Poly(styrene sulfonic acid)-Grafted Carbon Black Synthesized by Surface-Initiated Atom Transfer Radical Polymerization
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Materials
3.2. Functionalization of Carbon Black Nanoparticles
3.3. Synthesis of 1-(Chlorodimethylsilyl) Propyl-2-bromoisobutyrate ATRP Initiator
3.4. ATRP of PSS-Grafted Carbon Black NPs
3.5. Characterization
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Avouris, P.; Chen, Z.; Perebeinos, V. Carbon-Based Electronics. Nat. Nanotechnol. 2007, 2, 605. [Google Scholar] [CrossRef] [PubMed]
- Ko, M.; Kirakosyan, A.; Kim, H.-U.; Seok, H.; Choi, J.; Jeon, N. A New Nanoparticle Heterostructure Strategy with Highly Tunable Morphology via Sequential Infiltration Synthesis. Appl. Surf. Sci. 2022, 593, 153387. [Google Scholar] [CrossRef]
- Jiang, B.; Qi, C.; Yang, H.; Wu, X.; Yang, W.; Zhang, C.; Li, S.; Wang, L.; Li, Y. Recent Advances of Carbon-Based Electromagnetic Wave Absorption Materials Facing the Actual Situations. Carbon 2023, 208, 390. [Google Scholar] [CrossRef]
- Yun, S.; Kirakosyan, A.; Surabhi, S.; Jeong, J.-R.; Choi, J. Controlled Morphology of MWCNTs Driven by Polymer-Grafted Nanoparticles for Enhanced Microwave Absorption. J. Mater. Chem. C 2017, 5, 8436. [Google Scholar] [CrossRef]
- Jung, N.; Kim, S.M.; Kang, D.H.; Chung, D.Y.; Kang, Y.S.; Chung, Y.-H.; Choi, Y.W.; Pang, C.; Suh, K.-Y.; Sung, Y.-E. High-Performance Hybrid Catalyst with Selectively Functionalized Carbon by Temperature-Directed Switchable Polymer. Chem. Mater. 2013, 25, 1526. [Google Scholar] [CrossRef]
- Jaleh, B.; Nasrollahzadeh, M.; Eslamipanah, M.; Nasri, A.; Shabanlou, E.; Manwar, N.R.; Zboril, R.; Fornasiero, P.; Gawande, M.B. The Role of Carbon-Based Materials for Fuel Cells Performance. Carbon 2022, 198, 301. [Google Scholar] [CrossRef]
- Muralidharan, N.; Teblum, E.; Westover, A.S.; Schauben, D.; Itzhak, A.; Muallem, M.; Nessim, G.D.; Pint, C.L. Carbon Nanotube Reinforced Structural Composite Supercapacitor. Sci. Rep. 2018, 8, 17662. [Google Scholar] [CrossRef]
- Kumar, H.G.P.; Xavior, M.A. Graphene Reinforced Metal Matrix Composite (GRMMC): A Review. Procedia Eng. 2014, 97, 1033. [Google Scholar] [CrossRef]
- Mamunya, Y. Carbon Nanotubes as Conductive Filler in Segregated Polymer Composites—Electrical Properties. In Carbon Nanotubes–Polymer Nanocomposites; InTech Croatia: Rijeka, Croatia, 2011. [Google Scholar]
- Lee, D.K.; Yoo, J.; Kim, H.; Kang, B.H.; Park, S.H. Electrical and Thermal Properties of Carbon Nanotube Polymer Composites with Various Aspect Ratios. Materials 2022, 15, 1356. [Google Scholar] [CrossRef]
- Göldel, A.; Marmur, A.; Kasaliwal, G.R.; Pötschke, P.; Heinrich, G. Shape-Dependent Localization of Carbon Nanotubes and Carbon Black in an Immiscible Polymer Blend during Melt Mixing. Macromolecules 2011, 44, 6094. [Google Scholar] [CrossRef]
- Donchak, V.; Stetsyshyn, Y.; Bratychak, M.; Broza, G.; Harhay, K.; Stepina, N.; Kostenko, M.; Voronov, S. Nanoarchitectonics at surfaces using multifunctional initiators of surface-initiated radical polymerization for fabrication of the nanocomposites. Appl. Surf. Sci. 2021, 5, 100104. [Google Scholar] [CrossRef]
- Rozière, J.; Jones, D.J. Non-Fluorinated Polymer Materials for Proton Exchange Membrane Fuel Cells. Annu. Rev. Mater. Res. 2003, 33, 503. [Google Scholar] [CrossRef]
- Andersen, S.M.; Borghei, M.; Dhiman, R.; Jiang, H.; Ruiz, V.; Kauppinen, E.; Skou, E. Interaction of Multi-Walled Carbon Nanotubes with Perfluorinated Sulfonic Acid Ionomers and Surface Treatment Studies. Carbon 2014, 71, 218. [Google Scholar] [CrossRef]
- Tang, B.Z.; Xu, H. Preparation, Alignment, and Optical Properties of Soluble Poly(phenylacetylene)-Wrapped Carbon Nanotubes. Macromolecules 1999, 32, 2569. [Google Scholar] [CrossRef]
- Lou, X.; Detrembleur, C.; Sciannamea, V.; Pagnoulle, C.; Jérôme, R. Grafting of alkoxyamine end-capped (co)polymers onto multi-walled carbon nanotubes. Polymer 2007, 45, 6097. [Google Scholar] [CrossRef]
- Li, Z.; Xie, G.; Wang, C.; Liu, Z.; Chen, J.; Zhong, S. Binder Free Cu2O/CuO/Cu/Carbon-polymer Composite Fibers Derived from Metal/Organic Hybrid Materials Through Electrodeposition Method as High Performance Anode Materials for Lithium-Ion Batteries. J. Alloys Compd. 2021, 864, 158585. [Google Scholar] [CrossRef]
- Choi, J.; Dong, H.; Matyjaszewski, K.; Bockstaller, M.R. Flexible Particle Array Structures by Controlling Polymer Graft Architecture. J. Am. Chem. Soc. 2010, 132, 12537. [Google Scholar] [CrossRef] [PubMed]
- Hui, C.M.; Pietrasik, J.; Schmitt, M.; Mahoney, C.; Choi, J.; Bockstaller, M.R.; Matyjaszewski, K. Surface-Initiated Polymerization as an Enabling Tool for Multifunctional (Nano-)Engineered Hybrid Materials. Chem. Mater. 2014, 26, 745. [Google Scholar] [CrossRef]
- Jeon, M.-G.; Kabir, R.M.D.; Kim, S.; Kirakosyan, A.; Kim, C.-Y.; Lee, S.M.; Lee, D.-H.; Kim, Y.; Choi, J. Highly processable and stable PMMA-grafted CsPbBr3-SiO2 nanoparticles for down-conversion photoluminescence. Compos. B. Eng. 2022, 239, 109956. [Google Scholar] [CrossRef]
- Choi, J.; Hui, C.M.; Schmitt, M.; Pietrasik, J.; Margel, S.; Matyjazsewski, K.; Bockstaller, M.R. Effect of Polymer-Graft Modification on the Order Formation in Particle Assembly Structures. Langmuir 2013, 29, 6452. [Google Scholar] [CrossRef]
- Miller, P.J.; Matyjaszewski, K. Atom Transfer Radical Polymerization of (Meth)acrylates from Poly(dimethylsiloxane) Macroinitiators. Macromolecules 1999, 32, 8760. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, X.; Wang, S.; Li, W.; Wang, X.; Chen, S.; Chen, J.; Xie, X. Proton Exchange Membranes Prepared via Atom Transfer Radical Polymerization for Proton Exchange Membrane Fuel Cell: Recent Advances And Perspectives. Int. J. Hydrogen Energy 2017, 42, 30013. [Google Scholar] [CrossRef]
- Liu, H.; Gong, B.; Zhou, Y.; Sun, Z.; Wang, X.; Zhao, S. Preparation of High-Capacity Magnetic Polystyrene Sulfonate Sodium Material Based on Si-ATRP Method and its Adsorption Property Research for Sulfonamide Antibiotics. BMC Chem. 2020, 14, 3. [Google Scholar] [CrossRef]
- Ma, S.; Zhang, X.; Yu, B.; Zhou, F. Brushing up Functional Materials. NPG Asia Mater. 2019, 11, 24. [Google Scholar] [CrossRef]
- Ran, J.; Wu, L.; Zhang, Z.; Xu, T. Atom Transfer Radical Polymerization (ATRP): A Versatile and Forceful Tool for Functional Membranes. Prog. Polym. Sci. 2014, 39, 124. [Google Scholar] [CrossRef]
- Kuwabara, A.; Kuroda, S.I.; Kubota, H. Polymer Surface Treatment by Atmospheric Pressure Low Temperature Surface Discharge Plasma: Its Characteristics and Comparison with Low Pressure Oxygen Plasma Treatment. Plasma Sci. Technol. 2007, 9, 181. [Google Scholar] [CrossRef]
- Kostov, K.G.; Nishime, T.M.C.; Hein, L.R.O.; Toth, A. Study of Polypropylene Surface Modification by Air Dielectric Barrier Discharge Operated at Two Different Frequencies. Surf. Coat. Technol. 2013, 234, 60. [Google Scholar] [CrossRef]
- Rjeb, A.; Letarte, S.; Tajounte, L.; Idrissi, M.C.E.; Adnot, A.; Roy, D.; Claire, Y.; Kaloustian, J. Polypropylene Natural Aging Studied by X-ray Photoelectron Spectroscopy. J. Electron. Spectros. Relat. Phenom. 2000, 107, 221. [Google Scholar] [CrossRef]
- Kim, D.; Yun, S.; Chun, S.; Choi, J. Porous Carbon Networks with Nanosphere-Interconnected Structure via 3-Aminophenol-Formaldehyde Polymerization. Macromol. Res. 2018, 26, 317. [Google Scholar] [CrossRef]
- Wan, L.; Li, N.; Li, X.; Chen, J.; Zhang, Y.; Xie, M.; Du, C. One-step Synthesis of N, S-Codoped Porous Graphitic Carbon Derived from Lotus Leaves for High-performance Supercapacitors. Ionics 2019, 25, 4891. [Google Scholar] [CrossRef]
- Mohy Eldin, M.S.; Abu-Saied, M.A.; Tamer, T.M.; Youssef, M.E.; Hashem, A.I.; Sabet, M.M. Development of polystyrene-based nanoparticle ion-exchange resin for water purification applications. Desalination Water Treat. 2016, 57, 14810. [Google Scholar] [CrossRef]
- Xu, Y.; Han, K.; Xiang, J.; Wang, X. On the Dependence of Band Alignment of SiO2/Si Stack on SiO2 Thickness: Extrinsic Or Intrinsic? IEEE Access 2020, 8, 159162. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kirakosyan, A.; Lee, D.; Choi, Y.; Jung, N.; Choi, J. Poly(styrene sulfonic acid)-Grafted Carbon Black Synthesized by Surface-Initiated Atom Transfer Radical Polymerization. Molecules 2023, 28, 4168. https://doi.org/10.3390/molecules28104168
Kirakosyan A, Lee D, Choi Y, Jung N, Choi J. Poly(styrene sulfonic acid)-Grafted Carbon Black Synthesized by Surface-Initiated Atom Transfer Radical Polymerization. Molecules. 2023; 28(10):4168. https://doi.org/10.3390/molecules28104168
Chicago/Turabian StyleKirakosyan, Artavazd, Donghyun Lee, Yoonseong Choi, Namgee Jung, and Jihoon Choi. 2023. "Poly(styrene sulfonic acid)-Grafted Carbon Black Synthesized by Surface-Initiated Atom Transfer Radical Polymerization" Molecules 28, no. 10: 4168. https://doi.org/10.3390/molecules28104168
APA StyleKirakosyan, A., Lee, D., Choi, Y., Jung, N., & Choi, J. (2023). Poly(styrene sulfonic acid)-Grafted Carbon Black Synthesized by Surface-Initiated Atom Transfer Radical Polymerization. Molecules, 28(10), 4168. https://doi.org/10.3390/molecules28104168