Nanotechnology–General Aspects: A Chemical Reduction Approach to the Synthesis of Nanoparticles
Abstract
:1. Basic Aspects of Nanotechnology
1.1. The Era of Nanomaterials
1.2. What Is Nanotechnology?
- nanoscience—is the study of structures and molecules at the atomic, molecular, and macromolecular scales, whose properties are significantly different from those occurring on a larger scale,
- nanotechnology—is technology that uses nanoscience in practical applications, such as a variety of devices or systems, by controlling shape and size at the nanometer scale.
- nanoscale—a scale having one or more dimensions of the order of 100 nm or less,
- nanomaterial—a material with one or more external dimensions or internal structure that can exhibit novel properties compared to the same material without nanoscale features,
- nanoparticle—a particle with at least one dimension at the nanoscale,
- nanocomposite—a composite in which at least one of the phases has at least one dimension at the nanoscale,
- nanostructured materials—having a structure at the nanoscale.
- research and development of technologies in the 1–100 nm range,
- creation of small structures with novel properties,
- controlling and manipulating structures at the atomic scale.
1.3. Short History of Nanotechnology
1.4. Application of Nanotechnology Products
1.4.1. Energy and Environment
1.4.2. Electronics
1.4.3. Agri-Food Production
1.4.4. Cosmetics
1.4.5. Medicine
1.4.6. Military and Security
1.5. Risk Associated with Nanotechnology
2. Nanoparticles
2.1. Unique Features of Nanoparticles
- a high volume-to-surface ratio, one result of which is the high reactivity of nanometer-sized materials, in which interactions between molecules may easily occur,
- the presence of the surface plasmon resonance effect (this aspect is generally important in optical applications),
- different physical properties with respect to the starting metal; surface energy and melting point are particularly sensitive to nanoparticle size,
- a large number of low-coordination sites on the surface relative to that in the starting material, with remarkable effects on chemical reactivity and catalytic properties,
- easy surface functionalization, which makes them very attractive, especially in nanomedicine for selective drug transport in target organs and tissues.
2.2. Types of Nanoparticles
2.2.1. Inorganic Nanoparticles
- carbon-based nanoparticles
- metal and metal oxide nanoparticles
- semiconducting nanoparticles and quantum dots
- ceramic nanoparticles
2.2.2. Organic Nanoparticles
- polymeric nanoparticles
- biomolecule derived nanoparticles
3. Metallic Nanoparticles
3.1. General Methods for Preparing Metallic Nanoparticles
3.1.1. The Top-Down Approach
3.1.2. The Bottom-Up Approach
3.2. Methods for Producing Metallic Nanoparticles
3.2.1. Chemical Methods
3.2.2. Physical Methods
3.2.3. Biological Methods (Biochemical)
3.3. Synthesis of Metallic Nanoparticles by Chemical Reduction
3.3.1. Metal Precursor
Metal | Metal Precursor | References |
---|---|---|
Pd | Pd(OAc)2 | [67,68] |
Na2PdCl4 | [69,70,71,72,73] | |
Pd(NO3)2·2H2O | [74,75] | |
K2PdCl4 | [76] | |
H2PdCl4 | [77,78] | |
PdCl2 | [79,80,81,82] | |
Pt | H2PtCl6·6H2O | [67,73,74,79,83] |
K2PtCl6 | [84,85] | |
Na2PtCl4 | [86] | |
Pt(acac)2 | [87] | |
Ag | AgNO3 | [63,69,88,89,90,91,92,93,94,95,96] |
AgBF4 | [97] | |
AgBF6 | [97] | |
AgClO4 | [98] | |
Au | HAuCl4·3H2O | [69,74,79,85,99,100,101] |
KAuCl4 | [102,103] | |
Ru | RuCl3·3H2O | [75,104,105,106,107] |
Ru(NO)(NO3)3 | [108] | |
Cu | CuSO4·5H2O | [109,110,111] |
CuCl2·H2O | [112,113] | |
Cu(NO3)2·3H2O | [114,115] |
3.3.2. Solvent
3.3.3. Reducer
Reducer | Type of Nanoparticles | References |
---|---|---|
Glucose | Au | [124] |
Foeniculum vulgare extract | Au | [125] |
Capsicum annum extract | Au | [126] |
Sodium citrate | Au | [127] |
Sodium citrate | Au | [128] |
Sodium borohydride | Ag | [129] |
Sodium borohydride | Ag | [130] |
Glucose | ||
Formaldehyde | ||
Glucose | Ag | [131] |
Sucrose | ||
Dextran | ||
Glucose | Ag | [132] |
Dextrin | ||
Hydrazine | Au | [133] |
Citrate | Au | [134] |
Ascorbic acid | ||
Hydrogen peroxide | ||
Cetyltrimethylammonium chloride | Au | [135] |
3.3.4. Stabilizer
Class | Components |
---|---|
Organic ligands | N-terminated: |
oleyl amine | |
octadecylamine | |
dodecylamine | |
O-terminated: | |
oleic acid | |
linoleic acid | |
P-terminated: | |
triphenyl phosphine | |
tri-n-octylphosphine | |
S-terminated: | |
thiols | |
polymers | polyvinyl pyrrolidone |
polyvinyl alcohol | |
polyethylene glycol | |
polypropylene glycol | |
polyacrylic acid | |
polyphenylene oxide | |
dendrimers | polyamido(amine) |
poly(propyleneimine) | |
surfactants | hexadecyltrimethylammonium bromide |
tetra-N-alkylammonium halides |
- the possibility of obtaining monodisperse nanoparticles due to the high homogeneity and porosity of the dendrimers,
- prevention of nanoparticle agglomeration due to the steric effect of the dendrimers,
- possibility of application in catalysis, among other things, since the nanoparticles are only partially surrounded by the dendrimer,
- acting as a “nanofilter” to control access of small molecules to the attached nanoparticles (depending on types of functional groups and solvents),
- the possibility of changing the solubility between the hydrophilic dendrimer and hydrophobic metal molecules due to the fact that the end groups of the dendrimer can be combined with other functional groups.
3.4. Characterization of Metallic Nanoparticles
- What does the material look like (size, size distribution, shape, topography, degree of agglomeration, aggregation)?
- What is the material made of (chemical composition, crystal structure, purity, impurity level, elemental composition, chemical composition, and phase composition)?
- Which factors affect the material’s interaction with its environment (specific surface area, surface chemistry, surface charge)?
3.4.1. Size
3.4.2. Size Distribution
3.4.3. Shape
3.4.4. Surface Charge
3.4.5. Surface AREA/porosity
3.4.6. Concentration
3.4.7. Composition
3.4.8. Agglomeration State
3.5. Examples from Literature
- The effect of the reducer concentration
- The effect of the stabilizer concentration
- The effect of pH
- The effect of the stabilizer concentration
- The effect of temperature
- The effect of pH
- The effect of the reducer concentration
- The effect of the type of reducer
- The effect of metal precursor concentration
- The effect of reducer concentration
- The effect of stabilizer concentration
- The effect of pH
- The effect of temperature and pH
- The effect of stabilizer concentration
- The effect of reductant concentration
- The effect of stabilizer type
4. Conclusions and Future Perspectives of Nanoparticles
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Lagashetty, A.; Bhavikatti, A. Nanotechnology-an overview. Mater. Sci. Indian J. Rev. 2019, 5, 274–276. [Google Scholar]
- Whatmore, R.W. Nanotechnology—What is it? Should we be worried? Occup. Med. 2006, 56, 295–299. [Google Scholar] [CrossRef] [Green Version]
- Bayda, S.; Adeel, M.; Tuccinardi, T.; Cordani, M.; Rizzolio, F. The history of nanoscience and nanotechnology: From chemical-physical applications to nanomedicine. Molecules 2020, 25, 112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rangasamy, M. Nanotechnology: A review. J. Appl. Pharm. Sci. 2011, 1, 8–16. [Google Scholar]
- Tarafdar, J.C.; Raliya, R.; Saran, R.P.; Choudhary, K.K. Biosynthesis and characterization of nanoparticles biosynthesis and characterization of nanoparticles. J. Adv. Med. Life Sci. 2014, 1, 1–4. [Google Scholar]
- Mansoori, G.A.; Fauzi Soelaiman, T.A. Nanotechnology—An introduction for the Standards Community. J. ASTM Int. 2005, 2, JAI13110. [Google Scholar]
- Shanmugam, V.; Meenatchisundaram, S.; Vartharaju, G. Nanotechnology—Review. J. Nehru Arts Sci. Coll. 2015, 1, 15–18. [Google Scholar]
- Hannah, W.; Thompson, P.B. Nanotechnology, risk and the environment: A review. J. Environ. Monit. 2008, 10, 291–300. [Google Scholar] [CrossRef]
- Nowack, B. The behavior and effects of nanoparticles in the environment. Environ. Pollut. 2009, 157, 1063–1064. [Google Scholar] [CrossRef]
- Majumder, D.D.; Banerjee, R.; Ulrichs, C.; Mewis, I.; Goswami, A. Nano-materials: Science of bottom-up and top-down. IETE Tech. Rev. 2007, 24, 9–25. [Google Scholar]
- Selmani, A.; Kovačević, D.; Bohinc, K. Nanoparticles: From synthesis to applications and beyond. Adv. Colloid Interface Sci. 2022, 303, 102640–102652. [Google Scholar] [CrossRef] [PubMed]
- Satyanarayana, T. A Review on chemical and physical synthesis methods of nanomaterials. Int. J. Res. Appl. Sci. Eng. Technol. 2018, 6, 2885–2889. [Google Scholar] [CrossRef]
- Hulla, J.E.; Sahu, S.C.; Hayes, A.W. Nanotechnology: History and future. Hum. Exp. Toxicol. 2015, 34, 1318–1321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Binnig, G.; Rohrer, H.; Gerber, C. Surface study by Scanning Tunneling Microscopy. Phys. Rev. Lett. 1982, 49, 57–61. [Google Scholar] [CrossRef] [Green Version]
- Binnig, G.; Rohrer, H.; Gerber, C. Tunneling through a controllable vacuum gap. Appl. Phys. Lett. 1982, 40, 178–180. [Google Scholar] [CrossRef] [Green Version]
- Binnig, G.; Quate, C.F.; Gerber, C. Atomic Force Microscopy. Phys. Rev. Lett. 1986, 56, 930–934. [Google Scholar] [CrossRef] [Green Version]
- Binnig, G.; Gerber, C.; Stoll, E.; Albrecht, T.R.; Quate, C.F. Atomic resolution with atomic force microscope. Europhys. Lett. 1987, 3, 1281–1286. [Google Scholar] [CrossRef]
- Singh, A.; Dubey, S.; Dubey, H.K. Nanotechnology: The future engineering. Int. J. Adv. Innov. Res. 2019, 6, 230–233. [Google Scholar]
- Kargozar, S.; Mozafari, M. Nanotechnology and nanomedicine: Start small, think big. Mater. Today Proc. 2018, 5, 15492–15500. [Google Scholar] [CrossRef]
- Menéndez-Manjón, A.; Moldenhauer, K.; Wagener, P.; Barcikowski, S. Nano-energy research trends: Bibliometrical analysis of nanotechnology research in the energy sector. J. Nanopart. Res. 2011, 13, 3911–3922. [Google Scholar] [CrossRef]
- Yadav, V. Nanotechnology, Big things from a Tiny World: A Review. Adv. Electron. Electr. Eng. 2013, 3, 771–778. [Google Scholar]
- Ojha, G.P.; Pant, B.; Muthurasu, A.; Chae, S.-H.; Park, S.-J.; Kim, T.; Kim, H.-Y. Three-dimensionally assembled manganese oxide ultrathin nanowires: Prospective electrode material for asymmetric supercapacitors. Energy 2019, 188, 116066. [Google Scholar] [CrossRef]
- Kang, D.; Ojha, G.P.; Kim, H.Y. Preparation and characterization of nickel nanoparticles decorated carbon fibers derived from discarded ostrich eggshell membranes for supercapacitors application. Funct. Compos. Struct. 2019, 1, 045004. [Google Scholar] [CrossRef]
- Prasad, R.; Bhattacharyya, A.; Nguyen, Q.D. Nanotechnology in sustainable agriculture: Recent developments, challenges, and perspectives. Front. Microbiol. 2017, 8, 1014. [Google Scholar] [CrossRef] [Green Version]
- Forster, S.P.; Olveira, S.; Seeger, S. Nanotechnology in the market: Promises and realities. Int. J. Nanotechnol. 2011, 8, 592–613. [Google Scholar] [CrossRef]
- Chaudhri, N.; Soni, G.C.; Prajapati, S.K. Nanotechnology: An advance tool for nano-cosmetics preparation. Int. J. Pharma Res. Rev. 2015, 4, 28–40. [Google Scholar]
- Abdulazeem, L.; Hassan, F.G.; Abed, M.J.; Torki, W.S.; Naje, A.S. Nanoparticles in cosmetics, what we don’t know about safety and hidden risks. A mini review. Glob. NEST J. 2022, 25, 1–5. [Google Scholar]
- Mu, L.; Sprando, R.L. Application of nanotechnology in cosmetics. Pharm. Res. 2010, 27, 1746–1749. [Google Scholar] [CrossRef]
- Kaul, S.; Gulati, N.; Verma, D.; Mukherjee, S.; Nagaich, U. Role of nanotechnology in cosmeceuticals: A review of recent advances. J. Pharm. 2018, 2018, 3420204. [Google Scholar] [CrossRef] [Green Version]
- Agrahari, P.; Bhatia, A.K.; Sexna, A.; Pant, G.; Singh, R.P.; Mishra, R.R.; Mishra, V.K. Advance applications of nanotechnology in medicine. Int. J. Sci. Res. 2016, 7, 1284–1315. [Google Scholar]
- Boisseau, P.; Loubaton, B. Nanomedicine, nanotechnology in medicine. Nanomédecine et nanotechnologies pour la médecine. Comptes Rendus Phys. 2011, 12, 620–636. [Google Scholar] [CrossRef] [Green Version]
- Chandrakala, V.; Aruna, V.; Angajala, G. Review on metal nanoparticles as nanocarriers: Current challenges and perspectives in drug delivery systems. Emergent Mater. 2022, 5, 1593–1615. [Google Scholar] [CrossRef]
- Ramsden, J.J. Nanotechnology for military applications. Nanotechnol. Percept. 2012, 8, 99–131. [Google Scholar] [CrossRef]
- Alkandari, A.; Almesri, Z.; Moein, S. Nanotechnology applications: An analytic comparison nanotechnology applications: An analytic comparison. J. Adv. Comput. Sci. Technol. Res. 2017, 7, 67–80. [Google Scholar]
- Adams, F.C.; Barbante, C. Nanoscience, nanotechnology and spectrometry. Spectrochim. Acta Part B At. Spectrosc. 2013, 86, 3–13. [Google Scholar] [CrossRef] [Green Version]
- Mitra, D.; Adhikari, P.; Djebaili, R.; Thathola, P.; Joshi, K.; Pellegrini, M.; Adeyemi, N.O.; Khoshru, B.; Kaur, K.; Priyadarshini, A.; et al. Biosynthesis and characterization of nanoparticles, its advantages, various aspects and risk assessment to maintain the sustainable agriculture: Emerging technology in modern era science. Plant Physiol. Biochem. 2023, 196, 103–120. [Google Scholar] [CrossRef] [PubMed]
- Sharma, G.; Kumar, A.; Sharma, S.; Naushad, M.; Dwivedi, R.P.; Alothman, Z.A.; Mola, G.T. Novel development of nanoparticles to bimetallic nanoparticles and their composites: A review. J. King Saud Univ.-Sci. 2019, 31, 257–269. [Google Scholar] [CrossRef]
- Thakkar, K.N.; Mhatre, S.S.; Parikh, R.Y. Biological synthesis of metallic nanoparticles. Nanomed. Nanotechnol. Biol. Med. 2010, 6, 257–262. [Google Scholar] [CrossRef]
- Narayan, N.; Meiyazhagan, A.; Vajtai, R. Metal nanoparticles as green catalysts. Materials 2019, 12, 3602. [Google Scholar] [CrossRef] [Green Version]
- Reverberi, A.P.; Kuznetsov, N.T.; Meshalkin, V.P.; Salerno, M.; Fabiano, B. Systematical analysis of chemical methods in metal nanoparticles synthesis. Theor. Found. Chem. Eng. 2016, 50, 59–66. [Google Scholar] [CrossRef]
- Ravisankar, P.; Swathi, V. Metallic nanoparticles—Versatile platforms for targeted drug. Int. J. Adv. Pharm. Sci. 2020, 4, 1590–1601. [Google Scholar]
- Joseph, T.M.; Mahapatra, D.K.; Esmaeili, A.; Piszczyk, Ł.; Hasanin, M.S.; Kattali, M.; Haponiuk, J.; Thomas, S. Nanoparticles: Taking a unique position in medicine. Nanomaterials 2023, 13, 574–632. [Google Scholar] [CrossRef] [PubMed]
- Singh, M.; Manikandan, S.; Kumaraguru, A.K. Nanoparticles: A new technology with wide applications. J. Nanosci. Nanotechnol. 2011, 1, 1–11. [Google Scholar] [CrossRef]
- Sajid, M.; Płotka-Wasylka, J. Nanoparticles: Synthesis, characteristics, and applications in analytical and other sciences. Microchem. J. 2020, 154, 104623. [Google Scholar] [CrossRef]
- Khan, I.; Saeed, K.; Khan, I. Nanoparticles: Properties, applications and toxicities. Arab. J. Chem. 2019, 12, 908–931. [Google Scholar] [CrossRef]
- Dhakad, G.S.; Aich, R.; Kushwah, M.S.; Yadav, J.S. Nanotechnology: Trends and future prospective. Glob. J. Bio-Sci. Biotechnol. 2017, 6, 548–553. [Google Scholar]
- Anwar, S.H. A brief review on nanoparticles: Types of platforms, biological synthesis and applications. Res. Rev. J. Mater. Sci. 2018, 6, 109–116. [Google Scholar]
- Runowski, M. Nanotechnologia—Nanomateriały, nanocząstki i wielofunkcyjne nanostruktury typu rdzeń/powłoka. Chemik 2014, 68, 766–775. [Google Scholar]
- Rao, J.P.; Geckeler, K.E. Polymer nanoparticles: Preparation techniques and size-control parameters. Prog. Polym. Sci. 2011, 36, 887–913. [Google Scholar] [CrossRef]
- Dębek, P.; Feliczak-Guzik, A.; Nowak, I. Nanostruktury—Ogólne informacje. Zastosowanie nanoobiektów w medycynie i kosmetologii. Postep. Hig. Med. Dosw. 2017, 71, 1055–1062. [Google Scholar]
- Chaturvedi, S.; Dave, P.N. Design process for nanomaterials. J. Mater. Sci. 2013, 48, 3605–3622. [Google Scholar] [CrossRef]
- Sinha, B.; Müller, R.H.; Möschwitzer, J.P. Bottom-up approaches for preparing drug nanocrystals: Formulations and factors affecting particle size. Int. J. Pharm. 2013, 453, 126–141. [Google Scholar] [CrossRef]
- Verma, S.; Gokhale, R.; Burhess, D.J. A comparative study of top-down and bottom-up approaches for the preparation of micro/nanosuspensions. Int. J. Pharm. 2009, 380, 216–222. [Google Scholar] [CrossRef]
- Iravani, S. Methods for preparation of metal nanoparticles. In Metal Nanoparticles: Synthesis and Applications in Pharmaceutical sciences; Thota, S., Crans, D.C., Eds.; Wiley-VCH: Weinheim, Germany, 2017; pp. 15–31. [Google Scholar]
- Huq, M.A.; Ashrafudoulla, M.; Rahman, M.M.; Balusamy, S.R.; Akter, S. Green synthesis and potential antibacterial applications of bioactive silver nanoparticles: A review. Polymers 2022, 14, 742–764. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.J.; Lee, G.; Jang, N.R.; Yun, J.H.; Song, J.Y.; Kim, B.S. Biological synthesis of copper nanoparticles using plant extract. Nanotechnology 2011, 1, 371–374. [Google Scholar]
- Singh, P.; Kim, Y.J.; Zhang, D.; Yang, D.C. Biological synthesis of nanoparticles from plants and microorganisms. Trends Biotechnol. 2016, 34, 588–599. [Google Scholar] [CrossRef] [PubMed]
- Stanley, S. Biological nanoparticles and their influence on organisms. Curr. Opin. Biotechnol. 2014, 28, 69–74. [Google Scholar] [CrossRef]
- Saallah, S.; Lenggoro, I.W. Nanoparticles carrying biological molecules: Recent advances and applications. KONA Powder Part. J. 2018, 35, 89–111. [Google Scholar]
- Gericke, M.; Pinches, A. Biological synthesis of metal nanoparticles. Hydrometallurgy 2006, 83, 132–140. [Google Scholar] [CrossRef]
- Iravani, S. Green synthesis of metal nanoparticles using plants. Green Chem. 2011, 13, 2638–2650. [Google Scholar] [CrossRef]
- Ying, S.; Guan, Z.; Ofoegbu, P.C.; Clubb, P.; Rico, C.; He, F.; Hong, J. Green synthesis of nanoparticles: Current developments and limitations. Environ. Technol. Innov. 2022, 26, 102336–102356. [Google Scholar] [CrossRef]
- Suriati, G.; Mariatti, M.; Azizan, A. Synthesis of silver nanoparticles by chemical reduction method: Effect of reducing agent and surfactant concentration. Int. J. Automot. Mech. Eng. 2014, 10, 1920–1927. [Google Scholar] [CrossRef]
- Goia, D.V.; Matijević, E. Preparation of monodispersed metal particles. New J. Chem. 1998, 22, 1203–1215. [Google Scholar] [CrossRef]
- Bisht, N.; Phalswal, P.; Khanna, P.K. Selenium nanoparticles: A review on synthesis and biomedical applications. Mater. Adv. 2022, 3, 1415–1431. [Google Scholar] [CrossRef]
- Yaseen, B.; Gangwar, C.; Kumar, I.; Sarkar, J.; Naik, R.M. Detailed kinetics and mechanistic study for the preparation of silver nanoparticles by a chemical reduction method in the presence of a neuroleptic agent (Gabapentin) at an alkaline pH and its characterization. ACS Omega 2022, 7, 5739–5750. [Google Scholar] [CrossRef]
- Siddiqi, K.S.; Husen, A. Green synthesis, characterization and uses of palladium/platinum nanoparticles. Nanoscale Res. Lett. 2016, 11, 482. [Google Scholar] [CrossRef] [Green Version]
- Luo, C.; Zhang, Y.; Wang, Y. Palladium nanoparticles in poly(ethyleneglycol): The efficient and recyclable catalyst for Heck reaction. J. Mol. Catal. A Chem. 2005, 229, 7–12. [Google Scholar] [CrossRef]
- Xiong, Y.; Washio, I.; Chen, J.; Cai, H.; Li, Z.Y.; Xia, Y. Poly(vinyl pyrrolidone): A dual functional reductant and stabilizer for the facile synthesis of noble metal nanoplates in aqueous solutions. Langmuir 2006, 22, 8563–8570. [Google Scholar] [CrossRef]
- Coronado, E.; Ribera, A.; García-Martínez, J.; Linares, N.; Liz-Marzán, L.M. Synthesis, characterization and magnetism of monodispersed water soluble palladium nanoparticles. J. Mater. Chem. 2008, 18, 5682–5688. [Google Scholar] [CrossRef]
- Ganesan, M.; Freemantle, R.G.; Obare, S.O. Monodisperse thioether-stabilized palladium nanoparticles: Synthesis, characterization, and reactivity. Chem. Mater. 2007, 19, 3464–3471. [Google Scholar] [CrossRef]
- Liu, J.; He, F.; Gunn, T.M.; Zhao, D.; Roberts, C.B. Precise seed-mediated growth and size-controlled synthesis of palladium nanoparticles using a green chemistry approach. Langmuir 2009, 25, 7116–7128. [Google Scholar] [CrossRef] [PubMed]
- Long, N.; Ohtaki, M.; Nogami, M. Control of morphology of Pt nanoparticles and Pt-Pd core-shell nanoparticles. J. Nov. Carbon Resour. Sci. 2011, 3, 40–44. [Google Scholar]
- Bonet, F.; Delmas, V.; Grugeon, S.; Herrera Urbina, R.; Silvert, P.Y.; Tekaia-Elhsissen, K. Synthesis of monodisperse Au, Pt, Pd, Ru and Ir nanoparticles in ethylene glycol. Nanostruct. Mater. 1999, 11, 1277–1284. [Google Scholar] [CrossRef]
- Shen, X.S.; Wang, G.Z.; Hong, X.; Zhu, W. Shape-controlled synthesis of palladium nanoparticles and their SPR/SERS properties. Chin. J. Chem. Phys. 2009, 22, 440–446. [Google Scholar] [CrossRef]
- Scott, R.W.J.; Ye, H.; Henriquez, R.R.; Crooks, R.M. Synthesis, characterization, and stability of dendrimer-encapsulated palladium nanoparticles. Chem. Mater. 2003, 15, 3873–3878. [Google Scholar] [CrossRef]
- Teranishi, T.; Miyake, M. Size control of palladium nanoparticles and their crystal structures. Chem. Mater. 1998, 10, 594–600. [Google Scholar] [CrossRef]
- Yang, J.; Tian, C.; Wang, L.; Fu, H. An effective strategy for small-sized and highly-dispersed palladium nanoparticles supported on graphene with excellent performance for formic acid oxidation. J. Mater. Chem. 2011, 21, 3384–3390. [Google Scholar] [CrossRef]
- Panigrahi, S.; Kundu, S.; Ghosh, S.K.; Nath, S.; Pal, T. General method of synthesis for metal nanoparticles. J. Nanopart. Res. 2004, 6, 411–414. [Google Scholar] [CrossRef]
- Khanna, P.K.; Kulkarni, D. Reduction of PdCl2 by emeraldine base; synthesis of palladium nanoparticles. Synth. React. Inorg. Met. Nano-Metal Chem. 2008, 38, 629–633. [Google Scholar] [CrossRef]
- Jung, S.C.; Park, Y.K.; Jung, H.Y.; Kim, S.C. Effect of stabilizing agents on the synthesis of palladium nanoparticles. J. Nanosci. Nanotechnol. 2017, 17, 2833–2836. [Google Scholar] [CrossRef]
- Wang, Y.; Du, M.; Xu, J.; Yang, P.; Du, Y. Size-controlled synthesis of palladium nanoparticles. J. Dispers. Sci. Technol. 2008, 29, 891–894. [Google Scholar] [CrossRef]
- Beyribey, B.; Çorbacioǧlu, B.; Altin, Z. Synthesis of platinum particles from H2PtCl6 with hydrazine as reducing agent. Gazi Univ. J. Sci. 2009, 22, 351–357. [Google Scholar]
- Narayanan, R.; El-Sayed, M.A. Shape-dependent catalytic activity of platinum nanoparticles in colloidal solution. Nano Lett. 2004, 4, 1343–1348. [Google Scholar] [CrossRef]
- Zhao, D.; Wu, G.; Xu, B. Synthesis and characterization of Au@Pt nanoparticles. Chin. Sci. Bull. 2005, 50, 1846–1848. [Google Scholar] [CrossRef]
- Hussein, A.S.; Murugaraj, P.; Rix, C.; Mainwaring, D. Mechanism of formation and stabilization of platinum nanoparticles in aqueous solvents. Smart Mater. II 2002, 4934, 70–77. [Google Scholar]
- Ren, J.; Tilley, R.D. Shape-controlled growth of platinum nanoparticles. Small 2007, 3, 1508–1512. [Google Scholar] [CrossRef]
- Khan, Z.; Al-Thabaiti, S.A.; Obaid, A.Y.; Al-Youbi, A.O. Preparation and characterization of silver nanoparticles by chemical reduction method. Colloids Surf. B Biointerfaces 2011, 82, 513–517. [Google Scholar] [CrossRef]
- Song, K.C.; Lee, S.M.; Park, T.S.; Lee, B.S. Preparation of colloidal silver nanoparticles by chemical eduction metohd. Korean J. Chem. Eng. 2009, 26, 153–155. [Google Scholar] [CrossRef]
- Wang, H.; Qiao, X.; Chen, J.; Ding, S. Preparation of silver nanoparticles by chemical reduction method. Colloids Surf. A Physicochem. Eng. Asp. 2005, 256, 111–115. [Google Scholar] [CrossRef]
- Guzmán, M.G.; Dille, J.; Godet, S. Synthesis of silver nanoparticles by chemical reduction method and their antifungal activity. Mater. Metall. Eng. 2008, 2, 91–98. [Google Scholar]
- Quintero-Quiroz, C.; Acevedo, N.; Zapata-Giraldo, J.; Botero, L.E.; Quintero, J.; Zárate-Triviño, D.; Saldarriaga, J.; Pérez, V.Z. Optimization of silver nanoparticle synthesis by chemical reduction and evaluation of its antimicrobial and toxic activity. Biomater. Res. 2019, 23, 27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Banach, M.; Pulit, J.; Tymczyna, L.; Chmielowiec-Korzeniowska, A. Otrzymywanie srebra nanostrukturalnego metodaą redukcji chemicznej. Przem. Chem. 2013, 92, 936–940. [Google Scholar]
- Chou, K.S.; Ren, C.Y. Synthesis of nanosized silver particles by chemical reduction method. Mater. Chem. Phys. 2000, 64, 241–246. [Google Scholar] [CrossRef]
- Liguo, Y.; Yanhua, Z. Preparation of nano-silver flake by chemical reduction method. Rare Met. Mater. Eng. 2010, 39, 401–404. [Google Scholar] [CrossRef]
- Alqadi, M.K.; Abo Noqtah, O.A.; Alzoubi, F.Y.; Alzouby, J.; Aljarrah, K. PH effect on the aggregation of silver nanoparticles synthesized by chemical reduction. Mater. Sci. Pol. 2014, 32, 107–111. [Google Scholar] [CrossRef]
- Pulit, J.; Banach, M.; Kowalski, Z. Chemical reduction as the main method for obtaining nanosilver. J. Comput. Theor. Nanosci. 2013, 10, 276–284. [Google Scholar] [CrossRef]
- Pastoriza-Santos, I.; Liz-Marzán, L.M. Formation of PVP-protected metal nanoparticles in DMF. Langmuir 2002, 18, 2888–2894. [Google Scholar] [CrossRef]
- Vargas-Hernandez, C.; Mariscal, M.M.; Esparza, R.; Yacaman, M.J. A synthesis route of gold nanoparticles without using a reducing agent. Appl. Phys. Lett. 2010, 96, 2012–2015. [Google Scholar] [CrossRef]
- Jana, N.R.; Gearheart, L.; Murphy, C.J. Evidence for seed-mediated nucleation in the chemical reduction of gold salts to gold nanoparticles. Chem. Mater. 2001, 13, 2313–2322. [Google Scholar] [CrossRef]
- Corbierre, M.K.; Lennox, R.B. Preparation of thiol-capped gold nanoparticles by chemical reduction of soluble Au(I)-thiolates. Chem. Mater. 2005, 17, 5691–5696. [Google Scholar] [CrossRef]
- Debnath, D.; Kim, S.H.; Geckeler, K.E. The first solid-phase route to fabricate and size-tune gold nanoparticles at room temperature. J. Mater. Chem. 2009, 19, 8810–8816. [Google Scholar] [CrossRef]
- Leiva, A.; Saldias, C.; Quezada, C.; Toro-Labbé, A.; Espinoza-Beltrán, F.J.; Urzúa, M.; Gargallo, L.; Radic, D. Gold-copolymer nanoparticles: Poly(ε-caprolactone)/poly(N-vinyl-2-pyrrolydone) biodegradable triblock copolymer as stabilizer and reductant. Eur. Polym. J. 2009, 45, 3035–3042. [Google Scholar] [CrossRef]
- Zawadzki, M.; Okal, J. Synthesis and structure characterization of Ru nanoparticles stabilized by PVP or γ-Al2O3. Mater. Res. Bull. 2008, 43, 3111–3121. [Google Scholar] [CrossRef]
- Patharkar, R.G.; Nandanwar, S.U.; Chakraborty, M. Synthesis of colloidal ruthenium nanocatalyst by chemical reduction method. J. Chem. 2013, 1, 2–7. [Google Scholar] [CrossRef]
- Lee, J.Y.; Yang, J.; Deivaraj, T.C.; Too, H.P. A novel synthesis route for ethylenediamine-protected ruthenium nanoparticles. J. Colloid Interface Sci. 2003, 268, 77–80. [Google Scholar] [CrossRef] [PubMed]
- Viau, G.; Brayner, R.; Poul, L.; Chakroune, N.; Lacaze, E.; Fiévet-Vincent, F.; Fiévet, F. Ruthenium nanoparticles: Size, shape, and self-assemblies. Chem. Mater. 2003, 15, 486–494. [Google Scholar] [CrossRef]
- Chen, Y.; Liew, K.Y.; Li, J. Size-controlled synthesis of Ru nanoparticles by ethylene glycol reduction. Mater. Lett. 2008, 62, 1018–1021. [Google Scholar] [CrossRef]
- Khan, A.; Rashid, A.; Younas, R.; Chong, R. A chemical reduction approach to the synthesis of copper nanoparticles. Int. Nano Lett. 2016, 6, 21–26. [Google Scholar] [CrossRef] [Green Version]
- Mahfouf, E.; Djerad, S.; Bouchareb, R. Synthesis of copper particles and elimination of cupric ions by chemical reduction. Environ. Res. Technol. 2020, 3, 46–49. [Google Scholar] [CrossRef]
- Khalid, H.; Shamaila, S.; Zafar, N. Synthesis of copper nanoparticles by chemical reduction method. Sci. Int. 2015, 27, 3085–3088. [Google Scholar]
- Aguilar, M.S.; Esparza, R.; Rosas, G. Synthesis of Cu nanoparticles by chemical reduction method. Trans. Nonferr. Met. Soc. China 2019, 29, 1510–1515. [Google Scholar] [CrossRef]
- Khanna, P.K.; Gaikwad, S.; Adhyapak, P.V.; Singh, N.; Marimuthu, R. Synthesis and characterization of copper nanoparticles. Mater. Lett. 2007, 61, 4711–4714. [Google Scholar] [CrossRef]
- Desai, A.; Pillai, V.; Mehta, K.; Bhatt, K. Synthesis & characterization of copper nanoparticles using LASIS and chemical reduction technique. J. Appl. Sci. 2019, 5, 1–7. [Google Scholar]
- Chandra, S.; Kumar, A.; Tomar, P.K. Synthesis and characterization of copper nanoparticles by reducing agent. J. Saudi Chem. Soc. 2014, 18, 149–153. [Google Scholar] [CrossRef] [Green Version]
- Kameo, A.; Yoshimura, T.; Esumi, K. Preparation of noble metal nanoparticles in supercritical carbon dioxide. Colloids Surf. A Physicochem. Eng. Asp. 2003, 215, 181–189. [Google Scholar] [CrossRef]
- Dupont, J.; Fonseca, G.S.; Umpierre, A.P.; Fichtner, P.F.P.; Teixeira, S.R. Transition-metal nanoparticles in imidazolium ionic liquids: Recycable catalysts for biphasic hydrogenation reactions. J. Am. Chem. Soc. 2002, 124, 4228–4229. [Google Scholar] [CrossRef]
- Raut, D.; Wankhede, K.; Vaidya, V.; Bhilare, S.; Darwatkar, N.; Deorukhkar, A.; Trivedi, G.; Salunkhe, M. Copper nanoparticles in ionic liquids: Recyclable and efficient catalytic system for 1,3-dipolar cycloaddition reaction. Catal. Commun. 2009, 10, 1240–1243. [Google Scholar] [CrossRef]
- Duan, H.; Wang, D.; Li, Y. Green chemistry for nanoparticle synthesis. Chem. Soc. Rev. 2015, 44, 5778–5792. [Google Scholar] [CrossRef]
- De Souza, C.D.; Nogueira, B.R.; Rostelato, M.E.C.M. Review of the methodologies used in the synthesis gold nanoparticles by chemical reduction. J. Alloys Compd. 2019, 798, 714–740. [Google Scholar] [CrossRef]
- Putri, G.E.; Gusti, F.; Sary, A.N.; Zainul, R. Synthesis of silver nanoparticles used chemical reduction method by glucose as reducing agent. J. Phys. Conf. Ser. 2019, 1317, 012027. [Google Scholar] [CrossRef]
- Hamedi, S.S.S.; Ghaseminezhad, S.; Shojaosadati, S.A. Comparative study on silver nanoparticles properties produced by green methods. Iran. J. Biotechnol. 2012, 10, 191–197. [Google Scholar]
- Agudelo, W.; Montoya, Y.; Bustamante, J. Using a non-reducing sugar in the green synthesis of gold and silver nanoparticles by the chemical reduction method. DYNA 2018, 85, 69–78. [Google Scholar] [CrossRef]
- Liu, J.; Qin, G.; Raveendran, P.; Ikushima, Y. Facile “green” synthesis, characterization, and catalytic function of β-D-glucose-stabilized Au nanocrystals. Chem.-Eur. J. 2006, 12, 2131–2138. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Ding, J.; Li, D.; Wang, Y.; Wu, Y.; Yang, X.; Chinnathambi, A.; Salmen, S.H.; Alharbi, S.A. Facile preparation of Au nanoparticles mediated by Foeniculum Vulgare aqueous extract and investigation of the anti-human breast carcinoma effects. Arab. J. Chem. 2022, 15, 103479. [Google Scholar] [CrossRef]
- Patil, T.P.; Vibhute, A.A.; Patil, S.L.; Dongale, T.D.; Tiwari, A.P. Green synthesis of gold nanoparticles via Capsicum annum fruit extract: Characterization, antiangiogenic, antioxidant and anti-inflammatory activities. Appl. Surf. Sci. 2023, 13, 100372. [Google Scholar] [CrossRef]
- Huang, H.; Yang, X. Chitosan mediated assembly of gold nanoparticles multilayer. Colloids Surf. Physicochem. Eng. Asp. 2003, 226, 77–86. [Google Scholar] [CrossRef]
- Turkevich, J.; Stevenson, P.C.; Hillier, J. A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss. Faraday Soc. 1951, 11, 55–75. [Google Scholar] [CrossRef]
- Myachina, G.F.; Korzhova, S.A.; Ermakova, T.G.; Sukhov, B.G.; Trofimov, B.A. Silver-poly(1-vinyl-1,2,4-triazole) nanocomposites. Chemistry 2008, 420, 123–124. [Google Scholar] [CrossRef]
- Prozorova, G.F.; Korzhova, S.A.; Konkova, T.V.; Ermakova, T.G.; Pozdnyakov, A.S.; Sukhov, B.G.; Arsentyev, K.Y.; Likhoshway, E.V.; Trofimov, B.A. Specific features of formation of silver nanoparticles in the polymer matrix. Chemistry 2011, 437, 47–49. [Google Scholar] [CrossRef]
- Vukoje, I.; Lazić, V.; Sredojević, D.; Fernandes, M.M.; Lanceros-Mendez, S.; Ahrenkiel, S.P.; Nedeljković, J.M. Influence of glucose, sucrose, and dextran coatings on the stability and toxicity of silver nanoparticles. Int. J. Biol. Macromol. 2022, 194, 461–469. [Google Scholar] [CrossRef]
- Ghadiri, M.; Hallajzadeh, J.; Akhghari, Z.; Nikkhah, E.; Othman, H.O. Green synthesis and antibacterial effects of silver nanoparticles on novel activated carbon. Iran J. Chem. Chem. Eng. 2023. [Google Scholar] [CrossRef]
- Shan, H.-Y.; Shen, K.-Y.; Song, S.-S.; Chen, C.; Ruan, F.-Y.; Wang, A.-J.; Yuan, P.-X.; Feng, J.-J. In situ synthesis of Au nanoparticles confined in 2D sheet-like metal organic frameworks to construct competitive PEC biosensors for sensitive analysis of autism spectrum disorder miRNA. Sens. Actuators B Chem. 2023, 375, 132849. [Google Scholar] [CrossRef]
- Kimling, J.; Maier, M.; Okenve, B.; Kotaidis, V.; Ballot, H.; Plech, A. Turkevich method for gold nanoparticle synthesis revisited. J. Phys. Chem. B 2006, 110, 15700–15707. [Google Scholar] [CrossRef]
- Choi, Y.S.; Ji, M.-J.; Kim, Y.J.; Kim, H.J.; Hong, J.W.; Lee, Y.W. One-pot Au@Pd dendritic nanoparticles as electrocatalysts with ethanol oxidation reaction. Catalysts 2023, 13, 11. [Google Scholar] [CrossRef]
- Aiken, J.D.; Finke, R.G. A review of modern transition-metal nanoclusters: Their synthesis, characterization, and applications in catalysis. J. Mol. Catal. A Chem. 1999, 145, 1–44. [Google Scholar] [CrossRef]
- Cookson, J. The preparation of palladium nanoparticles. Platin. Met. Rev. 2012, 56, 83–98. [Google Scholar] [CrossRef]
- Rafeeq, H.; Hussain, A.; Ambreen, A.; Huma, Z.; Waqas, M.; Bilal, M.; Iqbal, H.M.N. Functionalized nanoparticles and their environmental remediation potential: A review. J. Nanostruct. Chem. 2022, 12, 1007–1031. [Google Scholar] [CrossRef]
- Moon, S.Y.; Kusunose, T.; Sekino, T. CTAB-assisted synthesis of size- and shape-controlled gold nanoparticles in SDS aqueous solution. Mater. Lett. 2009, 63, 2038–2040. [Google Scholar] [CrossRef]
- Saldan, I.; Semenyuk, Y.; Marchuk, I.; Reshetnyak, O. Chemical synthesis and application of palladium nanoparticles. J. Mater. Sci. 2015, 50, 2337–2354. [Google Scholar] [CrossRef]
- León, Y.; Cárdenas, G.; Arias, M. Synthesis and characterizations of metallic nanoparticles in chitosan by chemical reduction. J. Chil. Chem. Soc. 2017, 62, 3760–3764. [Google Scholar] [CrossRef] [Green Version]
- Huang, H.; Yang, X. Synthesis of chitosan-stabilized gold nanoparticles in the absence/presence of tripolyphosphate. Biomacromolecules 2004, 5, 2340–2346. [Google Scholar] [CrossRef] [PubMed]
- Khan, Z.; Singh, T.; Hussain, J.I.; Obaid, A.Y.; Al-Thabaiti, S.A.; El-Mossalamy, E.H. Starch-directed green synthesis, characterization and morphology of silver nanoparticles. Colloids Surf. B Biointerfaces 2013, 102, 578–584. [Google Scholar] [CrossRef]
- Huang, H.; Yang, X. Synthesis of polysaccharide-stabilized gold and silver nanoparticles: A green method. Carbohydr. Res. 2004, 339, 2627–2631. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Yan, H. Preparation and characterization of heparin-stabilized gold nanoparticles. J. Carbohydr. Chem. 2008, 27, 309–319. [Google Scholar] [CrossRef]
- Mourdikoudis, S.; Pallares, R.M.; Thanh, N.T.K. Characterization techniques for nanoparticles: Comparison and complementarity upon studying nanoparticle properties. Nanoscale 2018, 10, 12871–12934. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baer, D.R. Surface characterization of nanoparticles. J. Surf. Anal. 2011, 17, 163–169. [Google Scholar] [CrossRef] [Green Version]
- McClements, J.; McClements, D.J. Standardization of nanoparticle characterization: Methods for testing properties, stability, and functionality of edible nanoparticles. Crit. Rev. Food Sci. Nutr. 2016, 56, 1334–1362. [Google Scholar] [CrossRef]
- Powers, K.W.; Palazuelos, M.; Moudgil, B.M.; Roberts, S.M. Characterization of the size, shape, and state of dispersion of nanoparticles for toxicological studies. Nanotoxicology 2007, 1, 42–51. [Google Scholar] [CrossRef]
- Modena, M.M.; Rühle, B.; Burg, T.P.; Wuttke, S. Nanoparticle characterization: What to measure? Adv. Mater. 2019, 31, 1901556. [Google Scholar] [CrossRef]
- Abbas, Z.; Labbez, C.; Nordholm, S.; Ahlberg, E. Size-dependent surface charging of nanoparticles. J. Phys. Chem. C 2008, 112, 5715–5723. [Google Scholar] [CrossRef]
- Lin, P.C.; Lin, S.; Wang, P.C.; Sridhar, R. Techniques for physicochemical characterization of nanomaterials. Biotechnol. Adv. 2014, 32, 711–726. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hondow, N.; Brydson, R.; Wang, P.; Holton, M.D.; Brown, M.R.; Rees, P.; Summers, H.D.; Brown, A. Quantitative characterization of nanoparticle agglomeration within biological media. J. Nanopart. Res. 2012, 14, 977–992. [Google Scholar] [CrossRef]
- Alshawwa, S.Z.; Kassem, A.A.; Farid, R.M.; Mostafa, S.K.; Labib, G.S. Nanocarrier drug delivery systems: Characterization, limitation, future perspectives and implementation of artificial intelligence. Pharmaceutics 2022, 14, 883. [Google Scholar] [CrossRef]
- Dabirian, E.; Hajipour, A.; Mehrizi, A.A.; Karaman, C.; Karimi, F.; Loke-Show, P.; Karaman, O. Nanoparticles application on fuel production from biological resources: A review. Fuel 2023, 331, 125682. [Google Scholar] [CrossRef]
- Saratale, R.G.; Cho, S.-K.; Bharagava, R.N.; Patel, A.K.; Varjani, S.; Mulla, S.I.; Kim, D.S.; Bhatia, S.K.; Ferreira, L.F.R.; Shin, H.S.; et al. A critical review on biomass-based sustainable biorefineries using nanobiocatalysts: Opportunities, challenges, and future perspectives. Bioresour. Technol. 2022, 363, 127926. [Google Scholar] [CrossRef] [PubMed]
Synthesis Parameters | Reaction Conditions |
---|---|
type and concentration of metal salts | reaction environment |
type and concentration of stabilizer | temperature |
type and concentration of reducer | pH |
molar ratio of stabilizer to metal salt | stirring |
molar ratio of reducer to metal salt | synthesis time |
Entity Characterized | Suitable Characterization Techniques |
---|---|
Size (structural properties) | TEM, HRTEM, SEM, AFM, XRD, DLS, SLS, NTA, SAXS, EXAFS, FMR, DCS, ICP-MS, UV-Vis, MALDI, NMR, TRPS, EPLS |
Size distribution | DCS, DLS, SAXS, NTA, ICP-MS, FMR, DTA, TRPS, SEM |
Surface area, specific surface area | BET, liquid NMR |
Surface charge | Zeta potential, EPM |
Shape | TEM, HRTEM, AFM, EPLS, FMR, 3D-tomography |
Elemental-chemical composition | XRD, XPS, ICP-MS, ICP-OES, SEM-EDX, NMR, MFM, LEIS |
Crystal structure | XRD, EXAFS, HRTEM, electron diffraction |
Concentration | ICP-MS, UV-Vis, RMM-MEMS, DCS, TRPS |
Agglomeration state | Zeta potential, DLS, DCS, UV-Vis, SEM, Cryo-TEM, TEM |
Chemical state-oxidation state | XAS, EELS, XPS, Mössbauer |
Density | DCS, RMM-MEMS |
3D visualization | 3D-tomography, AFM, SEM |
Optical properties | UV-Vis-NIR, PL, EELS-STEM |
Magnetic properties | SQUID, VSM, Mössbauer, MFM, FMR, XMCD, magnetic susceptibility |
Zeta Potential Analysis (mV) | T = 25 °C | T = 40 °C | T = 50 °C | |
---|---|---|---|---|
pH = 4 | Pt + water | −14.5 | −43.8 | −29.4 |
pH = 7 | Pt + water | −20.7 | −50.8 | −55.7 |
pH = 10 | Pt + water | −78.1 | −45.4 | −52.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szczyglewska, P.; Feliczak-Guzik, A.; Nowak, I. Nanotechnology–General Aspects: A Chemical Reduction Approach to the Synthesis of Nanoparticles. Molecules 2023, 28, 4932. https://doi.org/10.3390/molecules28134932
Szczyglewska P, Feliczak-Guzik A, Nowak I. Nanotechnology–General Aspects: A Chemical Reduction Approach to the Synthesis of Nanoparticles. Molecules. 2023; 28(13):4932. https://doi.org/10.3390/molecules28134932
Chicago/Turabian StyleSzczyglewska, Paulina, Agnieszka Feliczak-Guzik, and Izabela Nowak. 2023. "Nanotechnology–General Aspects: A Chemical Reduction Approach to the Synthesis of Nanoparticles" Molecules 28, no. 13: 4932. https://doi.org/10.3390/molecules28134932
APA StyleSzczyglewska, P., Feliczak-Guzik, A., & Nowak, I. (2023). Nanotechnology–General Aspects: A Chemical Reduction Approach to the Synthesis of Nanoparticles. Molecules, 28(13), 4932. https://doi.org/10.3390/molecules28134932