Nonadiabatic Derivative Couplings Calculated Using Information of Potential Energy Surfaces without Wavefunctions: Ab Initio and Machine Learning Implementations
Abstract
:1. Introduction
2. Results and Discussion
2.1. Comparison of Wavefunction- and PES-Based NACMEs
2.2. PES-Based NACMEs with ML Models
3. Methods
3.1. The Approximate PES-Based Algorithm for NACMEs
3.2. The Embedding Atom Neural Network (EANN) Method
3.3. Definition of the Average Norm of Matrices
3.4. Computational Details
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Agostini, F.; Curchod, B.F. Different Flavors of Nonadiabatic Molecular Dynamics. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2019, 9, e1417. [Google Scholar] [CrossRef]
- Baer, M. Beyond Born-Oppenheimer: Electronic Nonadiabatic Coupling Terms and Conical Intersections; John Wiley & Sons: Hoboken, NJ, USA, 2006. [Google Scholar]
- Chu, W.; Zheng, Q.; Akimov, A.V.; Zhao, J.; Saidi, W.A.; Prezhdo, O.V. Accurate Computation of Nonadiabatic Coupling with Projector Augmented-Wave Pseudopotentials. J. Phys. Chem. Lett. 2020, 11, 10073–10080. [Google Scholar] [CrossRef] [PubMed]
- Gibson, J.; Penfold, T.J. Nonadiabatic Coupling Reduces the Activation Energy in Thermally Activated Delayed Fluorescence. Phys. Chem. Chem. Phys. 2017, 19, 8428–8434. [Google Scholar] [CrossRef] [PubMed]
- Mai, S.; Marquetand, P.; González, L. Nonadiabatic Dynamics: The Sharc Approach. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2018, 8, e1370. [Google Scholar] [CrossRef] [PubMed]
- Matsika, S. Electronic Structure Methods for the Description of Nonadiabatic Effects and Conical Intersections. Chem. Rev. 2021, 121, 9407–9449. [Google Scholar] [CrossRef] [PubMed]
- Ryabinkin, I.G.; Nagesh, J.; Izmaylov, A.F. Fast Numerical Evaluation of Time-Derivative Nonadiabatic Couplings for Mixed Quantum–Classical Methods. J. Phys. Chem. Lett. 2015, 6, 4200–4203. [Google Scholar] [CrossRef]
- Subotnik, J.E.; Alguire, E.C.; Ou, Q.; Landry, B.R.; Fatehi, S. The Requisite Electronic Structure Theory to Describe Photoexcited Nonadiabatic Dynamics: Nonadiabatic Derivative Couplings and Diabatic Electronic Couplings. Acc. Chem. Res. 2015, 48, 1340–1350. [Google Scholar] [CrossRef]
- Tully, J.C. Perspective: Nonadiabatic Dynamics Theory. J. Chem. Phys. 2012, 137, 22A301. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Wu, C.; Liu, W. Nac-Tddft: Time-Dependent Density Functional Theory for Nonadiabatic Couplings. Acc. Chem. Res. 2021, 54, 3288–3297. [Google Scholar] [CrossRef]
- Köppel, H.; Gronki, J.; Mahapatra, S. Construction Scheme for Regularized Diabatic States. J. Chem. Phys. 2001, 115, 2377. [Google Scholar] [CrossRef]
- Gonon, B.; Perveaux, A.; Gatti, F.; Lauvergnat, D.; Lasorne, B. On the Applicability of a Wavefunction-Free, Energy-Based Procedure for Generating First-Order Non-Adiabatic Couplings around Conical Intersections. J. Chem. Phys. 2017, 147, 114114. [Google Scholar] [CrossRef]
- Richardson, J.O. Machine Learning of Double-Valued Nonadiabatic Coupling Vectors around Conical Intersections. J. Chem. Phys. 2023, 158, 011102. [Google Scholar] [CrossRef] [PubMed]
- An, H.; Baeck, K.K. Practical and Reliable Approximation of Nonadiabatic Coupling Terms between Triplet Electronic States Using Only Adiabatic Potential Energies. Chem. Phys. Lett. 2018, 696, 100–105. [Google Scholar] [CrossRef]
- Baeck, K.K.; An, H. Practical Approximation of the Non-Adiabatic Coupling Terms for Same-Symmetry Interstate Crossings by Usingadiabatic Potential Energies Only. J. Chem. Phys. 2017, 146, 064107. [Google Scholar]
- Westermayr, J.; Gastegger, M.; Marquetand, P. Combining Schnet and Sharc: The Schnarc Machine Learning Approach for Excited-State Dynamics. J. Phys. Chem. Lett. 2020, 11, 3828–3834. [Google Scholar] [CrossRef]
- Chen, W.-K.; Zhang, Y.L.; Jiang, B.; Fang, W.-H.; Cui, G.L. Efficient Construction of Excited-State Hessian Matrices with Machine Learning Accelerated Multilayer Energy-Based Fragment Method. J. Phys. Chem. A 2020, 124, 5684–5695. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Xia, J.; Jiang, B. Physically Motivated Recursively Embedded Atom Neural Networks: Incorporating Local Completeness and Nonlocality. Phys. Rev. Lett. 2021, 127, 156002. [Google Scholar] [CrossRef]
- Zhang, Y.; Xia, J.; Jiang, B. Reann: A Pytorch-Based End-to-End Multi-Functional Deep Neural Network Package for Molecular, Reactive, and Periodic Systems. J. Chem. Phys. 2022, 156, 114801. [Google Scholar] [CrossRef]
- Zhang, Y.L.; Hu, C.; Jiang, B. Embedded Atom Neural Network Potentials: Efficient and Accurate Machine Learning with a Physically Inspired Representation. J. Phys. Chem. Lett. 2019, 10, 4962–4967. [Google Scholar] [CrossRef]
- Chen, W.-K.; Fang, W.-H.; Cui, G.L. Integrating Machine Learning with Multi-Layer Energy-Based Fragment Method for Excited States of Large Systems. J. Phys. Chem. Lett. 2019, 10, 7836–7841. [Google Scholar] [CrossRef]
- Domcke, W.; Yarkony, D.; Köppel, H. Conical Intersections: Electronic Structure, Dynamics & Spectroscopy; World Scientific: London, UK, 2004; Volume 15. [Google Scholar]
- Werner, H.J.; Meyer, W. Mcscf Study of the Avoided Curve Crossing of the Two Lowest 1σ+ States of LiF. J. Chem. Phys. 1981, 74, 5802–5807. [Google Scholar] [CrossRef]
- Keith, J.A.; Vassilev-Galindo, V.; Cheng, B.; Chmiela, S.; Gastegger, M.; Müller, K.-R.; Tkatchenko, A. Combining Machine Learning and Computational Chemistry for Predictive Insights into Chemical Systems. Chem. Rev. 2021, 121, 9816–9872. [Google Scholar] [CrossRef] [PubMed]
- Rupp, M.; Tkatchenko, A.; Müller, K.-R.; von Lilienfeld, O.A. Fast and Accurate Modeling of Molecular Atomization Energies with Machine Learning. Phys. Rev. Lett. 2012, 108, 058301. [Google Scholar] [CrossRef] [PubMed]
- Shen, X.; Chen, J.; Zhang, Z.; Shao, K.; Zhang, D.H. Methane Dissociation on Ni(111): A Fifteen-Dimensional Potential Energy Surface Using Neural Network Method. J. Chem. Phys. 2015, 143, 144701. [Google Scholar] [CrossRef] [PubMed]
- Häse, F.; Valleau, S.; Pyzer-Knapp, E.; Aspuru-Guzik, A. Machine Learning Exciton Dynamics. Chem. Sci. 2016, 7, 5139–5147. [Google Scholar] [CrossRef]
- Raccuglia, P.; Elbert, K.C.; Adler, P.D.F.; Falk, C.; Wenny, M.B.; Mollo, A.; Zeller, M.; Friedler, S.A.; Schrier, J.; Norquist, A.J. Machine-Learning-Assisted Materials Discovery Using Failed Experiments. Nature 2016, 533, 73–76. [Google Scholar] [CrossRef]
- Chmiela, S.; Tkatchenko, A.; Sauceda, H.E.; Poltavsky, I.; Schütt, K.T.; Müller, K.-R. Machine Learning of Accurate Energy-Conserving Molecular Force Fields. Sci. Adv. 2017, 3, 1603015. [Google Scholar] [CrossRef]
- Li, Y.; Li, H.; Pickard, F.C.; Narayanan, B.; Sen, F.G.; Chan, M.K.Y.; Sankaranarayanan, S.K.R.S.; Brooks, B.R.; Roux, B. Machine Learning Force Field Parameters from Ab Initio Data. J. Chem. Theory Comput. 2017, 13, 4492–4503. [Google Scholar] [CrossRef]
- Liu, Q.; Wang, J.; Du, P.; Hu, L.; Zheng, X.; Chen, G. Improving the Performance of Long-Range-Corrected Exchange-Correlation Functional with an Embedded Neural Network. J. Phys. Chem. A 2017, 121, 7273–7281. [Google Scholar] [CrossRef]
- Yao, K.; Herr, J.E.; Parkhill, J. The Many-Body Expansion Combined with Neural Networks. J. Chem. Phys. 2017, 146, 014106. [Google Scholar] [CrossRef]
- Dral, P.O.; Barbatti, M. Molecular Excited States through a Machine Learning Lens. Nat. Rev. Chem. 2021, 5, 388–405. [Google Scholar] [CrossRef]
- Fu, B.N.; Zhang, D.H. Ab Initio Potential Energy Surfaces and Quantum Dynamics for Polyatomic Bimolecular Reactions. J. Chem. Theory Comput. 2018, 14, 2289–2303. [Google Scholar] [CrossRef] [PubMed]
- Hu, D.P.; Xie, Y.; Li, X.S.; Li, L.Y.; Lan, Z.G. Inclusion of Machine Learning Kernel Ridge Regression Potential Energy Surfaces in On-the-Fly Nonadiabatic Molecular Dynamics Simulation. J. Phys. Chem. Lett. 2018, 9, 2725–2732. [Google Scholar] [CrossRef] [PubMed]
- Behler, J.; Parrinello, M. Generalized Neural-Network Representation of High-Dimensional Potential-Energy Surfaces. Phys. Rev. Lett. 2007, 98, 146401. [Google Scholar] [CrossRef] [PubMed]
- Dral, P.O.; von Lilienfeld, O.A.; Thiel, W. Machine Learning of Parameters for Accurate Semiempirical Quantum Chemical Calculations. J. Chem. Theory Comput. 2015, 11, 2120–2125. [Google Scholar] [CrossRef] [PubMed]
- Dral, P.O.; Barbatti, M.; Thiel, W. Nonadiabatic Excited-State Dynamics with Machine Learning. J. Phys. Chem. Lett. 2018, 9, 5660–5663. [Google Scholar] [CrossRef]
- Wang, H.; Yang, W.T. Force Field for Water Based on Neural Network. J. Phys. Chem. Lett. 2018, 9, 3232–3240. [Google Scholar] [CrossRef]
- Wang, H.; Yang, W.T. Toward Building Protein Force Fields by Residue-Based Systematic Molecular Fragmentation and Neural Network. J. Chem. Theory Comput. 2018, 15, 1409–1417. [Google Scholar] [CrossRef]
- Zhang, L.; Han, J.; Wang, H.; Car, R.; Weinan, E. Deep Potential Molecular Dynamics: A Scalable Model with the Accuracy of Quantum Mechanics. Phys. Rev. Lett. 2018, 120, 143001. [Google Scholar] [CrossRef]
- Liao, K.; Dong, S.; Cheng, Z.; Li, W.; Li, S. Combined Fragment-Based Machine Learning Force Field with Classical Force Field and Its Application in the Nmr Calculations of Macromolecules in Solutions. Phys. Chem. Chem. Phys. 2022, 24, 18559–18567. [Google Scholar] [CrossRef]
- Zhang, Y.; Lin, Q.; Jiang, B. Atomistic Neural Network Representations for Chemical Dynamics Simulations of Molecular, Condensed Phase, and Interfacial Systems: Efficiency, Representability, and Generalization. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2022, 13, e1645. [Google Scholar] [CrossRef]
- Zhang, Y.-L.; Zhou, X.-Y.; Jiang, B. Accelerating the Construction of Neural Network Potential Energy Surfaces: A Fast Hybrid Training Algorithm. Chin. J. Chem. Phys. 2017, 30, 727–734. [Google Scholar] [CrossRef]
- Aquilante, F.; Autschbach, J.; Baiardi, A.; Battaglia, S.; Borin, V.A.; Chibotaru, L.F.; Conti, I.; De Vico, L.; Delcey, M.; Galván, I.F. Modern Quantum Chemistry with [Open]Molcas. J. Chem. Phys. 2020, 152, 214117. [Google Scholar] [CrossRef] [PubMed]
- Fdez. Galván, I.; Vacher, M.; Alavi, A.; Angeli, C.; Aquilante, F.; Autschbach, J.; Bao, J.J.; Bokarev, S.I.; Bogdanov, N.A.; Carlson, R.K. Openmolcas: From Source Code to Insight. J. Chem. Theory Comput. 2019, 15, 5925–5964. [Google Scholar] [CrossRef] [PubMed]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16, Revision A. 03; Gaussian, Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Chen, W.-K.; Liu, X.-Y.; Fang, W.-H.; Dral, P.O.; Cui, G.L. Deep Learning for Nonadiabatic Excited-State Dynamics. J. Phys. Chem. Lett. 2018, 9, 6702–6708. [Google Scholar] [CrossRef] [PubMed]
- Frank, I.; Hutter, J.; Marx, D.; Parrinello, M. Molecular Dynamics in Low-Spin Excited States. J. Chem. Phys. 1998, 108, 4060–4069. [Google Scholar] [CrossRef]
- Fabiano, E.; Keal, T.W.; Thiel, W. Implementation of Surface Hopping Molecular Dynamics Using Semiempirical Methods. Chem. Phys. 2008, 349, 334–347. [Google Scholar] [CrossRef]
Energy Gap (kcal/mol) | Wavefunction-Based | PES-Based | Deviation |
---|---|---|---|
0.17 (CI) | 363.4 | 240.9 | 33.7% |
0.17–1 | 78.2 | 80.4 | 2.8% |
1–3 | 30.3 | 31.4 | 3.6% |
3–5 | 15.3 | 15.9 | 3.8% |
5–10 | 8.3 | 8.7 | 4.0% |
10–15 | 5.1 | 5.3 | 3.6% |
>15 | 3.3 | 3.4 | 3.4% |
Energy Gap (kcal/mol) | PES-Based NACMEs (SA-CASSCF) | PES-Based NACMEs (ML) | Deviation |
---|---|---|---|
0.17 (CI) | 240.9 | 62.9 | 73.9% |
0.17–1 | 80.4 | 64.1 | 20.2% |
1–3 | 31.4 | 30.2 | 3.6% |
3–5 | 15.9 | 14.5 | 9.1% |
5–10 | 8.7 | 8.7 | 0.6% |
10–15 | 5.3 | 5.4 | 2.3% |
>15 | 3.4 | 3.5 | 2.7% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, W.-K.; Wang, S.-R.; Liu, X.-Y.; Fang, W.-H.; Cui, G. Nonadiabatic Derivative Couplings Calculated Using Information of Potential Energy Surfaces without Wavefunctions: Ab Initio and Machine Learning Implementations. Molecules 2023, 28, 4222. https://doi.org/10.3390/molecules28104222
Chen W-K, Wang S-R, Liu X-Y, Fang W-H, Cui G. Nonadiabatic Derivative Couplings Calculated Using Information of Potential Energy Surfaces without Wavefunctions: Ab Initio and Machine Learning Implementations. Molecules. 2023; 28(10):4222. https://doi.org/10.3390/molecules28104222
Chicago/Turabian StyleChen, Wen-Kai, Sheng-Rui Wang, Xiang-Yang Liu, Wei-Hai Fang, and Ganglong Cui. 2023. "Nonadiabatic Derivative Couplings Calculated Using Information of Potential Energy Surfaces without Wavefunctions: Ab Initio and Machine Learning Implementations" Molecules 28, no. 10: 4222. https://doi.org/10.3390/molecules28104222
APA StyleChen, W. -K., Wang, S. -R., Liu, X. -Y., Fang, W. -H., & Cui, G. (2023). Nonadiabatic Derivative Couplings Calculated Using Information of Potential Energy Surfaces without Wavefunctions: Ab Initio and Machine Learning Implementations. Molecules, 28(10), 4222. https://doi.org/10.3390/molecules28104222