Selective Synthesis of N-[1,3,5]Triazinyl-α-Ketoamides and N-[1,3,5]Triazinyl-Amides from the Reactions of 2-Amine-[1,3,5]Triazines with Ketones
Abstract
:1. Introduction
2. Results
3. Materials and Methods
3.1. General Experiment
3.2. General Procedure for the Synthesis of N-([1,3,5]Triazine-2-yl) α-Ketoamides 3
3.3. General Procedure for the Synthesis of N-([1,3,5]Triazine-2-yl) Amides 4
3.4. Synthesis of 2-oxo-2-phenylacetaldehyde (5)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Nishigaki, S.; Yoneda, F.; Matsumoto, H.; Morinaga, K. Synthetic antibacterials. I. nitrofurylvinyl-s-triazine derivatives. J. Med. Chem. 1969, 12, 39–42. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Zhan, P.; Liu, X.; Cheng, Z.; Meng, C.; Shao, S.; Pannecouque, C.; Clercq, E.D.; Liu, X. Design, synthesis, anti-HIV evaluation and molecular modeling of piperidine-linked amino-triazine derivatives as Potent non-nucleoside reverse transcriptase inhibitors. Biorg. Med. Chem. 2012, 20, 3856–3864. [Google Scholar] [CrossRef] [PubMed]
- Sączewski, F.; Bułakowska, A.; Bednarski, P.; Grunert, R. Synthesis, structure and anticancer activity of novel 2,4-diamino-1,3,5-triazine derivatives. Eur. J. Med. Chem. 2006, 41, 219–225. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, H.; Kuroda, A.; Marusawa, H.; Hatanaka, H.; Kino, T.; Goto, T.; Hashimoto, M.; Taga, T. Structure of FK506: A novel immunosuppressant isolated from Streptomyces. J. Am. Chem. Soc. 1987, 109, 5031–5033. [Google Scholar] [CrossRef]
- Hagihara, M.; Schreiber, S.L. Reasssignment of stereochemistry and total synthesis of the thrombin inhibitor cyclotheonamide B. J. Am. Chem. Soc. 1992, 114, 6570–6571. [Google Scholar] [CrossRef]
- Qian, J.; Cuerrier, D.; Davies, P.L.; Li, Z.; Powers, J.C.; Campbell, R.L. Cocrystal structures of primed side-extending α-ketoamide inhibitors reveal novel calpain-inhibitor aromatic interactions. J. Med. Chem. 2008, 51, 5264–5270. [Google Scholar] [CrossRef]
- Ovat, A.; Li, Z.Z.; Hampton, C.Y.; Asress, S.A.; Fernández, F.M.; Glass, J.D.; Powers, J.C. Peptidyl α-Ketoamides with Nucleobases, Methylpiperazine, and Dimethylaminoalkyl Substituents as Calpain Inhibitors. J. Med. Chem. 2010, 53, 6326–6336. [Google Scholar] [CrossRef]
- Li, Z.; Ortega-Vilain, A.C.; Patil, G.S.; Chu, D.L. Novel peptidyl α-keto amide inhibitors of calpains and other cysteine proteases. J. Med. Chem. 1996, 39, 4089–4098. [Google Scholar] [CrossRef]
- Ghose, A.K.; Viswanadhan, V.N.; Wendoloski, J.J. A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery. 1. A qualitative and quantitative characterization of known drug databases. J. Comb. Chem. 1999, 1, 55–68. [Google Scholar] [CrossRef]
- Humphrey, J.M.; Chamberlin, A.R. Chemical synthesis of natural product peptides: Coupling methods for the incorporation of noncoded amino acids into peptides. Chem. Rev. 1997, 97, 2243–2266. [Google Scholar] [CrossRef]
- Bray, B.L. Large-scale manufacture of peptide therapeutics by chemical synthesis. Nat. Rev. Drug Discov. 2003, 2, 587–593. [Google Scholar] [CrossRef] [PubMed]
- Fujiwara, H.; Ogasawara, Y.; Kotani, M.; Yamaguchi, K.; Mizuno, N. A supported rhodium hydroxide catalyst: Preparation, characterization, and scope of the synthesis of primary amides from aldoximes or aldehydes. Chem. Asian J. 2008, 3, 1715–1721. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.L.; Su, J.H.; Zha, Z.G.; Wang, Z.Y. A novel approach for the one-pot preparation of α-ketoamides by anodic oxidation. Chem. Commun. 2013, 49, 8982–8984. [Google Scholar] [CrossRef] [PubMed]
- Du, F.-T.; Ji, J.-X. Copper-catalyzed direct oxidative synthesis of α-ketoamides from aryl methyl ketones, amines, and molecular oxygen. Chem. Sci. 2012, 3, 460–465. [Google Scholar] [CrossRef]
- Lamani, M.; Prabhu, K.R. NIS-catalyzed reactions: Amidation of acetophenones and oxidative amination of propiophenones. Chem. Eur. J. 2012, 18, 14638–14642. [Google Scholar] [CrossRef]
- Zhang, X.B.; Wang, L. TBHP/I2-promoted oxidative coupling of acetophenones with amines at room temperature under metal-free and solvent-free conditions for the synthesis of α-ketoamides. Green Chem. 2012, 14, 2141–2145. [Google Scholar] [CrossRef]
- Wei, W.; Shao, Y.; Hu, H.Y.; Zhang, F.; Zhang, C.; Xu, Y.; Wan, X.B. Coupling of methyl ketones and primary or secondary amines leading to α-ketoamides. J. Org. Chem. 2012, 77, 7157–7165. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, K.; Jia, L.H.; Zhang, D.T.; Zhang, Y.; Cheng, Y.J.; Lin, C.; Wang, B. nBu4NI-Mediated oxidation of methyl ketones to α-ketoamides: Using ammonium, primary and secondary amine-salt as an amine moiety. Org. Biomol. Chem. 2017, 15, 3427–3434. [Google Scholar] [CrossRef]
- Liu, Y.P.; Sun, H.H.; Huang, Z.J.; Ma, C.; Lin, A.J.; Yao, H.Q.; Xu, J.Y.; Xu, S.T. Metal-free synthesis of N-(pyridine-2-yl)amides from ketones via selective oxidative cleavage of C(O)−C(alkyl) bond in water. J. Org. Chem. 2018, 83, 14307–14313. [Google Scholar] [CrossRef]
- Yang, G.-P.; Li, K.; Liu, W.; Zeng, K.; Liu, Y.-F. Copper-catalyzed aerobic oxidative C–C bond cleavage of simple ketones for the synthesis of amides. Org. Biomol. Chem. 2020, 18, 6958–6964. [Google Scholar] [CrossRef]
- Subramanian, P.; Indu, S.; Kaliappan, K.P. A one-pot copper catalyzed biomimetic route to N-heterocyclic amides from methyl ketones via oxidative C−C bond cleavage. Org. Lett. 2014, 16, 6212–6215. [Google Scholar] [CrossRef] [PubMed]
- Vodnala, N.; Gujjarappa, R.; Hazra, C.K.; Kaldhi, D.; Kabi, A.K.; Beifuss, U.; Malakar, C.C. Copper-catalyzed site-selective oxidative C-C bond cleavage of simple ketones for the synthesis of anilides and paracetamol. Adv. Synth. Catal. 2019, 361, 135–145. [Google Scholar] [CrossRef]
- Fan, W.Y.; Yang, Y.Q.; Lei, J.H.; Jiang, Q.J.; Zhou, W. Copper-catalyzed N-benzoylation of amines via aerobic C−C bond cleavage. J. Org. Chem. 2015, 80, 8782–8789. [Google Scholar] [CrossRef] [PubMed]
- Wu, K.; Huang, Z.L.; Ma, Y.Y.; Lei, A.W. Copper-catalyzed and iodide-promoted aerobic C–C bond cleavage/C–N bond formation toward the synthesis of amides. RSC Adv. 2016, 6, 24349–24352. [Google Scholar] [CrossRef]
- Zhao, W.Q.; Zhang, C.; Zhong, P.Z.; Zhou, W.; Zhang, C.; Cui, D.-M. Diversity-oriented synthesis of imidazo[1,2-a][1,3,5]triazine derivatives from 2-amine-[1,3,5]triazines with ketones. Chem. Commun. 2021, 57, 10715–10718. [Google Scholar] [CrossRef] [PubMed]
- Li, J.J.; Song, C.; Cui, D.-M.; Zhang, C. Copper (II) catalyzed iodine-promoted oxidative cyclization of 2-amino-1,3,5-triazines and chalcones: Synthesis of aroylimidazo[1,2-a][1,3,5]triazines. Org. Biomol. Chem. 2017, 15, 5564–5570. [Google Scholar] [CrossRef]
- Zhang, L.-Y.; Zhang, C.; Wang, T.; Shi, Y.-L.; Ban, M.-T.; Cui, D.-M. Copper-catalyzed tandem reactions of 2-amine-[1,3,5]triazines with nitriles. J. Org. Chem. 2019, 84, 536–543. [Google Scholar] [CrossRef]
- Pan, Z.C.; Song, C.; Zhou, W.; Cui, D.-M.; Zhang, C. Synthesis of imidazo[1,2-a][1,3,5]triazines by NBS mediated coupling of 2-amino-1,3,5-triazines with 1,3-dicarbonyl compounds. New J. Chem. 2020, 44, 6182–6185. [Google Scholar] [CrossRef]
- Wu, X.; Gao, Q.H.; Liu, S.; Wu, A.X. I2-Catalyzed oxidative cross-coupling of methyl ketones and benzamidines hydrochloride: A facile access to α-ketoimides. Org. Lett. 2014, 16, 2888–2891. [Google Scholar] [CrossRef]
- Ding, W.; Song, Q.L. Cu-catalyzed aerobic oxidative amidation of aryl alkyl ketones with azoles to afford tertiary amides via selective C–C bond cleavage. Org. Chem. Front. 2015, 2, 765–770. [Google Scholar] [CrossRef]
- Natarajan, P.; Manjeet Kumar, N.; Devi, S.; Mer, K. Visible-light assisted one-pot preparation of aryl glyoxals from acetoarylones via in-situ arylacyl bromides formation: Selenium-free approach to acetoarylones oxidation. Tetrahedron Lett. 2017, 58, 658–662. [Google Scholar] [CrossRef]
Entry | [Cu] (mol%) | I2 (Eq.) | Solvent | Time (h) | Yield of 3a (%) |
---|---|---|---|---|---|
1 | CuCl (20) | 2.0 | DMSO | 1.5 | 90 |
2 | CuCl (20) | 2.0 | PhCl | 1.5 | trace |
3 | CuCl (20) | 2.0 | 1,2-DCB | 1.5 | trace |
4 | CuCl (20) | 2.0 | Toluene | 1.5 | trace |
5 | CuCl (20) | 2.0 | DMF | 1.5 | trace |
6 | CuCl (20) | 2.0 | Dioxane | 1.5 | trace |
7 | CuCl (20) | 2.0 | DMSO | 3 | 63 |
8 | CuCl (20) | 2.0 | DMSO | 1.0 | 88 |
9 | CuCl (20) | 2.0 | DMSO | 1.0 | 79 b |
10 | CuCl (20) | 2.0 | DMSO | 1.5 | 69 c |
11 | CuBr (20) | 2.0 | DMSO | 1.5 | 82 |
12 | CuI (20) | 2.0 | DMSO | 1.5 | 77 |
13 | Cu(OAc)2 (20) | 2.0 | DMSO | 1.5 | 69 |
14 | CuCl2 (20) | 2.0 | DMSO | 1.5 | 80 |
15 | CuCl (10) | 2.0 | DMSO | 1.5 | 64 |
16 | CuCl (20) | 2.0 | DMSO | 1.5 | 69 d |
17 | CuCl (20) | 1.0 | DMSO | 1.5 | 53 |
18 | CuCl (20) | 2.0 | DMSO | 1.5 | 75 e |
19 | CuCl (20) | 2.0 | DMSO | 1.5 | 48 f |
Entry | Cat. (Mol%) | I2 (Eq.) | Solvent | Temp. (°C) | Time (h) | Yield (%) |
---|---|---|---|---|---|---|
1 | CuCl (20) | 1 | DMSO | 120 | 13 | trace |
2 | CuCl (20) | 1 | 1,2-DCB | 120 | 13 | trace |
3 | CuI (20) | 1 | 1,2-DCB | 120 | 13 | trace |
4 | CuBr (20) | 1 | 1,2-DCB | 120 | 13 | trace |
5 | Cu2(OAc)4 (20) | 1 | 1,2-DCB | 120 | 13 | trace |
6 | CuCl2 (20) | 1 | 1,2-DCB | 120 | 13 | 27 |
7 | CuCl2 (20) | 1 | Diglyme | 120 | 13 | 11 |
8 | CuCl2 (20) | 1 | 1,2,4-TCB | 120 | 13 | trace |
9 | CuCl2 (20) | 1 | DMF | 120 | 13 | trace |
10 | CuCl2 (20) | 1 | NMP | 120 | 13 | trace |
11 | CuCl2 (20) | 1 | Toluene | 120 | 13 | trace |
12 | CuCl2 (20) | 1 | 1,2-DCB/diglyme = 2:1 | 120 | 13 | 43 |
13 | CuCl2 (40) | 1 | 1,2-DCB/diglyme = 2:1 | 140 | 13 | 63 |
14 | CuCl2 (40) | 1 | 1,2-DCB/diglyme = 2:1 | 150 | 13 | 27 |
15 | CuCl2 (40) | 0.75 | 1,2-DCB/diglyme = 2:1 | 140 | 13 | 67 |
16 | CuCl2 (40) | 0.5 | 1,2-DCB/diglyme = 2:1 | 140 | 13 | 40 |
17 | CuCl2 (50) | 0.75 | 1,2-DCB/diglyme = 2:1 | 140 | 13 | 61 |
18 | CuCl2 (40) | 0.75 | 1,2-DCB/diglyme = 2:1 | 140 | 18 | 13 |
19 | CuCl2 (40) | 0.75 | 1,2-DCB/diglyme = 2:1 | 140 | 8 | 34 |
20 | CuCl2 (40) | - | 1,2-DCB/diglyme = 2:1 | 140 | 13 | 0 |
21 | - | 0.75 | 1,2-DCB/diglyme = 2:1 | 140 | 13 | 0 |
22 | CuCl2 (40) | 0.75 | 1,2-DCB/diglyme = 2:1 | 140 | 13 | trace b |
23 | CuCl2 (40) | 0.75 | 1,2-DCB/diglyme = 2:1 | 140 | 13 | trace c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Zhong, P.; Zhao, J.; Pan, Z.; Zhang, C.; Cui, D. Selective Synthesis of N-[1,3,5]Triazinyl-α-Ketoamides and N-[1,3,5]Triazinyl-Amides from the Reactions of 2-Amine-[1,3,5]Triazines with Ketones. Molecules 2023, 28, 4338. https://doi.org/10.3390/molecules28114338
Li Y, Zhong P, Zhao J, Pan Z, Zhang C, Cui D. Selective Synthesis of N-[1,3,5]Triazinyl-α-Ketoamides and N-[1,3,5]Triazinyl-Amides from the Reactions of 2-Amine-[1,3,5]Triazines with Ketones. Molecules. 2023; 28(11):4338. https://doi.org/10.3390/molecules28114338
Chicago/Turabian StyleLi, Yue, Pengzhen Zhong, Junna Zhao, Zexi Pan, Chen Zhang, and Dongmei Cui. 2023. "Selective Synthesis of N-[1,3,5]Triazinyl-α-Ketoamides and N-[1,3,5]Triazinyl-Amides from the Reactions of 2-Amine-[1,3,5]Triazines with Ketones" Molecules 28, no. 11: 4338. https://doi.org/10.3390/molecules28114338
APA StyleLi, Y., Zhong, P., Zhao, J., Pan, Z., Zhang, C., & Cui, D. (2023). Selective Synthesis of N-[1,3,5]Triazinyl-α-Ketoamides and N-[1,3,5]Triazinyl-Amides from the Reactions of 2-Amine-[1,3,5]Triazines with Ketones. Molecules, 28(11), 4338. https://doi.org/10.3390/molecules28114338