Screening of Tyrosinase, Xanthine Oxidase, and α-Glucosidase Inhibitors from Polygoni Cuspidati Rhizoma et Radix by Ultrafiltration and HPLC Analysis
Abstract
:1. Introduction
2. Results and Discussion
2.1. The Inhibitory Activities of PCR Extract on TYR, XOD, α-GLU, and ACHE
2.2. Screening of Potential TYRIs, XODIs, and α-GLUIs from PCR Extract by UF-HPLC
2.3. Identification of Potential TYRIs, XODIs, and α-GLUIs from PCR Extract by HPLC-MS
2.4. Kinetic Analysis of Enzyme Inhibitors
2.5. Molecular Docking Analysis
3. Materials and Methods
3.1. Chemicals and Materials
3.2. Sample Preparations
3.3. Offline Inhibition Test of Four Enzymes
3.3.1. Tyrosinase (TYR) Inhibition Test
3.3.2. Xanthine Oxidase (XOD) Inhibition Test
3.3.3. α-Glucosidase (α-GLU) Inhibition Test
3.3.4. Acetylcholinesterase (AChE) Inhibition Test
3.4. Screening of Potential Enzyme Inhibitors from PCR by UF-HPLC
3.4.1. UF Conditions
3.4.2. HPLC-MS Condition
3.5. Kinetic Analysis
3.6. Molecular Docking Condition
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Yan, T.C.; Cao, J.; Ye, L.H. Recent advances on discovery of enzyme inhibitors from natural products using bioactivity screening. J. Sep. Sci. 2022, 45, 2766–2787. [Google Scholar] [CrossRef] [PubMed]
- Brtko, J. Biological functions of kojic acid and its derivatives in medicine, cosmetics, and food industry: Insights into health aspects. Arch. Pharm. 2022, 355, e2200215. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.J.; Hu, Y.J.; Xu, P.; Liang, W.Q.; Zhou, J.; Liu, P.G.; Cheng, L.; Pu, J.B. Screening of potential xanthine oxidase inhibitors in Gnaphalium hypoleucum DC. by immobilized metal affinity chromatography and ultrafiltration-ultra performance liquid chromatography-mass spectrometry. Molecules 2016, 21, 1242. [Google Scholar] [CrossRef] [PubMed]
- Li, H.X.; He, Z.B.; Shen, Q.H.; Fan, W.F.; Tan, G.Y.; Zou, Y.S.; Mei, Q.X.; Qian, Z.M. Rapid screening alpha-glucosidase inhibitors from Polygoni Vivipari Rhizoma by multi-step matrix solid-phase dispersion, ultrafiltration and HPLC. Molecules 2021, 26, 6111. [Google Scholar] [CrossRef]
- García-Gavín, J.; González-Vilas, D.; Fernández-Redondo, V.; Toribio, J. Pigmented contact dermatitis due to kojic acid. A paradoxical side effect of a skin lightener. Contact Dermat. 2010, 62, 63–64. [Google Scholar] [CrossRef]
- Yang, Y.P.; Liang, X.H.; Jin, P.; Li, N.; Zhang, Q.; Yan, W.; Zhang, H.; Sun, J.M. Screening and determination for potential acetylcholinesterase inhibitory constituents from ginseng stem-leaf saponins using ultrafiltration (UF)-LC-ESI-MS2. Phytochem. Anal. 2019, 30, 26–33. [Google Scholar] [CrossRef]
- Yang, G.Y.; Wang, Y.Y.; Tian, J.Z.; Liu, J.P. Huperzine A for alzheimer’s disease: A systematic review and meta-analysis of randomized clinical trials. PLoS ONE 2013, 8, e74916. [Google Scholar] [CrossRef]
- Zhao, D.F.; He, R.J.; Hou, X.D.; Ji, D.R.; Zhang, Q.H.; Wang, P.; Ge, G.B. New technologies for efficient discovery and evaluation of natural enzyme inhibitors: Research progress and perspectives. Acad. J. Shanghai Univ. Tradit. Chin. Med. 2021, 35, 1–11, 19. [Google Scholar] [CrossRef]
- Wei, H.; Zhang, X.J.; Tian, X.; Wu, G.H. Pharmaceutical applications of affinity-ultrafiltration mass spectrometry: Recent advances and future prospects. J. Pharm. Biomed. Anal. 2016, 131, 444–453. [Google Scholar] [CrossRef]
- National Pharmacopoeia Commission (Ed.) National Pharmacopoeia Commission, Pharmacopoeia of the People’s Republic of China (2020 Edition Part One); China Pharmaceutical Science and Technology Press: Beijing, China, 2020; pp. 212–217. [Google Scholar]
- Lee, C.C.; Chen, Y.T.; Chiu, C.C.; Liao, W.T.; Liu, Y.C.; David Wang, H.M. Polygonum cuspidatum extracts as bioactive antioxidaion, anti-tyrosinase, immune stimulation and anticancer agents. J. Biosci. Bioeng. 2015, 119, 464–469. [Google Scholar] [CrossRef]
- Zhang, H.; Li, C.; Kwok, S.T.; Zhang, Q.W.; Chan, S.W. A review of the pharmacological effects of the dried root of Polygonum cuspidatum (Hu Zhang) and its constituents. Evid. Based Complement. Altern. Med. 2013, 2013, 208349. [Google Scholar] [CrossRef]
- Liang, C.X.; Wang, S.S.; Chen, S.J.; Wang, Y.; Li, J.; Chang, Y.X. Research development on chemical composition and pharmacology of Polygoni Cuspidati Rhizoma et Radix. Chin. Tradit. Herb. Drugs 2022, 53, 1264–1276. [Google Scholar] [CrossRef]
- Shen, B.; Truong, J.; Helliwell, R.; Govindaraghavan, S.; Sucher, N.J. An in vitro study of neuroprotective properties of traditional Chinese herbal medicines thought to promote healthy ageing and longevity. BMC Complement. Altern. Med. 2013, 13, 373. [Google Scholar] [CrossRef]
- Kasmawati, H.; Mustarichie, R.; Halimah, E.; Ruslin, R.; Arfan, A.; Sida, N.A. Unrevealing the potential of Sansevieria trifasciata Prain fraction for the treatment of androgenetic alopecia by inhibiting androgen receptors based on LC-MS/MS analysis, and in-silico studies. Molecules 2022, 27, 4358. [Google Scholar] [CrossRef]
- Wang, Z.Q.; Zhang, Y.X.; Yan, H.Y. In situ net fishing of α-glucosidase inhibitors from evening primrose (Oenothera biennis) defatted seeds by combination of LC-MS/MS, molecular networking, affinity-based ultrafiltration, and molecular docking. Food Funct. 2022, 13, 2545–2558. [Google Scholar] [CrossRef]
- Fu, J.F.; Wang, M.; Guo, H.M.; Tian, Y.; Zhang, Z.J.; Song, R. Profiling of components of Rhizoma et Radix Polygoni Cuspidati by high-performance liquid chromatography with ultraviolet diode-array detector and ion trap/time-of-flight mass spectrometric detection. Pharmacogn. Mag. 2015, 11, 486–501. [Google Scholar] [CrossRef]
- Zhang, Y.T.; Huang, X.; Chen, Y.Z.; Li, J.D.; Yu, K. Chemical constituents and their biosynthesis mechanisms of Polygonum cuspidatum. China J. Chin. Mater. Med. 2020, 45, 4364–4372. [Google Scholar] [CrossRef]
- Zernova, O.V.; Lygin, A.V.; Pawlowski, M.L.; Hill, C.B.; Hartman, G.L.; Widholm, J.M.; Lozovaya, V.V. Regulation of plant immunity through modulation of phytoalexin synthesis. Molecules 2014, 19, 7480–7496. [Google Scholar] [CrossRef]
- Saber, F.R.; Ashour, R.M.; El-Halawany, A.M.; Mahomoodally, M.F.; Ak, G.; Zengin, G.; Mahrous, E.A. Phytochemical profile, enzyme inhibition activity and molecular docking analysis of Feijoa sellowiana O. Berg. J. Enzym. Inhib. Med. Chem. 2021, 36, 618–626. [Google Scholar] [CrossRef]
- Khurshid, U.; Ahmad, S.; Saleem, H.; LodhI, A.H.; Pervaiz, I.; Khan, M.A.; Khan, H.; Alamr, I.A.; Ansar, I.M.; LocatellI, M.; et al. Multifaced assessment of antioxidant power, phytochemical metabolomics, in-vitro biological potential and in-silico studies of Neurada procumbens L.: An important medicinal plant. Molecules 2022, 27, 5849. [Google Scholar] [CrossRef]
- Cai, Y.Z.; Wu, L.F.; Lin, X.; Hu, X.P.; Wang, L. Phenolic profiles and screening of potential α-glucosidase inhibitors from Polygonum aviculare L. leaves using ultra-filtration combined with HPLC-ESI-qTOF-MS/MS and molecular docking analysis. Ind. Crops Prod. 2020, 154, 112673. [Google Scholar] [CrossRef]
- Lu, J.; Song, H.P.; Li, P.; Zhou, P.; Dong, X.; Chen, J. Screening of direct thrombin inhibitors from Radix Salviae Miltiorrhizae by a peak fractionation approach. J. Pharm. Biomed. Anal. 2015, 109, 85–90. [Google Scholar] [CrossRef]
- Xu, P.; Wang, X.; Lin, T.T.; Shao, Q.S.; Peng, J.Y.; Chu, C.; Tong, S.Q. A strategy for pinpointing natural bioactive components using two-dimensional bioassay profilings combined with comprehensive two-dimensional countercurrent chromatography × high-performance liquid chromatography. Anal. Chem. 2022, 94, 12715–12722. [Google Scholar] [CrossRef]
- Hassan, M.; Vanjare, B.D.; Sim, K.Y.; Raza, H.; Lee, K.H.; Shahzadi, S.; Kloczkowski, A. Biological and cheminformatics studies of newly designed triazole based derivatives as potent inhibitors against mushroom tyrosinase. Molecules 2022, 27, 1731. [Google Scholar] [CrossRef]
- Li, D.Q.; Zhao, J.; Li, S.P.; Zhang, Q.W. Discovery of xanthine oxidase inhibitors from a complex mixture using an online, restricted-access material coupled with column-switching liquid chromatography with a diode-array detection system. Anal. Bioanal. Chem. 2014, 406, 1975–1984. [Google Scholar] [CrossRef]
- Talha, M.; Islam, N.U.; Zahoor, M.; Sadiq, A.; Nawaz, A.; Khan, F.A.; Gulfam, N.; Alshamrani, S.A.; Nahari, M.H.; Alshahrani, M.A.; et al. Biological evaluation, phytochemical screening, and fabrication of Indigofera linifolia leaves extract-loaded nanoparticles. Molecules 2022, 27, 4707. [Google Scholar] [CrossRef]
- Les, F.; Prieto, J.M.; Arbonés-Mainar, J.M.; Valero, M.S.; López, V. Bioactive properties of commercialised pomegranate (Punica granatum) juice: Antioxidant, antiproliferative and enzyme inhibiting activities. Food Funct. 2015, 6, 2049–2057. [Google Scholar] [CrossRef]
- Pillaiyar, T.; Manickam, M.; Namasivayam, V. Skin whitening agents: Medicinal chemistry perspective of tyrosinase inhibitors. J. Enzym. Inhib. Med. Chem. 2017, 32, 403–425. [Google Scholar] [CrossRef]
- Li, J.; Wang, Z.; Fan, M.X.; Hu, G.W.; Guo, M.Q. Potential antioxidative and anti-hyperuricemic components targeting superoxide dismutase and xanthine oxidase explored from Polygonatum Sibiricum Red. Antioxidants 2022, 11, 1651. [Google Scholar] [CrossRef]
Sample | TYR | XOD | α-GLU | ACHE |
---|---|---|---|---|
PCR extract | 220.7 ± 2.26 | 63.6 ± 3.02 | 0.9 ± 0.10 | None |
Reference inhibitors | 280.3 ± 4.95 (Arbutin) | 0.9 ± 0.02 (Allopurinol) | 176.1 ± 32.24 (Acarbose) | 0.2 ± 0.01 (Huperzine-A) |
NO. | Compound Name | Retention Time (min) | Molecular Formula | Precursor Ion (m/z) | Fragmentations (m/z) |
---|---|---|---|---|---|
1 | Methylgallate [15] | 13.332 | C8H8O5 | 185.0438 [M + H]+ | 153.0169, 126.0302, 107.0153, 79.0176 |
2 | 1,6-Di-O-galloyl-D-glucose [16] | 14.191 | C20H20O14 | 483.1769 [M − H]− | 313.1380, 271.1175, 169.0700, 125.0735 |
3 | Polydatin-4′-O-D-glucoside [17] | 15.339 | C26H32O13 | 551.2803 [M − H]− | 389.2102, 227.1371 |
4 | Resveratrol-4′-O-D-glucoside [17] | 20.618 | C20H22O8 | 435.2293 [M − H + FA] | 389.2119, 227.1384 |
5 | Polydatin [17,18] | 24.178 | C20H22O8 | 435.2239 [M − H + FA]− | 389.2134, 227.1383, 185.1208 |
6 | Malonyl glucoside resveratrol [19] | 28.677 | C23H24O11 | 475.2210 [M − H]− | 431.2253, 227.1375 |
7 | Resveratrol-5-O-D-glucoside [18] | 30.171 | C20H22O8 | 389.2108 [M − H]− | 227.1368, 185.1186, 143.1006 |
Components | Enzyme | Docking Score (Kcal/mol) | Amino Acid Residues | Hydrogen Bonds |
---|---|---|---|---|
Methylgallate (1) | TYR | −6.036 | ASP312, GLN307, LYS379, TRP358, TYR311 | ASP312, GLN307, LYS379 |
1,6-Di-O-galloyl-D-glucose (2) | TYR | −6.951 | ASP312, ASP353, ASP357, GLU335, GLU356, LYS376, LYS379, THR308, TRP358 | ASP312, ASP353, ASP357, GLU335, GLU356, LYS379, THR308 |
XOD | −11.901 | ALA346, ALA338, ARG426, ASN261, ASN351, ASP360, GLU263, GLY260, LYS422, TRP336, THR354, SER347, VAL259, VAL345 | ALA338, ARG426, ASN261, ASN351, ASP360, GLU263, GLY260, LYS422, TRP336, THR354, SER347, VAL259, VAL345 | |
Polydatin-4′-O-D-glucoside (3) | TYR | −6.569 | ALA220, ARG268, GLU226, GLY223, LEU265, PHE264, THR261, TYR201 | ARG268, GLU226, GLY223, PHE264, THR261, TYR201 |
Resveratrol-4′-O-D-glucoside (4) | TYR | −5.215 | ASP312, GLU356, GLN307, GLH356, LYS372, TRP358 | ASP312, GLU356, GLN307, GLH356, LYS372 |
XOD | −9.189 | ALA255, ASN261, GLU254, GLY260, ILE353, LEU257, LYS249, LYS256, THR354, VAL259 | ALA255, ASN261, GLU254, GLY260, LYS256, THR354, VAL259 | |
α-GLU | −6.353 | ARG281, ARG600, ASN524, ASP282, ASP404, ASP616, HIS674, PHE525, SER523, TRP516, TRP613 | ARG281, ARG600, ASN524, ASP282, ASP404, ASP616, HIS674, PHE525, SER523 | |
Polydatin (5) | TYR | −6.126 | ASP312, ASP354, ASP357, GLN307, GLU356, GLU359, LYS376, LYS379, PHE368, TRP358 | ASP312, ASP354, ASP357, GLN307, GLU356, GLU359, LYS379 |
XOD | −11.269 | GLU267, GLY350, ILE264, ILE353, LEU257, LEU404, LYS249, THR354, VAL259 | GLU267, ILE264, LEU257, LEU404, LYS249, VAL259, | |
α-GLU | −5.420 | ALA555, ARG600, ASN524, ASP404, ASP518, ASP616, PHE525, TRP481, TRP613 | ARG600, ASN524, ASP404, ASP518, ASP616 | |
Malonyl glucoside resveratrol (6) | TYR | −5.651 | ALA286, ARG268, SER282, HIS244, HIS263, PHE264, VAL283 | ARG268, SER282 |
XOD | −6.415 | ALA338, ARG426, ASN351, ASP360, ILE358, LYS422, LYS433, PHE337, SER359, TRP336 | ASN351, ASP360, LYS433, SER359 | |
α-GLU | −5.651 | ALA284, ASP282, LEU405, LEU650, PHE649, TRP376, TRP481, TRP516, TRP613, TRP618 | ALA284, ASP282 | |
Resveratrol-5-O-D-glucoside (7) | TYR | −6.281 | ALA246, ALA286, ASN260, HIS244, HIS263, GLU322, PHE264, VAL248, VAL283 | ALA246, ASN260, HIS263, GLU322, VAL248 |
XOD | −11.625 | GLU254, GLU267, GLY350, ILE353, LEU257, LEU398, LEU404, LYS256, THR354 | GLU254, GLU267, LEU404, LYS256, THR354 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.; Huang, Q.; He, Z.; Tan, G.; Zou, Y.; Xie, J.; Qian, Z. Screening of Tyrosinase, Xanthine Oxidase, and α-Glucosidase Inhibitors from Polygoni Cuspidati Rhizoma et Radix by Ultrafiltration and HPLC Analysis. Molecules 2023, 28, 4170. https://doi.org/10.3390/molecules28104170
Chen J, Huang Q, He Z, Tan G, Zou Y, Xie J, Qian Z. Screening of Tyrosinase, Xanthine Oxidase, and α-Glucosidase Inhibitors from Polygoni Cuspidati Rhizoma et Radix by Ultrafiltration and HPLC Analysis. Molecules. 2023; 28(10):4170. https://doi.org/10.3390/molecules28104170
Chicago/Turabian StyleChen, Jing, Qi Huang, Zhuobin He, Guoying Tan, Yuansheng Zou, Juying Xie, and Zhengming Qian. 2023. "Screening of Tyrosinase, Xanthine Oxidase, and α-Glucosidase Inhibitors from Polygoni Cuspidati Rhizoma et Radix by Ultrafiltration and HPLC Analysis" Molecules 28, no. 10: 4170. https://doi.org/10.3390/molecules28104170
APA StyleChen, J., Huang, Q., He, Z., Tan, G., Zou, Y., Xie, J., & Qian, Z. (2023). Screening of Tyrosinase, Xanthine Oxidase, and α-Glucosidase Inhibitors from Polygoni Cuspidati Rhizoma et Radix by Ultrafiltration and HPLC Analysis. Molecules, 28(10), 4170. https://doi.org/10.3390/molecules28104170