Investigating the Reduction/Oxidation Reversibility of Graphene Oxide for Photocatalytic Applications
Abstract
:1. Introduction
2. Results and Discussion
2.1. Thermal Analysis
2.2. Energy Dispersive X-ray Microanalysis
2.3. Raman and FTIR Spectroscopy
2.4. XRD
2.5. Morphology
2.6. Photocatalysis
3. Materials and Methods
3.1. Preparation of Samples
3.2. Characterization Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Lu, S.Y.; Jin, M.; Zhang, Y.; Niu, Y.B.; Gao, J.C.; Li, C.M. Chemically Exfoliating Biomass into a Graphene-like Porous Active Carbon with Rational Pore Structure, Good Conductivity, and Large Surface Area for High-Performance Supercapacitors. Adv. Energy Mater. 2018, 8, 1702545. [Google Scholar] [CrossRef]
- Akhavan, O. Graphene Nanomesh by ZnO Nanorod Photocatalysts. ACS Nano 2010, 4, 4174–4180. [Google Scholar] [CrossRef] [PubMed]
- Sedrpoushan, A.; Heidari, M.; Akhavan, O. Nanoscale Graphene Oxide Sheets as Highly Efficient Carbocatalysts in Green Oxidation of Benzylic Alcohols and Aromatic Aldehydes. Cuihua Xuebao/Chin. J. Catal. 2017, 38, 745–757. [Google Scholar] [CrossRef]
- Ma, R.; Shen, R.; Quan, Y.; Wang, Q. Tunable Flammability Studies of Graphene Quantum Dots-Based Polystyrene Nanocomposites Using Microscale Combustion Calorimeter. J. Therm. Anal. Calorim. 2022, 147, 10383–10390. [Google Scholar] [CrossRef]
- Chen, B.; Liu, Y.; Wu, K.; Lu, M.; Jiao, E.; Shi, J.; Lu, M. Enhanced Thermal Conductivity and Fire Safety of Flexible Hybrid Film via Synergistic Effects between Boron Nitride and Functionalized Graphene. J. Therm. Anal. Calorim. 2022, 147, 4047–4058. [Google Scholar] [CrossRef]
- Le Ba, T.; Mahian, O.; Wongwises, S.; Szilágyi, I.M. Review on the Recent Progress in the Preparation and Stability of Graphene-Based Nanofluids. J. Therm. Anal. Calorim. 2020, 142, 1145–1172. [Google Scholar] [CrossRef]
- Kumar, S.; Diptarka, Y.; Anil, R.; Yadav, K.; Sagar, P.; Kumar, S. Synthesis and Characterization of Graphene Oxide-Based Nanofluids and Study of Their Thermal Conductivity. J. Therm. Anal. Calorim. 2022, 147, 11661–11670. [Google Scholar] [CrossRef]
- Khalid, N.R.; Majid, A.; Tahir, M.B.; Niaz, N.A.; Khalid, S. Carbonaceous-TiO2 Nanomaterials for Photocatalytic Degradation of Pollutants: A Review. Ceram. Int. 2017, 43, 14552–14571. [Google Scholar] [CrossRef]
- Akhavan, O.; Ghaderi, E. Photocatalytic Reduction of Graphene Oxide Nanosheets on TiO2 Thin Film for Photoinactivation of Bacteria in Solar Light Irradiation. J. Phys. Chem. C 2009, 113, 20214–20220. [Google Scholar] [CrossRef]
- Sharma, M.; Behl, K.; Nigam, S.; Joshi, M. TiO2-GO Nanocomposite for Photocatalysis and Environmental Applications: A Green Synthesis Approach. Vacuum 2018, 156, 434–439. [Google Scholar] [CrossRef]
- Pendashteh, A.; Mousavi, M.F.; Rahmanifar, M.S. Fabrication of Anchored Copper Oxide Nanoparticles on Graphene Oxide Nanosheets via an Electrostatic Coprecipitation and Its Application as Supercapacitor. Electrochim. Acta 2013, 88, 347–357. [Google Scholar] [CrossRef]
- Nourmohammadi, A.; Rahighi, R.; Akhavan, O.; Moshfegh, A. Graphene Oxide Sheets Involved in Vertically Aligned Zinc Oxide Nanowires for Visible Light Photoinactivation of Bacteria. J. Alloys Compd. 2014, 612, 380–385. [Google Scholar] [CrossRef]
- Deng, D.; Novoselov, K.S.; Fu, Q.; Zheng, N.; Tian, Z.; Bao, X. Catalysis with Two-Dimensional Materials and Their Heterostructures. Nat. Nanotechnol. 2016, 11, 218–230. [Google Scholar] [CrossRef] [PubMed]
- Sudha, D.; Sivakumar, P. Review on the Photocatalytic Activity of Various Composite Catalysts. Chem. Eng. Process. Process Intensif. 2015, 97, 112–133. [Google Scholar] [CrossRef]
- An, X.; Yu, J.C. Graphene-Based Photocatalytic Composites. RSC Adv. 2011, 1, 1426–1434. [Google Scholar] [CrossRef]
- Rashid, J.; Karim, S.; Kumar, R.; Barakat, M.A.; Akram, B.; Hussain, N.; Bin, H.B.; Xu, M. A Facile Synthesis of Bismuth Oxychloride-Graphene Oxide Composite for Visible Light Photocatalysis of Aqueous Diclofenac Sodium. Sci. Rep. 2020, 10, 14191. [Google Scholar] [CrossRef]
- Bakos, L.P.; Mensah, J.; László, K.; Parditka, B.; Erdélyi, Z.; Székely, E.; Lukács, I.; Kónya, Z.; Cserháti, C.; Zhou, C.; et al. Nitrogen Doped Carbon Aerogel Composites with TiO2 and ZnO Prepared by Atomic Layer Deposition. J. Mater. Chem. C 2020, 8, 6891–6899. [Google Scholar] [CrossRef]
- Singhal, S.; Shukla, A.K. Wettability Behaviour of Synthesized Carbon Nanospheres and Its Application as a Photocatalyst. Mater. Today Proc. 2018, 26, 17–19. [Google Scholar] [CrossRef]
- Han, M.; Zhu, S.; Lu, S.; Song, Y.; Feng, T.; Tao, S.; Liu, J.; Yang, B. Recent Progress on the Photocatalysis of Carbon Dots: Classification, Mechanism and Applications. Nano Today 2018, 19, 201–218. [Google Scholar] [CrossRef]
- Yan, Y.; Miao, J.; Yang, Z.; Xiao, F.X.; Yang, H.B.; Liu, B.; Yang, Y. Carbon Nanotube Catalysts: Recent Advances in Synthesis, Characterization and Applications. Chem. Soc. Rev. 2015, 44, 3295–3346. [Google Scholar] [CrossRef]
- Velo-Gala, I.; López-Peñalver, J.J.; Sánchez-Polo, M.; Rivera-Utrilla, J. Activated Carbon as Photocatalyst of Reactions in Aqueous Phase. Appl. Catal. B Environ. 2013, 142–143, 694–704. [Google Scholar] [CrossRef]
- Justh, N.; Berke, B.; László, K.; Bakos, L.P.; Szabó, A.; Hernádi, K.; Szilágyi, I.M. Preparation of Graphene Oxide/Semiconductor Oxide Composites by Using Atomic Layer Deposition. Appl. Surf. Sci. 2018, 453, 245–251. [Google Scholar] [CrossRef]
- Justh, N.; Mikula, G.J.; Bakos, L.P.; Nagy, B.; László, K.; Parditka, B.; Erdélyi, Z.; Takáts, V.; Mizsei, J.; Szilágyi, I.M. Photocatalytic Properties of TiO2@polymer and TiO2@carbon Aerogel Composites Prepared by Atomic Layer Deposition. Carbon 2019, 147, 476–482. [Google Scholar] [CrossRef]
- Akhavan, O.; Ghaderi, E.; Shirazian, S.A. Near Infrared Laser Stimulation of Human Neural Stem Cells into Neurons on Graphene Nanomesh Semiconductors; Elsevier B.V.: Amsterdam, The Netherlands, 2015; Volume 126, ISBN 9821661645. [Google Scholar]
- Gomis-Berenguer, A.; Velasco, L.F.; Velo-Gala, I.; Ania, C.O. Photochemistry of Nanoporous Carbons: Perspectives in Energy Conversion and Environmental Remediation. J. Colloid Interface Sci. 2017, 490, 879–901. [Google Scholar] [CrossRef] [PubMed]
- Velo-Gala, I.; López-Peñalver, J.J.; Sánchez-Polo, M.; Rivera-Utrilla, J. Role of Activated Carbon Surface Chemistry in Its Photocatalytic Activity and the Generation of Oxidant Radicals under UV or Solar Radiation. Appl. Catal. B Environ. 2017, 207, 412–423. [Google Scholar] [CrossRef]
- Pei, S.; Cheng, H.M. The Reduction of Graphene Oxide. Carbon 2012, 50, 3210–3228. [Google Scholar] [CrossRef]
- Alam, S.N.; Sharma, N.; Kumar, L. Synthesis of Graphene Oxide (GO) by Modified Hummers Method and Its Thermal Reduction to Obtain Reduced Graphene Oxide (RGO). Graphene 2017, 6, 1–18. [Google Scholar] [CrossRef]
- Voiry, D.; Yang, J.; Kupferberg, J.; Fullon, R.; Lee, C.; Jeong, H.Y.; Shin, H.S.; Chhowalla, M. High-Quality Graphene via Microwave Reduction of Solution-Exfoliated Graphene Oxide. Science 2016, 353, 1413–1416. [Google Scholar] [CrossRef]
- Raja, A.; Rajasekaran, P.; Selvakumar, K.; Arivanandhan, M.; Swaminathan, M. Green Approach to the Preparation of Reduced Graphene Oxide for Photocatalytic and Supercapacitor Application. Optik 2019, 190, 21–27. [Google Scholar] [CrossRef]
- Bakos, L.P.; Sárvári, L.; László, K.; Mizsei, J.; Kónya, Z.; Halasi, G.; Hernádi, K.; Szabó, A.; Berkesi, D.; Bakos, I.; et al. Electric and Photocatalytic Properties of Graphene Oxide Depending on the Degree of Its Reduction. Nanomaterials 2020, 10, 2313. [Google Scholar] [CrossRef]
- Sundaram, P.; Kalaisselvane, A. Cold Thermal Energy Storage Performance of Graphene Nanoplatelets—DI Water Nanofluid PCM Using Gum Acacia in a Spherical Encapsulation. J. Therm. Anal. Calorim. 2022, 147, 14973–14985. [Google Scholar] [CrossRef]
- Stoller, M.D.; Park, S.; Zhu, Y.; An, J.; Ruoff, R.S. Graphene-Based Ultracapacitors. Nano Lett. 2008, 8, 3498–3502. [Google Scholar] [CrossRef] [PubMed]
- Whitener, K.E. Review Article: Hydrogenated Graphene: A User’s Guide. J. Vac. Sci. Technol. A 2018, 36, 05G401. [Google Scholar] [CrossRef]
- Rodríguez, P.; Ingrid, E.; Carvajal, M.; Cantor, P.; Carlos, C.; Guerrero, A.; Giraldo, L.; Carlos, J.; Piraján, M. Graphene—Based Materials: Analysis through Calorimetric Techniques; Springer International Publishing: Berlin/Heidelberg, Germany, 2022; Volume 147, ISBN 0123456789. [Google Scholar]
- Akbi, H.; Rafai, S.; Mekki, A.; Touidjine, S.; Belkadi, K. Kinetic Investigation of the Multi - Step Thermal Decomposition of Graphene Oxide Paper. J. Therm. Anal. Calorim. 2023, 148, 3487–3503. [Google Scholar] [CrossRef]
- Ferrari, A.C.; Meyer, J.C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K.S.; Roth, S.; et al. Raman Spectrum of Graphene and Graphene Layers. Phys. Rev. Lett. 2006, 97, 187401. [Google Scholar] [CrossRef]
- Farah, S.; Farkas, A.; Madarász, J.; László, K. Comparison of Thermally and Chemically Reduced Graphene Oxides by Thermal Analysis and Raman Spectroscopy. J. Therm. Anal. Calorim. 2020, 142, 331–337. [Google Scholar] [CrossRef]
- Maharsi, R.; Arif, A.F.; Ogi, T.; Widiyandari, H.; Iskandar, F. Electrochemical Properties of TiOX/RGO Composite as an Electrode for Supercapacitors. RSC Adv. 2019, 9, 27896–27903. [Google Scholar] [CrossRef]
- Zheng, X.; Xu, Q.; He, L.; Yu, N.; Wang, S.; Chen, Z.; Fu, J. Modification of Graphene Oxide with Amphiphilic Double-Crystalline Block Copolymer Polyethylene-b-Poly(Ethylene Oxide) with Assistance of Supercritical CO2 and Its Further Functionalization. J. Phys. Chem. B 2011, 115, 5815–5826. [Google Scholar] [CrossRef]
- Malard, L.M.; Pimenta, M.A.; Dresselhaus, G.; Dresselhaus, M.S. Raman Spectroscopy in Graphene. Phys. Rep. 2009, 473, 51–87. [Google Scholar] [CrossRef]
- Wahab, H.; Xu, G.; Jansing, C.; Gilbert, M.; Tesch, M.F.; Jin, J.; Mertins, H.C.; Timmers, H. Signatures of Different Carbon Bonds in Graphene Oxide from Soft X-Ray Reflectometry. X-ray Spectrom. 2015, 44, 468–473. [Google Scholar] [CrossRef]
- Huh, S.H. Thermal Reduction of Graphene Oxide. In Physics and Applications of Graphene—Experiments; Intechopen: London, UK, 2012; pp. 73–90. [Google Scholar]
- Araújo, M.P.; Soares, O.S.G.P.; Fernandes, A.J.S.; Pereira, M.F.R.; Freire, C. Tuning the Surface Chemistry of Graphene Flakes: New Strategies for Selective Oxidation. RSC Adv. 2017, 7, 14290–14301. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bakos, L.P.; Bohus, M.; Szilágyi, I.M. Investigating the Reduction/Oxidation Reversibility of Graphene Oxide for Photocatalytic Applications. Molecules 2023, 28, 4344. https://doi.org/10.3390/molecules28114344
Bakos LP, Bohus M, Szilágyi IM. Investigating the Reduction/Oxidation Reversibility of Graphene Oxide for Photocatalytic Applications. Molecules. 2023; 28(11):4344. https://doi.org/10.3390/molecules28114344
Chicago/Turabian StyleBakos, László Péter, Marcell Bohus, and Imre Miklós Szilágyi. 2023. "Investigating the Reduction/Oxidation Reversibility of Graphene Oxide for Photocatalytic Applications" Molecules 28, no. 11: 4344. https://doi.org/10.3390/molecules28114344
APA StyleBakos, L. P., Bohus, M., & Szilágyi, I. M. (2023). Investigating the Reduction/Oxidation Reversibility of Graphene Oxide for Photocatalytic Applications. Molecules, 28(11), 4344. https://doi.org/10.3390/molecules28114344