Synthesis and Application of Porous Carbon Nanomaterials from Pomelo Peels: A Review
Abstract
:1. Introduction
2. Pyrolysis
2.1. Direct Pyrolysis
2.2. Hydrothermal Pyrolysis
3. Activation
3.1. Physical Activation
3.2. Chemical Activation
3.3. Combinational Activation
4. Application
4.1. Absorbers
4.2. Battery
4.3. Supercapacitor
4.4. Catalyst
5. Discussion
6. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pandey, R.P.; Ouda, M.; Abdul Rasheed, P.; Banat, F.; Hasan, S.W. Surface decoration of bis-aminosilane cross-linked multiwall carbon nanotube ultrafiltration membrane for fast and efficient heavy metal removal. NPJ Clean Water 2022, 5, 44. [Google Scholar] [CrossRef]
- Zhang, S.; Jiang, S.-F.; Huang, B.-C.; Shen, X.-C.; Chen, W.-J.; Zhou, T.-P.; Cheng, H.-Y.; Cheng, B.-H.; Wu, C.-Z.; Li, W.-W.; et al. Sustainable production of value-added carbon nanomaterials from biomass pyrolysis. Nat. Sustain. 2020, 3, 753–760. [Google Scholar] [CrossRef]
- Zhang, X.; Hou, L.; Samorì, P. Coupling carbon nanomaterials with photochromic molecules for the generation of optically responsive materials. Nat. Commun. 2016, 7, 11118. [Google Scholar] [CrossRef]
- Morata, A.; Pacios, M.; Gadea, G.; Flox, C.; Cadavid, D.; Cabot, A.; Tarancón, A. Large-area and adaptable electrospun silicon-based thermoelectric nanomaterials with high energy conversion efficiencies. Nat. Commun. 2018, 9, 4759. [Google Scholar] [CrossRef]
- Vlassiouk, I.; Regmi, M.; Fulvio, P.; Dai, S.; Datskos, P.; Eres, G.; Smirnov, S. Role of Hydrogen in Chemical Vapor Deposition Growth of Large Single-Crystal Graphene. ACS Nano 2011, 5, 6069–6076. [Google Scholar] [CrossRef] [PubMed]
- Kalyani, P.; Anitha, A. Biomass carbon & its prospects in electrochemical energy systems. Int. J. Hydrogen Energy 2013, 38, 4034–4045. [Google Scholar]
- Du, W.; Wang, X.; Zhan, J.; Sun, X.; Kang, L.; Jiang, F.; Zhang, X.; Shao, Q.; Dong, M.; Liu, H.; et al. Biological cell template synthesis of nitrogen-doped porous hollow carbon spheres/MnO2 composites for high-performance asymmetric supercapacitors. Electrochim. Acta 2019, 296, 907–915. [Google Scholar] [CrossRef]
- Bonechi, C.; Consumi, M.; Donati, A.; Leone, G.; Magnani, A.; Tamasi, G.; Rossi, C. 1-Biomass: An overview. In Bioenergy Systems for the Future; Dalena, F., Basile, A., Rossi, C., Eds.; Woodhead Publishing: Sawston, UK, 2017; pp. 3–42. [Google Scholar]
- Qin, L.; Wang, M.; Zhu, J.; Wei, Y.; Zhou, X.; He, Z. Towards Circular Economy through Waste to Biomass Energy in Madagascar. Complexity 2021, 2021, 5822568. [Google Scholar] [CrossRef]
- Li, S.; Fu, B.; Li, J. Preparation and properties of phase change composites based on carbonized pomelo peel. Acta Mater. Compos. Sin. 2022, 39, 2885. [Google Scholar]
- Shi, G.; Liu, C.; Wang, G.; Chen, X.; Li, L.; Jiang, X.; Zhang, P.; Dong, Y.; Jia, S.; Tian, H.; et al. Preparation and electrochemical performance of electrospun biomass-based activated carbon nanofibers. Ionics 2019, 25, 1805–1812. [Google Scholar] [CrossRef]
- Nizamuddin, S.; Siddiqui, M.T.H.; Mubarak, N.M.; Baloch, A.H.; Mazari, A.S.; Tunio, M.M.; Griffin, G.J.; Srinivasan, M.P.; Tanksale, A.; Riaz, S. Advanced Nanomaterials Synthesis from Pyrolysis and Hydrothermal Carbonization: A Review. Curr. Org. Chem. 2018, 22, 446–461. [Google Scholar] [CrossRef]
- Wu, M.C.; Zhang, R.H.; Liu, K.; Sun, J.; Chan, K.Y.; Zhao, T.S. Mesoporous carbon derived from pomelo peel as a high-performance electrode material for zinc-bromine flow batteries. J. Power Source 2019, 442, 227255. [Google Scholar] [CrossRef]
- Yang, C.; Li, X.; Zhang, Z.; Lv, B.; Li, J.; Liu, Z.; Zhu, W.; Tao, F.; Lv, G.; Yang, Y. Utilization of biomass waste: Facile synthesis high nitrogen-doped porous carbon from pomelo peel and used as catalyst support for aerobic oxidation of 5-hydroxymethylfurfural. Fuel 2020, 278, 118361. [Google Scholar] [CrossRef]
- Wang, Z.; Tan, Y.; Yang, Y.; Zhao, X.; Liu, Y.; Niu, L.; Tichnell, B.; Kong, L.; Kang, L.; Liu, Z.; et al. Pomelo peels-derived porous activated carbon microsheets dual-doped with nitrogen and phosphorus for high performance electrochemical capacitors. J. Power Source 2018, 378, 499–510. [Google Scholar] [CrossRef]
- Li, H.; Sun, Z.; Zhang, L.; Tian, Y.; Cui, G.; Yan, S. A cost-effective porous carbon derived from pomelo peel for the removal of methyl orange from aqueous solution. Colloids Surf. A Physicochem. Eng. Asp. 2016, 489, 191–199. [Google Scholar] [CrossRef]
- Hong, K.-L.; Qie, L.; Zeng, R.; Yi, Z.-Q.; Zhang, W.; Wang, D.; Yin, W.; Wu, C.; Fan, Q.-J.; Zhang, W.-X.; et al. Biomass derived hard carbon used as a high performance anode material for sodium ion batteries. J. Mater. Chem. A 2014, 2, 12733–12738. [Google Scholar] [CrossRef]
- Wu, Q.; Dong, S.; Wang, L.; Li, X. Single and Competitive Adsorption Behaviors of Cu2+, Pb2+ and Zn2+ on the Biochar and Magnetic Biochar of Pomelo Peel in Aqueous Solution. Water 2021, 13, 868. [Google Scholar] [CrossRef]
- Wang, N.; Li, T.; Song, Y.; Liu, J.; Wang, F. Metal-free nitrogen-doped porous carbons derived from pomelo peel treated by hypersaline environments for oxygen reduction reaction. Carbon 2018, 130, 692–700. [Google Scholar] [CrossRef]
- Wang, Z.; Zheng, P.; Guo, J. Pomelo peel-derived lamellar carbon with surface oxygen functional groups for high-performance supercapacitors. Appl. Phys. A 2021, 127, 323. [Google Scholar] [CrossRef]
- Wang, H.; Yin, F.-X.; Chen, B.-H.; He, X.-B.; Lv, P.-L.; Ye, C.-Y.; Liu, D.-J. ZIF-67 incorporated with carbon derived from pomelo peels: A highly efficient bifunctional catalyst for oxygen reduction/evolution reactions. Appl. Catal. B Environ. 2017, 205, 55–67. [Google Scholar] [CrossRef]
- Cheng, D.; Ngo, H.H.; Guo, W.; Chang, S.W.; Nguyen, D.D.; Zhang, X.; Varjani, S.; Liu, Y. Feasibility study on a new pomelo peel derived biochar for tetracycline antibiotics removal in swine wastewater. Sci. Total Environ. 2020, 720, 137662. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Wang, Y.; Wang, Y.; You, L.; Shen, X.; Li, S. An environmentally friendly carbon aerogels derived from waste pomelo peels for the removal of organic pollutants/oils. Microporous Mesoporous Mater. 2017, 241, 285–292. [Google Scholar] [CrossRef]
- Chen, J.; Yu, Y.; Shang, Q.; Han, J.; Liu, C. Enhanced Oil Adsorption and Nano-Emulsion Separation of Nanofibrous Aerogels by Coordination of Pomelo Peel-Derived Biochar. Ind. Eng. Chem. Res. 2020, 59, 8825–8835. [Google Scholar] [CrossRef]
- Romero-Cano, L.A.; García-Rosero, H.; Carrasco-Marín, F.; Pérez-Cadenas, A.F.; González-Gutiérrez, L.V.; Zárate-Guzmán, A.I.; Ramos-Sánchez, G. Surface functionalization to abate the irreversible capacity of hard carbons derived from grapefruit peels for sodium-ion batteries. Electrochim. Acta 2019, 326, 134973. [Google Scholar] [CrossRef]
- Jing, S.; Ding, P.; Zhang, Y.; Liang, H.; Yin, S.; Tsiakaras, P. Lithium-sulfur battery cathodes made of porous biochar support CoFe@NC metal nanoparticles derived from Prussian blue analogues. Ionics 2019, 25, 5297–5304. [Google Scholar] [CrossRef]
- Liu, J.; Li, H.; Zhang, H.; Liu, Q.; Li, R.; Li, B.; Wang, J. Three-dimensional hierarchical and interconnected honeycomb-like porous carbon derived from pomelo peel for high performance supercapacitors. J. Solid State Chem. 2018, 257, 64–71. [Google Scholar] [CrossRef]
- Zheng, H.; Sun, Q.; Li, Y.; Du, Q. Biosorbents prepared from pomelo peel by hydrothermal technique and its adsorption properties for congo red. Mater. Res. Express 2020, 7, 045505. [Google Scholar] [CrossRef]
- Li, G.; Li, Y.; Chen, X.; Hou, X.; Lin, H.; Jia, L. One step synthesis of N, P co-doped hierarchical porous carbon nanosheets derived from pomelo peel for high performance supercapacitors. J. Colloid Interface Sci. 2022, 605, 71–81. [Google Scholar] [CrossRef]
- Wan, L.; Ai, F.; Yuan, M.; Yan, P.; Xiao, Y. Preparation and electrochemical properties of high yield pomelo peel carbon materials. J. Mater. Sci. Mater. Electron. 2022, 33, 3595–3605. [Google Scholar] [CrossRef]
- Huang, J.; Chen, J.; Yin, Z.; Wu, J. A hierarchical porous P-doped carbon electrode through hydrothermal carbonization of pomelo valves for high-performance supercapacitors. Nanoscale Adv. 2020, 2, 3284–3291. [Google Scholar] [CrossRef]
- Inkoua, S.; Li, C.; Shao, Y.; Lin, H.; Fan, M.; Zhang, L.; Zhang, S.; Hu, X. Co-hydrothermal carbonization of fruit peel with sugars or furfural impacts structural evolution of hydrochar. Ind. Crops Prod. 2023, 193, 116221. [Google Scholar] [CrossRef]
- Qu, G.; Jia, S.; Wang, H.; Cao, F.; Li, L.; Qing, C.; Sun, D.; Wang, B.; Tang, Y.; Wang, J. Asymmetric Supercapacitor Based on Porous N-doped Carbon Derived from Pomelo Peel and NiO Arrays. ACS Appl. Mater. Interfaces 2016, 8, 20822–20830. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Xing, K. Removal of Acid Red 88 Using Activated Carbon Produced from Pomelo Peels by KOH Activation: Orthogonal Experiment, Isotherm, and Kinetic Studies. J. Chem. 2021, 2021, 6617934. [Google Scholar] [CrossRef]
- Li, J.; Luo, F.; Lin, T.; Yang, J.; Yang, S.; He, D.; Xiao, D.; Liu, W. Pomelo peel-based N, O-codoped hierarchical porous carbon material for supercapacitor application. Chem. Phys. Lett. 2020, 753, 137597. [Google Scholar] [CrossRef]
- Lu, J.; Kumar Mishra, P.; Hunter, T.N.; Yang, F.; Lu, Z.; Harbottle, D.; Xu, Z. Functionalization of mesoporous carbons derived from pomelo peel as capacitive electrodes for preferential removal/recovery of copper and lead from contaminated water. Chem. Eng. J. 2022, 433, 134508. [Google Scholar] [CrossRef]
- Peng, C.; Lang, J.; Xu, S.; Wang, X. Oxygen-enriched activated carbons from pomelo peel in high energy density supercapacitors. RSC Adv. 2014, 4, 54662–54667. [Google Scholar] [CrossRef]
- Chen, D.; Xie, S.; Chen, C.; Quan, H.; Hua, L.; Luo, X.; Guo, L. Activated biochar derived from pomelo peel as a high-capacity sorbent for removal of carbamazepine from aqueous solution. RSC Adv. 2017, 7, 54969–54979. [Google Scholar] [CrossRef]
- Li, Y.; Sun, Z.; Zhang, L.; Zou, Y.; Yao, N.; Lei, W.; Jiang, T.; Chen, Y.; Chen, G.Z. High Yield and Packing Density Activated Carbon by One-Step Molecular Level Activation of Hydrophilic Pomelo Peel for Supercapacitors. J. Electrochem. Soc. 2021, 168, 060521. [Google Scholar] [CrossRef]
- Baker, F.S.; Miller, C.E.; Repik, A.J.; Tolles, E.D. Activated Carbon. In Kirk-Othmer Encyclopedia of Chemical Technology; Wiley: Hoboken, NJ, USA, 2000. [Google Scholar]
- Yao, Y.; Liu, X.; Hu, H.; Tang, Y.; Hu, H.; Ma, Z.; Wang, S. Synthesis and characterization of iron-nitrogen-doped biochar catalysts for organic pollutant removal and hexavalent chromium reduction. J. Colloid Interface Sci. 2022, 610, 334–346. [Google Scholar] [CrossRef]
- Wang, W.; Chen, M. Catalytic degradation of sulfamethoxazole by peroxymonosulfate activation system composed of nitrogen-doped biochar from pomelo peel: Important roles of defects and nitrogen, and detoxification of intermediates. J. Colloid Interface Sci. 2022, 613, 57–70. [Google Scholar] [CrossRef]
- Yin, Z.; Xu, S.; Liu, S.; Xu, S.; Li, J.; Zhang, Y. A novel magnetic biochar prepared by K2FeO4-promoted oxidative pyrolysis of pomelo peel for adsorption of hexavalent chromium. Bioresour. Technol. 2020, 300, 122680. [Google Scholar] [CrossRef]
- Wang, J.; Chen, N.; Li, M.; Feng, C. Efficient Removal of Fluoride Using Polypyrrole-Modified Biochar Derived from Slow Pyrolysis of Pomelo Peel: Sorption Capacity and Mechanism. J. Polym. Environ. 2018, 26, 1559–1572. [Google Scholar] [CrossRef]
- Sun, X.; Wang, X.; Feng, N.; Qiao, L.; Li, X.; He, D. A new carbonaceous material derived from biomass source peels as an improved anode for lithium ion batteries. J. Anal. Appl. Pyrolysis 2013, 100, 181–185. [Google Scholar] [CrossRef]
- Zhang, M.; Jin, X.; Wang, L.; Sun, M.; Tang, Y.; Chen, Y.; Sun, Y.; Yang, X.; Wan, P. Improving biomass-derived carbon by activation with nitrogen and cobalt for supercapacitors and oxygen reduction reaction. Appl. Surf. Sci. 2017, 411, 251–260. [Google Scholar] [CrossRef]
- Wang, B.; Ji, L.; Yu, Y.; Wang, N.; Wang, J.; Zhao, J. A simple and universal method for preparing N, S co-doped biomass derived carbon with superior performance in supercapacitors. Electrochim. Acta 2019, 309, 34–43. [Google Scholar] [CrossRef]
- Haas, T.J.; Nimlos, M.R.; Donohoe, B.S. Real-Time and Post-reaction Microscopic Structural Analysis of Biomass Undergoing Pyrolysis. Energy Fuels 2009, 23, 3810–3817. [Google Scholar] [CrossRef]
- Konikkara, N.; Kennedy, L.J.; Vijaya, J.J. Preparation and characterization of hierarchical porous carbons derived from solid leather waste for supercapacitor applications. J. Hazard. Mater. 2016, 318, 173–185. [Google Scholar] [CrossRef]
- Du, J.; Zhang, Y.; Lv, H.; Hou, S.; Chen, A. Yeasts-derived nitrogen-doped porous carbon microcapsule prepared by silica-confined activation for supercapacitor. J. Colloid Interface Sci. 2021, 601, 467–473. [Google Scholar] [CrossRef]
- Wang, C.; Yun, S.; Xu, H.; Wang, Z.; Han, F.; Zhang, Y.; Si, Y.; Sun, M. Dual functional application of pomelo peel-derived bio-based carbon with controllable morphologies: An efficient catalyst for triiodide reduction and accelerant for anaerobic digestion. Ceram. Int. 2020, 46, 3292–3303. [Google Scholar] [CrossRef]
- Tekin, K.; Karagöz, S.; Bektaş, S. A review of hydrothermal biomass processing. Renew. Sustain. Energy Rev. 2014, 40, 673–687. [Google Scholar] [CrossRef]
- Lee, J.-H.; Park, S.-J. Recent advances in preparations and applications of carbon aerogels: A review. Carbon 2020, 163, 1–18. [Google Scholar] [CrossRef]
- Semerciöz, A.S.; Göğüş, F.; Çelekli, A.; Bozkurt, H. Development of carbonaceous material from grapefruit peel with microwave implemented-low temperature hydrothermal carbonization technique for the adsorption of Cu (II). J. Clean. Prod. 2017, 165, 599–610. [Google Scholar] [CrossRef]
- Imran, M.; Islam, A.; Ismail, F.; Zhang, P.; Basharat, M.; Ikram, M.; Uddin, A.; Zeb, S.; Hassan, Q.-U.; Gao, Y. 3D porous superoleophilic/hydrophobic grapefruit peel aerogel for efficient removal of emulsified-oil from water. J. Environ. Chem. Eng. 2023, 11, 109324. [Google Scholar] [CrossRef]
- Li, F.; Tang, Y.; Wang, H.; Yang, J.; Li, S.; Liu, J.; Tu, H.; Liao, J.; Yang, Y.; Liu, N. Functionalized hydrothermal carbon derived from waste pomelo peel as solid-phase extractant for the removal of uranyl from aqueous solution. Environ. Sci. Pollut. Res. 2017, 24, 22321–22331. [Google Scholar] [CrossRef] [PubMed]
- Setianingsih, T. Synthesis of Patchouli Biomass Based Carbon Nanomaterial Using Two Different Double Pyrolysis Methods. Egypt. J. Chem. 2022, 65, 39–47. [Google Scholar]
- Huang, Y.-F.; Chiueh, P.-T.; Lo, S.-L. A review on microwave pyrolysis of lignocellulosic biomass. Sustain. Environ. Res. 2016, 26, 103–109. [Google Scholar] [CrossRef]
- Foo, K.Y.; Hameed, B.H. Microwave-assisted preparation of oil palm fiber activated carbon for methylene blue adsorption. Chem. Eng. J. 2011, 166, 792–795. [Google Scholar] [CrossRef]
- Foo, K.Y.; Hameed, B.H. Microwave assisted preparation of activated carbon from pomelo skin for the removal of anionic and cationic dyes. Chem. Eng. J. 2011, 173, 385–390. [Google Scholar] [CrossRef]
- Maliutina, K.; He, C.; Huang, J.; Yu, J.; Li, F.; He, C.; Fan, L. Structural and electronic engineering of biomass-derived carbon nanosheet composite for electrochemical oxygen reduction. Sustain. Energy Fuels 2021, 5, 2114–2126. [Google Scholar] [CrossRef]
- Barrios, E.; Fox, D.; Li Sip, Y.Y.; Catarata, R.; Calderon, J.E.; Azim, N.; Afrin, S.; Zhang, Z.; Zhai, L. Nanomaterials in Advanced, High-Performance Aerogel Composites: A. Review. Polymers 2019, 11, 726. [Google Scholar] [CrossRef]
- Sam, D.K.; Sam, E.K.; Durairaj, A.; Lv, X.; Zhou, Z.; Liu, J. Synthesis of biomass-based carbon aerogels in energy and sustainability. Carbohydr. Res. 2020, 491, 107986. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Liu, J.; Huang, P.; Wang, H.; Cao, C.; Song, W. Carbonaceous aerogel and CoNiAl-LDH@CA nanocomposites derived from biomass for high performance pseudo-supercapacitor. Sci. Bull. 2017, 62, 841–845. [Google Scholar] [CrossRef] [PubMed]
- Imran, M.; Islam, A.; Farooq, M.U.; Ye, J.; Zhang, P. Characterization and adsorption capacity of modified 3D porous aerogel from grapefruit peels for removal of oils and organic solvents. Environ. Sci. Pollut. Res. 2020, 27, 43493–43504. [Google Scholar] [CrossRef] [PubMed]
- Pung, T.; Ponglong, N.; Panich-pat, T. Fabrication of Pomelo-Peel Sponge Aerogel Modified with Hexadecyltrimethoxysilane for the Removal of Oils/Organic Solvents. Water Air Soil Pollut. 2022, 233, 283. [Google Scholar] [CrossRef]
- Li, D.; Huang, J.; Huang, L.; Tan, S.; Liu, T. High-Performance Three-Dimensional Aerogel Based on Hydrothermal Pomelo Peel and Reduced Graphene Oxide as an Efficient Adsorbent for Water/Oil Separation. Langmuir 2021, 37, 1521–1530. [Google Scholar] [CrossRef]
- Liu, H.; Li, A.; Liu, Z.; Tao, Q.; Li, J.; Peng, J.; Liu, Y. Preparation of lightweight and hydrophobic natural biomass-based carbon aerogels for adsorption oils and organic solvents. J. Porous Mater. 2022, 29, 1001–1009. [Google Scholar] [CrossRef]
- Reza, M.S.; Yun, C.S.; Afroze, S.; Radenahmad, N.; Bakar, M.S.A.; Saidur, R.; Taweekun, J.; Azad, A.K. Preparation of activated carbon from biomass and its’ applications in water and gas purification, a review. Arab J. Basic Appl. Sci. 2020, 27, 208–238. [Google Scholar] [CrossRef]
- MacDermid-Watts, K.; Pradhan, R.; Dutta, A. Catalytic Hydrothermal Carbonization Treatment of Biomass for Enhanced Activated Carbon: A Review. Waste Biomass Valorization 2021, 12, 2171–2186. [Google Scholar] [CrossRef]
- Siipola, V.; Tamminen, T.; Källi, A.; Lahti, R.; Romar, H.; Rasa, K.; Keskinen, R.; Hyväluoma, J.; Hannula, M.; Wikberg, H. Effects of Biomass Type, Carbonization Process, and Activation Method on the Properties of Bio-Based Activated Carbons. BioResources 2018, 13, 5976–6002. [Google Scholar] [CrossRef]
- Xiao, L.; Ye, F.; Zhou, Y.; Zhao, G. Utilization of pomelo peels to manufacture value-added products: A review. Food Chem. 2021, 351, 129247. [Google Scholar] [CrossRef]
- Tocmo, R.; Pena-Fronteras, J.; Calumba, K.F.; Mendoza, M.; Johnson, J.J. Valorization of pomelo (Citrus grandis Osbeck) peel: A review of current utilization, phytochemistry, bioactivities, and mechanisms of action. Compr. Rev. Food Sci. Food Saf. 2020, 19, 1969–2012. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Liu, Y.; Li, Y.; Chen, Y.; Wu, Y.; Li, H.; Wang, S.; Peng, Z.; Xu, R.; Zeng, Z. Novel Magnetic Pomelo Peel Biochar for Enhancing Pb(II) And Cu(II) Adsorption: Performance and Mechanism. Water Air Soil Pollut. 2020, 231, 404. [Google Scholar] [CrossRef]
- Dong, F.-X.; Yan, L.; Zhou, X.-H.; Huang, S.-T.; Liang, J.-Y.; Zhang, W.-X.; Guo, Z.-W.; Guo, P.-R.; Qian, W.; Kong, L.-J.; et al. Simultaneous adsorption of Cr(VI) and phenol by biochar-based iron oxide composites in water: Performance, kinetics and mechanism. J. Hazard. Mater. 2021, 416, 125930. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Cao, S.; Xi, C.; Su, H.; Chen, Z. A new nanocomposite assembled with metal organic framework and magnetic biochar derived from pomelo peels: A highly efficient adsorbent for ketamine in wastewater. J. Environ. Chem. Eng. 2021, 9, 106207. [Google Scholar] [CrossRef]
- Da, T.; Chen, T. Optimization of experimental factors on iodate adsorption: A case study of pomelo peel. J. Radioanal. Nucl. Chem. 2020, 326, 511–523. [Google Scholar] [CrossRef]
- Wang, Z.; Huang, J.; Zhong, Y.; Hu, W.; Xie, D.; Zhao, C.; Qiao, Y. Copper supported on activated carbon from hydrochar of pomelo peel for efficient H2S removal at room temperature: Role of copper valance, humidity and oxygen. Fuel 2022, 319, 123774. [Google Scholar] [CrossRef]
- Ao, H.; Cao, W.; Hong, Y.; Wu, J.; Wei, L. Adsorption of sulfate ion from water by zirconium oxide-modified biochar derived from pomelo peel. Sci. Total Environ. 2020, 708, 135092. [Google Scholar] [CrossRef]
- Li, B.; Zheng, Z.; Fang, J.; Gong, J.; Fang, Z.; Wang, W. Comparison of adsorption behaviors and mechanisms of methylene blue, Cd2+, and phenanthrene by modified biochars derived from pomelo peel. Environ. Sci. Pollut. Res. 2021, 28, 32517–32527. [Google Scholar] [CrossRef]
- Xiao, J.; Zhang, Y.; Zhang, T.C.; Yuan, S. Prussian blue-impregnated waste pomelo peels-derived biochar for enhanced adsorption of NH3. J. Clean. Prod. 2023, 382, 135393. [Google Scholar] [CrossRef]
- Devi, R.R.; Umlong, I.M.; Raul, P.K.; Das, B.; Banerjee, S.; Singh, L. Defluoridation of water using nano-magnesium oxide. J. Exp. Nanosci. 2014, 9, 512–524. [Google Scholar] [CrossRef]
- Xiaoguang, Z.; Ying, C. Adsorption of Methylene Blue Using FeCl3-Modified Pomelo Peel. Russ. J. Phys. Chem. A 2020, 94, 835–845. [Google Scholar] [CrossRef]
- Zhou, Y.; Cao, S.; Xi, C.; Li, X.; Zhang, L.; Wang, G.; Chen, Z. A novel Fe3O4/graphene oxide/citrus peel-derived bio-char based nanocomposite with enhanced adsorption affinity and sensitivity of ciprofloxacin and sparfloxacin. Bioresour. Technol. 2019, 292, 121951. [Google Scholar] [CrossRef]
- Zhao, H.; Cheng, Y.; Zhang, Z.; Zhang, B.; Pei, C.; Fan, F.; Ji, G. Biomass-derived graphene-like porous carbon nanosheets towards ultralight microwave absorption and excellent thermal infrared properties. Carbon 2021, 173, 501–511. [Google Scholar] [CrossRef]
- Shi, G.; Qian, Y.; Tan, F.; Cai, W.; Li, Y.; Cao, Y. Controllable synthesis of pomelo peel-based aerogel and its application in adsorption of oil/organic pollutants. R. Soc. Open Sci. 2019, 6, 181823. [Google Scholar] [CrossRef] [PubMed]
- Hou, C.; Cheng, J.; Zhang, H.; Lu, Z.; Yang, X.; Zheng, G.; Zhang, D.; Cao, M. Biomass-derived carbon-coated WS2 core-shell nanostructures with excellent electromagnetic absorption in C-band. Appl. Surf. Sci. 2022, 577, 151939. [Google Scholar] [CrossRef]
- Hou, T.; Jia, Z.; Feng, A.; Zhou, Z.; Liu, X.; Lv, H.; Wu, G. Hierarchical composite of biomass derived magnetic carbon framework and phytic acid doped polyanilne with prominent electromagnetic wave absorption capacity. J. Mater. Sci. Technol. 2021, 68, 61–69. [Google Scholar] [CrossRef]
- Xie, X.; Wang, Y.; Sun, X.; Wang, H.; Yu, R.; Du, W.; Wu, H. Optimizing impedance matching by a dual-carbon Co-regulation strategy of Co3O4@rGO/celery stalks derived carbon composites for excellent microwave absorption. J. Mater. Sci. Technol. 2023, 133, 1–11. [Google Scholar] [CrossRef]
- Gan, G.; Li, X.; Fan, S.; Wang, L.; Qin, M.; Yin, Z.; Chen, G. Carbon Aerogels for Environmental Clean-Up. Eur. J. Inorg. Chem. 2019, 2019, 3126–3141. [Google Scholar] [CrossRef]
- Li, K.; Ding, D.; Fang, D.; Wang, Y.; Ye, X.; Liu, H.; Tan, X.; Li, Q.; Wu, Z. Hydrothermal deposition of titanate on biomass carbonaceous aerogel to prepare novel biomass adsorbents for Rb+ and Cs+. Colloids Surf. A Physicochem. Eng. Asp. 2020, 590, 124501. [Google Scholar] [CrossRef]
- Zhou, L.-S.; Xiong, Y.-S.; Jia, R.; Li, M.-X.; Fan, B.-H.; Tang, J.-Y.; Li, W.; Lu, H.-Q.; Lan, Y.-W.; Li, K. (3-Chloro-2-hydroxypropyl) trimethylammonium chloride and polyethyleneimine co-modified pomelo peel cellulose-derived aerogel for remelt syrup decolorization in sugar refining. Int. J. Biol. Macromol. 2023, 229, 1054–1068. [Google Scholar] [CrossRef]
- Bai, H.; Zhang, Q.; Zhou, X.; Chen, J.; Chen, Z.; Liu, Z.; Yan, J.; Wang, J. Removal of fluoroquinolone antibiotics by adsorption of dopamine-modified biochar aerogel. Korean J. Chem. Eng. 2023, 40, 215–222. [Google Scholar] [CrossRef]
- Xiao, Q.; Li, G.; Li, M.; Liu, R.; Li, H.; Ren, P.; Dong, Y.; Feng, M.; Chen, Z. Biomass-derived nitrogen-doped hierarchical porous carbon as efficient sulfur host for lithium–sulfur batteries. J. Energy Chem. 2020, 44, 61–67. [Google Scholar] [CrossRef]
- Ma, Z.; Sui, W.; Liu, J.; Wang, W.; Li, S.; Chen, T.; Yang, G.; Zhu, K.; Li, Z. Pomelo peel-derived porous carbon as excellent LiPS anchor in lithium-sulfur batteries. J. Solid State Electrochem. 2022, 26, 973–984. [Google Scholar] [CrossRef]
- Liang, H.; Zhang, Y.; Chen, F.; Jing, S.; Yin, S.; Tsiakaras, P. A novel NiFe@NC-functionalized N-doped carbon microtubule network derived from biomass as a highly efficient 3D free-standing cathode for Li-CO2 batteries. Appl. Catal. B Environ. 2019, 244, 559–567. [Google Scholar] [CrossRef]
- Zhu, L.; Jiang, H.; Ran, W.; You, L.; Yao, S.; Shen, X.; Tu, F. Turning biomass waste to a valuable nitrogen and boron dual-doped carbon aerogel for high performance lithium-sulfur batteries. Appl. Surf. Sci. 2019, 489, 154–164. [Google Scholar] [CrossRef]
- Ahn, W.; Park, M.G.; Lee, D.U.; Seo, M.H.; Jiang, G.; Cano, Z.P.; Hassan, F.M.; Chen, Z. Hollow Multivoid Nanocuboids Derived from Ternary Ni–Co–Fe Prussian Blue Analog for Dual-Electrocatalysis of Oxygen and Hydrogen Evolution Reactions. Adv. Funct. Mater. 2018, 28, 1802129. [Google Scholar] [CrossRef]
- Senthilkumar, S.T.; Park, S.O.; Kim, J.; Hwang, S.M.; Kwak, S.K.; Kim, Y. Seawater battery performance enhancement enabled by a defect/edge-rich, oxygen self-doped porous carbon electrocatalyst. J. Mater. Chem. A 2017, 5, 14174–14181. [Google Scholar] [CrossRef]
- Ren, Y.; Yang, Y.; Li, J.; Zhu, W.; Gao, J.; Liu, Y.; Dai, L.; Wang, L.; He, Z. Synergistic catalysis of carbon/bismuth composite for V3+/V2+ reaction in vanadium redox flow battery. Ionics 2022, 28, 4261–4271. [Google Scholar] [CrossRef]
- Li, Z.; Guo, D.; Liu, Y.; Wang, H.; Wang, L. Recent advances and challenges in biomass-derived porous carbon nanomaterials for supercapacitors. Chem. Eng. J. 2020, 397, 125418. [Google Scholar] [CrossRef]
- Liu, Y.; Chang, Z.; Yao, L.; Yan, S.; Lin, J.; Chen, J.; Lian, J.; Lin, H.; Han, S. Nitrogen/sulfur dual-doped sponge-like porous carbon materials derived from pomelo peel synthesized at comparatively low temperatures for superior-performance supercapacitors. J. Electroanal. Chem. 2019, 847, 113111. [Google Scholar] [CrossRef]
- Fu, G.; Li, Q.; Ye, J.; Han, J.; Wang, J.; Zhai, L.; Zhu, Y. Hierarchical porous carbon with high nitrogen content derived from plant waste (pomelo peel) for supercapacitor. J. Mater. Sci. Mater. Electron. 2018, 29, 7707–7717. [Google Scholar] [CrossRef]
- Lin, H.; Liu, Y.; Chang, Z.; Yan, S.; Liu, S.; Han, S. A new method of synthesizing hemicellulose-derived porous activated carbon for high-performance supercapacitors. Microporous Mesoporous Mater. 2020, 292, 109707. [Google Scholar] [CrossRef]
- Guo, C.; Liao, W.; Li, Z.; Sun, L.; Chen, C. Easy conversion of protein-rich enoki mushroom biomass to a nitrogen-doped carbon nanomaterial as a promising metal-free catalyst for oxygen reduction reaction. Nanoscale 2015, 7, 15990–15998. [Google Scholar] [CrossRef] [PubMed]
- Akbarzadeh, P.; Koukabi, N. Easy conversion of nitrogen-rich silk cocoon biomass to magnetic nitrogen-doped carbon nanomaterial for supporting of Palladium and its application. Appl. Organomet. Chem. 2021, 35, e6039. [Google Scholar] [CrossRef]
- Min, L.; Zhang, P.; Fan, M.; Xu, X.; Wang, C.; Tang, J.; Sun, H. Efficient degradation of p-nitrophenol by Fe@pomelo peel-derived biochar composites and its mechanism of simultaneous reduction and oxidation process. Chemosphere 2021, 267, 129213. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Dai, Y. Co3O4/C-PC composite derived from pomelo peel-loaded ZIF-67 for activating peroxymonosulfate (PMS) to degrade ciprofloxacin. J. Water Process Eng. 2022, 49, 103043. [Google Scholar] [CrossRef]
- Han, S.; Xiao, P. Catalytic degradation of tetracycline using peroxymonosulfate activated by cobalt and iron co-loaded pomelo peel biochar nanocomposite: Characterization, performance and reaction mechanism. Sep. Purif. Technol. 2022, 287, 120533. [Google Scholar] [CrossRef]
- Yang, Y.; He, F.; Shen, Y.; Chen, X.; Mei, H.; Liu, S.; Zhang, Y. A biomass derived N/C-catalyst for the electrochemical production of hydrogen peroxide. Chem. Commun. 2017, 53, 9994–9997. [Google Scholar] [CrossRef]
- Jin, K.; Wen, C.; Chen, L.; Jiang, Q.; Zhuang, X.; Xu, X.; Wang, H.; Ma, L.; Wang, C.; Zhang, Q. In situ synthesis of highly dispersed Fe/C catalysts with pomelo peel as carbon source in CO2 hydrogenation to light olefins. Fuel 2023, 333, 126412. [Google Scholar] [CrossRef]
- Zhang, J.; Hu, S.; Ding, Y.; Huang, R.; Ren, Q.; Su, S.; Wang, Y.; Jiang, L.; Xu, J.; Xiang, J. Nickel based catalyst supported by carbon aerogel prepared from waste pomelo peel to crack ethanol for hydrogen production: Catalytic performance and mechanism. Fuel 2023, 346, 128278. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, M.; Wang, G.; Dai, B.; Yu, F.; Tian, Z.; Guo, X. Enhanced Oxygen Reduction Reaction by In Situ Anchoring Fe2N Nanoparticles on Nitrogen-Doped Pomelo Peel-Derived Carbon. Nanomaterials 2017, 7, 404. [Google Scholar] [CrossRef] [PubMed]
- Yaman, S. Pyrolysis of biomass to produce fuels and chemical feedstocks. Energy Convers. Manag. 2004, 45, 651–671. [Google Scholar] [CrossRef]
- Luna-Lama, F.; Morales, J.; Caballero, A. Biomass Porous Carbons Derived from Banana Peel Waste as Sustainable Anodes for Lithium-Ion Batteries. Materials 2021, 14, 5995. [Google Scholar] [CrossRef]
- Lam, S.S.; Liew, R.K.; Wong, Y.M.; Azwar, E.; Jusoh, A.; Wahi, R. Activated Carbon for Catalyst Support from Microwave Pyrolysis of Orange Peel. Waste Biomass Valorization 2017, 8, 2109–2119. [Google Scholar] [CrossRef]
- Wu, L.; Zhang, X.; Si, Y. Polydopamine functionalized superhydrophilic coconut shells biomass carbon for selective cationic dye methylene blue adsorption. Mater. Chem. Phys. 2022, 279, 125767. [Google Scholar] [CrossRef]
- Wang, L.; Mu, G.; Tian, C.; Sun, L.; Zhou, W.; Yu, P.; Yin, J.; Fu, H. Porous Graphitic Carbon Nanosheets Derived from Cornstalk Biomass for Advanced Supercapacitors. ChemSusChem 2013, 6, 880–889. [Google Scholar] [CrossRef] [PubMed]
- Saadi, W.; Rodríguez-Sánchez, S.; Ruiz, B.; Souissi-Najar, S.; Ouederni, A.; Fuente, E. Pyrolysis technologies for pomegranate (Punica granatum L.) peel wastes. Prospects in the bioenergy sector. Renew. Energy 2019, 136, 373–382. [Google Scholar] [CrossRef]
- Calcio Gaudino, E.; Cravotto, G.; Manzoli, M.; Tabasso, S. From waste biomass to chemicals and energy via microwave-assisted processes. Green Chem. 2019, 21, 1202–1235. [Google Scholar] [CrossRef]
- Ren, X.; Shanb Ghazani, M.; Zhu, H.; Ao, W.; Zhang, H.; Moreside, E.; Zhu, J.; Yang, P.; Zhong, N.; Bi, X. Challenges and opportunities in microwave-assisted catalytic pyrolysis of biomass: A review. Appl. Energy 2022, 315, 118970. [Google Scholar] [CrossRef]
- Zeng, K.; Yang, X.; Xie, Y.; Yang, H.; Li, J.; Zhong, D.; Zuo, H.; Nzihou, A.; Zhu, Y.; Chen, H. Molten salt pyrolysis of biomass: The evaluation of molten salt. Fuel 2021, 302, 121103. [Google Scholar] [CrossRef]
- Cheng, Y.; Li, B.; Huang, Y.; Wang, Y.; Chen, J.; Wei, D.; Feng, Y.; Jia, D.; Zhou, Y. Molten salt synthesis of nitrogen and oxygen enriched hierarchically porous carbons derived from biomass via rapid microwave carbonization for high voltage supercapacitors. Appl. Surf. Sci. 2018, 439, 712–723. [Google Scholar] [CrossRef]
- Zeng, D.; Dou, Y.; Li, M.; Zhou, M.; Li, H.; Jiang, K.; Yang, F.; Peng, J. Wool fiber-derived nitrogen-doped porous carbon prepared from molten salt carbonization method for supercapacitor application. J. Mater. Sci. 2018, 53, 8372–8384. [Google Scholar] [CrossRef]
- Ye, R.; James, D.K.; Tour, J.M. Laser-Induced Graphene. Acc. Chem. Res. 2018, 51, 1609–1620. [Google Scholar] [CrossRef] [PubMed]
- Claro, P.I.C.; Pinheiro, T.; Silvestre, S.L.; Marques, A.C.; Coelho, J.; Marconcini, J.M.; Fortunato, E.; Mattoso, L.H.C.; Martins, R. Sustainable carbon sources for green laser-induced graphene: A perspective on fundamental principles, applications, and challenges. Appl. Phys. Rev. 2022, 9, 041305. [Google Scholar] [CrossRef]
- Imbrogno, A.; Islam, J.; Santillo, C.; Castaldo, R.; Sygellou, L.; Larrigy, C.; Murray, R.; Vaughan, E.; Hoque, M.K.; Quinn, A.J.; et al. Laser-Induced Graphene Supercapacitors by Direct Laser Writing of Cork Natural Substrates. ACS Appl. Electron. Mater. 2022, 4, 1541–1551. [Google Scholar] [CrossRef]
- Kulyk, B.; Matos, M.; Silva, B.F.R.; Carvalho, A.F.; Fernandes, A.J.S.; Evtuguin, D.V.; Fortunato, E.; Costa, F.M. Conversion of paper and xylan into laser-induced graphene for environmentally friendly sensors. Diam. Relat. Mater. 2022, 123, 108855. [Google Scholar] [CrossRef]
- Heidari, M.; Dutta, A.; Acharya, B.; Mahmud, S. A review of the current knowledge and challenges of hydrothermal carbonization for biomass conversion. J. Energy Inst. 2019, 92, 1779–1799. [Google Scholar] [CrossRef]
Method | Reagent | SSA (m2g−1) | PV (cm3g−1) | Time (h) | Temp (°C) | Ref. | |
---|---|---|---|---|---|---|---|
D 1 | Physical | Ar | 158 m2g−1 | - | 2 h | 1000 °C | [13] |
Physical | N2 | 809.2 m2g−1 | - | 2 h | 800 °C | [14] | |
Physical | N2 | 807.7 m2g−1 | 0.43 cm3g−1 | 2 h | 900 °C | [15] | |
Chemical | KOH | 1892.1 m2g−1 | 1.09 cm3g−1 | 4 h | 80 °C | [16] | |
Chemical | H3PO4 | 1272 m2g−1 | 1.85 cm3g−1 | 24 h | - | [17] | |
Chemical | FeCl3 | 26.48 m2g−1 | 0.14 cm3g−1 | 2 h | - | [18] | |
Combinational | KOH + ZnCl2 + FeCl3 | 2463 m2g−1 | 2.05 cm3g−1 | 2 h | 550 °C | [19] | |
Combinational | KOH/Ar | 2630 m2g−1 | - | 72 h/2 h | -/800 °C | [20] | |
Combinational | KOH + N2 | 1796 m2g−1 | 1.48 cm3g−1 | 1.5 h | 800 °C | [21] | |
Combinational | KOH + N2 | 2457 m2g−1 | 1.14 cm3g−1 | 2 h | 600 °C | [22] | |
H 1 | Physical | N2 | 759.7 m2g−1 | 0.45 cm3g−1 | 1 h | 800 °C | [23] |
Physical | N2 | 838 m2g−1 | 0.85 cm3g−1 | 2 h | 800 °C | [24] | |
Physical | N2 | 10.9 m2g−1 | - | 1 h | 800 °C | [25] | |
Physical | Ar | 232.4 m2g−1 | 0.26 cm3g−1 | 2 h | 1000 °C | [26] | |
Chemical | KOH | 832 m2g−1 | - | 12 h | - | [27] | |
Chemical | KOH | 4.0 m2g−1 | - | 2 h | 200 °C | [28] | |
Chemical | NH4H2PO4 | 908.2 m2g−1 | 0.82 cm3g−1 | 3 h | 750 °C | [29] | |
Chemical | KCl | 296 m2g−1 | 0.3 cm3g−1 | 1 h | 900 °C | [30] | |
Chemical | H3PO4 | 1432.1 m2g−1 | 0.72 cm3g−1 | 3 h | 120 °C | [31] | |
Combinational | K2C2O4 + N2 | 785.1 m2g−1 | 0.53 cm3g−1 | 0.5 h | 750 °C | [32] | |
Combinational | KOH/N2 | 1727.7 m2g−1 | 1.00 cm3g−1 | 2 h | 800 °C | [33] | |
Combinational | KOH + N2 | 2504 m2g−1 | 1.19 cm3g−1 | 1.5 h | 800 °C | [34] | |
Combinational | ZnCl2/ZnCl2 + Ar2 | 1582 m2g−1 | - | 4 h/2 h | -/800 °C | [35] | |
Combinational | KHCO3/N2 | 1146.2 m2g−1 | - | 2 h | 800 °C | [36] | |
Combinational | KOH + Ar | 2191 m2g−1 | 1.03 cm3g−1 | 1 h | 800 °C | [37] | |
Combinational | KOH + N2 | 904.1 m2g−1 | 0.51 cm3g−1 | 2 h | 700 °C | [38] | |
Combinational | KOH/KOH + N2 | 1870 m2g−1 | 0.99 cm3g−1 | 24 h/1 h | -/800 °C | [39] |
Pre-Process | Carbonize | Activation | Ref. |
---|---|---|---|
Dice, clean, and dry at 60 °C, then treat with K2FeO4 | 600 °C for 1 h, under N2 flow | - | [43] |
Dice and dry at 80 °C for 24 h | 450 °C, under N2 flow | KOH | [16] |
Dice and dry at 80 °C for 24 h | 550 °C for 2 h, under Ar flow | KOH/ZnCl2/FeCl3 | [19] |
Dice, clean, and dry at 60 °C for 48 h | 600 °C for 1 h | FeCl3 | [44] |
Dice and dry at 60 °C for 30 h | 1000 °C for 2 h, under Ar flow | Ar | [13] |
Dice | 800 °C for 2 h, under Ar flow | KOH/Ar | [20] |
Dice and vacuum freeze dry for two days | 700 °C for 2 h, under N2 flow | H3PO4 | [17] |
Dice, clean, and dry at 70 °C for 24 h | 900 °C for 3 h, under Ar flow | - | [45] |
Dice, clean, and dry at 100 °C for 12 h | 800 °C for 1 h, under Ar flow | KOH | [46] |
Pre-Process | High-Pressure Carbonize | Activation | Freeze-Dry | Ref. |
---|---|---|---|---|
Dice and dry at 60 °C for 12 h | Citric acid mix, 200 °C for 6 h | KOH/N2 | Dry for 48 h | [27] |
Dice and dry at 60 °C | Water mix, 200 °C for 24 h | H2SO4/KMnO4 | 60 °C for a night | [56] |
Dice and dry | Co-heat with KOH solution, 200 °C for 2 h | KOH | Dry | [28] |
Clean, crush, and dry | 180 °C for 15 h | K2C2O4/N2 | Dry | [32] |
Dice and dry | 160 °C for 12 h, then 300 °C for 1.5 h in Muffle furnace | KOH/N2 | - | [33] |
Dice and dry | 160 °C for 6 h | H3PO4/Ar | Dry | [31] |
Pre-Process | High-Pressure Carbonize | Freeze-Dry | Modify | Solidify | Ref. |
---|---|---|---|---|---|
Clean, dice and dry | 180 °C for 10 h | −40 °C for 60 h | Dimethyl siloxane treatment | 120 °C for 3 h | [55] |
Dice and dry | 180 °C for 6.5 h | −40 °C for 48 h | Urea and anhydrous methanol treatment | 150 °C for 12 h | [64] |
Dice | 180 °C for 10 h | −80 °C for 48 h | Dimethicone and melamine Treatment | 120 °C for 12 h | [65] |
Dice | 180 °C for 10 h | Dry | Add SiO2 nanofibers, use homogenizer for treatment | 80 °C for 6 h | [24] |
Clean, dice and dry | 100 °C for 10 h | −18 °C for 24 h | Silanization treatment | - | [66] |
Clean, dice and dry | 180 °C for 12 h | Dry | - | - | [67] |
Dice and dry | 180 °C for 12 h | Dry | - | - | [68] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Z.; Yang, Q.; Cao, L.; Li, S.; Zeng, X.; Zhou, W.; Zhang, C. Synthesis and Application of Porous Carbon Nanomaterials from Pomelo Peels: A Review. Molecules 2023, 28, 4429. https://doi.org/10.3390/molecules28114429
Liu Z, Yang Q, Cao L, Li S, Zeng X, Zhou W, Zhang C. Synthesis and Application of Porous Carbon Nanomaterials from Pomelo Peels: A Review. Molecules. 2023; 28(11):4429. https://doi.org/10.3390/molecules28114429
Chicago/Turabian StyleLiu, Zixuan, Qizheng Yang, Lei Cao, Shuo Li, Xiangchen Zeng, Wenbo Zhou, and Cheng Zhang. 2023. "Synthesis and Application of Porous Carbon Nanomaterials from Pomelo Peels: A Review" Molecules 28, no. 11: 4429. https://doi.org/10.3390/molecules28114429
APA StyleLiu, Z., Yang, Q., Cao, L., Li, S., Zeng, X., Zhou, W., & Zhang, C. (2023). Synthesis and Application of Porous Carbon Nanomaterials from Pomelo Peels: A Review. Molecules, 28(11), 4429. https://doi.org/10.3390/molecules28114429