracia, J.M.; Prinsloo, F.F.; Niemantsverdriet, J.W. Mars-van krevelen-like mechanism of CO hydrogenation on an iron carbide surface. Catal. Lett. 2009, 133, 257–261. [Google Scholar] [CrossRef] [Green Version]
- Yu, X.; Zhang, J.; Wang, X.; Ma, Q.; Gao, X.; Xia, H.; Lai, X.; Fan, S.; Zhao, T. Fischer–Tropsch synthesis over methyl modified Fe2O3@SiO2 catalysts with low CO2 selectivity. App. Catal. B-Environ. 2018, 232, 420–428. [Google Scholar] [CrossRef]
- Liu, B.; Liang, J.; Gao, X.; Ma, Q.; Zhang, J.; Zhao, T. Highly selective formation of linear α-olefins over layered and hydrophilic Fe3O4/MAG catalysts in CO hydrogenation. Fuel 2022, 326, 125054. [Google Scholar] [CrossRef]
- Zhang, Y.; Guo, X.; Liu, B.; Zhang, J.; Gao, X.; Ma, Q.; Fan, S.; Zhao, T. Cellulose modified iron catalysts for enhanced light olefins and linear C5+ α-olefins from CO hydrogenation. Fuel 2021, 294, 120504. [Google Scholar] [CrossRef]
- Yan, B.; Ma, L.; Gao, X.; Zhang, J.; Ma, Q.; Zhao, T. Amphiphobic surface fabrication of iron catalyst and effect on product distribution of Fischer–Tropsch synthesis. Appl. Catal. A-Gen. 2019, 585, 117184. [Google Scholar] [CrossRef]
- Guo, X.; Liu, B.; Gao, X.; He, F.; Ma, Q.; Fan, S.; Zhao, T.; Tian, J.; Reubroycharoen, P.; Zhang, J. Improved olefin selectivity during CO hydrogenation on hydrophilic Fe/HAP catalysts. Catal. Today 2023, 410, 193–204. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, S.; Wang, K.; He, F.; Gao, X.; Fan, S.; Ma, Q.; Zhao, T.; Zhang, J. H2O Derivatives Mediate CO Activation in Fischer–Tropsch Synthesis: A Review. Molecules 2023, 28, 5521. https://doi.org/10.3390/molecules28145521
Zhang S, Wang K, He F, Gao X, Fan S, Ma Q, Zhao T, Zhang J. H2O Derivatives Mediate CO Activation in Fischer–Tropsch Synthesis: A Review. Molecules. 2023; 28(14):5521. https://doi.org/10.3390/molecules28145521
Chicago/Turabian StyleZhang, Shuai, Kangzhou Wang, Fugui He, Xinhua Gao, Subing Fan, Qingxiang Ma, Tiansheng Zhao, and Jianli Zhang. 2023. "H2O Derivatives Mediate CO Activation in Fischer–Tropsch Synthesis: A Review" Molecules 28, no. 14: 5521. https://doi.org/10.3390/molecules28145521
APA StyleZhang, S., Wang, K., He, F., Gao, X., Fan, S., Ma, Q., Zhao, T., & Zhang, J. (2023). H2O Derivatives Mediate CO Activation in Fischer–Tropsch Synthesis: A Review. Molecules, 28(14), 5521. https://doi.org/10.3390/molecules28145521