Fabrication of Enhanced UV Protective Cotton Fabric Using Activated Nano-Biocarbon Derived from Teff Hay Grafted by Polyaniline: RSM-Based Optimization and Characterization
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of ANC from Teff Hay
2.2. Surface Functionalization of ANC
2.3. Fabrication of FANC-Coated and PANI-Grafted Cotton Fiber Samples
2.4. Characterization Techniques
2.4.1. Fourier Transform Infrared Spectroscopy (FTIR)
2.4.2. UV–Visible Spectroscopy
2.4.3. Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM)
2.4.4. Thermal Gravimetric Analysis
2.4.5. Tensile Properties
2.4.6. Air Permeability
2.4.7. Toughness Testing
2.4.8. Wash Fastness Test
2.4.9. Rubbing Test (Dry and Wet)
3. Results and Discussion
3.1. Characteristics of ANC and Developed FANCPCF
3.2. Interaction Effect of ANI and FANC on UPF Value for Hybrid Nanocomposite
3.3. Spectral Analysis
3.4. Analysis of UV Shielding
3.5. Morphological Analysis for FANCPCF
3.6. Thermal Studies
3.7. Basic Characteristics of Primitive Cotton and FANCPCF
3.8. Durability Tests: Wash and Rubbing Fastness Tests
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Sahile, K.; Prabhu, S.V.; Worku, A. Development of Enhanced Ultraviolet Resistance Hybrid Cotton Fabric using Functionalized Biocarbon derived from Teff (Eragrostis tef) Hay. Asian J. Chem. 2023, 35, 1477–1484. [Google Scholar] [CrossRef]
- Mahdieh, Z.M.; Shekarriz, S.; Taromi, F.A. The Effect of Silver Concentration on Ag-TiO2 Nanoparticles Coated Polyester/Cellulose Fabric by In situ and Ex situ Photo-reduction Method—A Comparative Study. Fibers Polym. 2021, 22, 87–96. [Google Scholar] [CrossRef]
- Bentis, A.; Boukhriss, A.; Gmouh, S. Flame-retardant and water-repellent coating on cotton fabric by titania–boron sol–gel method. J. Sol-Gel Sci. Technol. 2020, 94, 719–730. [Google Scholar] [CrossRef]
- Amibo, T.A.; Beyan, S.M.; Mustefa, M.; Sundramurthy, V.P.; Bayu, A.B. Development of Nanocomposite based Antimicrobial Cotton Fabrics Impregnated by Nano SiO2 Loaded AgNPs Derived from Eragrostis Teff straw. Mater. Res. Innov. 2021, 26, 405–414. [Google Scholar] [CrossRef]
- El-Naggar, M.E.; Abu Ali, O.A.; Saleh, D.I.; Abu-Saied, M.; Khattab, T.A. Preparation of green and sustainable colorimetric cotton assay using natural anthocyanins for sweat sensing. Int. J. Biol. Macromol. 2021, 190, 894–903. [Google Scholar] [CrossRef]
- Xin, J.; Daoud, W.; Kong, Y. A New Approach to UV-Blocking Treatment for Cotton Fabrics. Text. Res. J. 2004, 74, 97–100. [Google Scholar] [CrossRef]
- Sarkar, A.A. An evaluation of UV protection imparted by cotton fabrics dyed with natural colorants. BMC Dermatol. 2004, 4, 15. [Google Scholar] [CrossRef]
- Abdelhady, M.M. Preparation and Characterization of Chitosan/Zinc Oxide Nanoparticles for Imparting Antimicrobial and UV Protection to Cotton Fabric. Int. J. Carbohydr. Chem. 2012, 2012, 840591. [Google Scholar] [CrossRef]
- Gao, S.; Gao, R. Antibacterial cellulose composite membranes prepared in ionic liquid via phase inversion method. Chem. Res. Chin. Univ. 2017, 33, 678–683. [Google Scholar] [CrossRef]
- Zong, E.; Wang, C.; Yang, J.; Zhu, H.; Jiang, S.; Liu, X.; Song, P. Preparation of TiO2/cellulose nanocomposites as antibacterial bio-adsorbents for effective phosphate removal from aqueous medium. Int. J. Biol. Macromol. 2021, 182, 434–444. [Google Scholar] [CrossRef]
- Kibria, G.; Repon, R.; Hossain, F.; Islam, T.; Jalil, M.A.; Aljabri, M.D.; Rahman, M.M. UV-blocking cotton fabric design for comfortable summer wears: Factors, durability and nanomaterials. Cellulose 2022, 29, 7555–7585. [Google Scholar] [CrossRef]
- Tian, M.; Hu, X.; Qu, L.; Du, M.; Zhu, S.; Sun, Y.; Han, G. Ultraviolet protection cotton fabric achieved via layer-by-layer self-assembly of graphene oxide and chitosan. Appl. Surf. Sci. 2016, 377, 141–148. [Google Scholar] [CrossRef]
- Zhang, K.; Yang, Z.; Mao, X.; Chen, X.-L.; Li, H.-H.; Wang, Y.-Y. Multifunctional Textiles/Metal−Organic Frameworks Composites for Efficient Ultraviolet Radiation Blocking and Noise Reduction. ACS Appl. Mater. Interfaces 2020, 12, 55316–55323. [Google Scholar] [CrossRef] [PubMed]
- Čuk, N.; Šala, M.; Gorjanc, M. Development of antibacterial and UV protective cotton fabrics using plant food waste and alien invasive plant extracts as reducing agents for the in-situ synthesis of silver nanoparticles. Cellulose 2021, 28, 3215–3233. [Google Scholar] [CrossRef]
- Grifoni, D.; Bacci, L.; Di Lonardo, S.; Pinelli, P.; Scardigli, A.; Camilli, F.; Sabatini, F.; Zipoli, G.; Romani, A. UV protective properties of cotton and flax fabrics dyed with multifunctional plant extracts. Dye. Pigment. 2014, 105, 89–96. [Google Scholar] [CrossRef]
- Shanmuganandam, K.; Thanikaikarasan, S.; Ahamad, T.; Ali, S.; Sundramurthy, V.P. Structure, Surface Nature, Thermal Stability, and Biomass Gasification Process of NiO/SiO2 and NiO-Pr2O3/SiO2 Nanocomposites Obtained through Facile Deposition Precipitation Method. J. Nanomater. 2022, 2022, 1479808. [Google Scholar] [CrossRef]
- El-Hady, M.M.A.; Sharaf, S.; Farouk, A. Highly hydrophobic and UV protective properties of cotton fabric using layer by layer self-assembly technique. Cellulose 2019, 27, 1099–1110. [Google Scholar] [CrossRef]
- Sarvalkar, P.D.; Barawkar, S.D.; Karvekar, O.S.; Patil, P.D.; Prasad, S.R.; Sharma, K.K.; Prasad, N.R.; Vhatkar, R.S. A review on multifunctional nanotechnological aspects in modern textile. J. Text. Inst. 2022, 114, 470–487. [Google Scholar] [CrossRef]
- Štular, D.; Savio, E.; Simončič, B.; Šobak, M.; Jerman, I.; Poljanšek, I.; Ferri, A.; Tomšič, B. Multifunctional antibacterial and ultraviolet protective cotton cellulose developed by in situ biosynthesis of silver nanoparticles into a polysiloxane matrix mediated by sumac leaf extract. Appl. Surf. Sci. 2021, 563, 150361. [Google Scholar] [CrossRef]
- Kaur, R.; Thakur, N.S.; Chandna, S.; Bhaumik, J. Sustainable Lignin-Based Coatings Doped with Titanium Dioxide Nanocomposites Exhibit Synergistic Microbicidal and UV-Blocking Performance toward Personal Protective Equipment. ACS Sustain. Chem. Eng. 2021, 9, 11223–11237. [Google Scholar] [CrossRef]
- Rabiei, H.; Dehghan, S.F.; Montazer, M.; Khaloo, S.S.; Koozekonan, A.G. UV protection properties of workwear fabrics coated with TiO2 nanoparticles. Front. Public Heal. 2022, 10, 929095. [Google Scholar] [CrossRef] [PubMed]
- Hassabo, A.G.; El-Naggar, M.E.; Mohamed, A.L.; Hebeish, A.A. Development of multifunctional modified cotton fabric with tri-component nanoparticles of silver, copper and zinc oxide. Carbohydr. Polym. 2019, 210, 144–156. [Google Scholar] [CrossRef] [PubMed]
- Youssef, A.M.; Assem, F.M.; Abdel-Aziz, M.E.; Elaaser, M.; Ibrahim, O.A.; Mahmoud, M.; Abd El-Salam, M.H. Development of bionanocomposite materials and its use in coating of Ras cheese. Food Chem. 2019, 270, 467–475. [Google Scholar] [CrossRef]
- Rehan, M.; Khattab, T.A.; Barohum, A.; Gätjen, L.; Wilken, R. Development of Ag/AgX (X = Cl, I) nanoparticles toward antimicrobial, UV-protected and self-cleanable viscose fibers. Carbohydr. Polym. 2018, 197, 227–236. [Google Scholar] [CrossRef] [PubMed]
- Roy, T.S.; Fahim, M.R.; Islam, M.T.; Gafur, A.; Ferdous, T. Eco-friendly Synthesis of Silver Nanoparticles for Multifunctional Protective Cotton and Flax Fabrics. J. Nat. Fibers 2022, 19, 13681–13693. [Google Scholar] [CrossRef]
- Szatkowski, T.; Siwińska-Stefańska, K.; Wysokowski, M.; Stelling, A.L.; Joseph, Y.; Ehrlich, H.; Jesionowski, T. Immobilization of Titanium(IV) Oxide onto 3D Spongin Scaffolds of Marine Sponge Origin According to Extreme Biomimetics Principles for Removal of C.I. Basic Blue 9. Biomimetics 2017, 2, 4. [Google Scholar] [CrossRef] [Green Version]
- El-Naggar, M.E.; Shaarawy, S.; Shafie, A.E.; Hebeish, A. Development of antimicrobial medical cotton fabrics using synthesized nanoemulsion of reactive cyclodextrin hosted coconut oil inclusion complex. Fibers Polym. 2017, 18, 1486–1495. [Google Scholar] [CrossRef]
- Stankovic, S.B.; Popovic, D.; Poparic, G.B.; Bizjak, M. Ultraviolet Protection Factor of Gray-state Plain Cotton Knitted Fabrics. Text. Res. J. 2009, 79, 1034–1042. [Google Scholar] [CrossRef]
- Muzaffar, S.; Abbas, M.; Siddiqua, U.; Arshad, M.; Tufail, A.; Ahsan, M.; Alissa, S.; Abubshait, S.; Abubshait, H.; Iqbal, M. Enhanced mechanical, UV protection and antimicrobial properties of cotton fabric employing nanochitosan and polyurethane based finishing. J. Mater. Res. Technol. 2021, 11, 946–956. [Google Scholar] [CrossRef]
- Zainal, S.H.; Mohd, N.H.; Suhaili, N.; Anuar, F.H.; Lazim, A.M.; Othaman, R. Preparation of cellulose-based hydrogel: A review. J. Mater. Res. Technol. 2021, 10, 935–952. [Google Scholar] [CrossRef]
- Tang, Y.L.A.; Lee, C.H.; Chan, C.Y.; Wang, Y.; Kan, C.-W. Alkyl Polyglucoside (APG) Nonionic Surfactant-Based Reverse Micellar Dyeing of Cotton Fabric—A Study of Reactive Dyes with Different Functional Groups. J. Nat. Fibers 2022, 20, 2136324. [Google Scholar] [CrossRef]
- Siddiqua, U.H.; Ali, S.; Hussain, T.; Iqbal, M.; Masood, N.; Nazir, A. Application of Multifunctional Reactive Dyes on the Cotton Fabric and Conditions Optimization by Response Surface Methodology. J. Nat. Fibers 2020, 19, 1094–1106. [Google Scholar] [CrossRef]
- Rotzler, S.; von Krshiwoblozki, M.; Schneider-Ramelow, M. Washability of e-textiles: Current testing practices and the need for standardization. Text. Res. J. 2021, 91, 2401–2417. [Google Scholar] [CrossRef]
- Kumpikaitė, E.; Tautkutė-Stankuvienė, I.; Milašienė, D.; Petraitienė, S. Analysis of Color Fastness and Shrinkage of Dyed and Printed Linen/Silk Fabrics. Coatings 2022, 12, 408. [Google Scholar] [CrossRef]
- Nouren, S.; Sarwar, M.; Din, G.M.-U.; Yameen, M.; Bhatti, H.N.; Soomro, G.A.; Suleman, M.; Bibi, I.; Kausar, A.; Nazir, A.; et al. Sweet Lime-Mediated Decolorization of Textile Industry Effluents. Pol. J. Environ. Stud. 2018, 28, 283–289. [Google Scholar] [CrossRef] [PubMed]
- Mahilrajan, S.; Nandakumar, J.; Kailayalingam, R.; Srivijeindran, S. Optimization of dyeing condition and its dyeing on Palmyrah (Borassus flabellifer) leaves. IOSR J. Environ. Sci. Toxicol. Food Technol. 2014, 8, 47–52. [Google Scholar] [CrossRef]
- Khan, N.-U.; Bhatti, H.N.; Iqbal, M.; Nazir, A. Decolorization of Basic Turquise Blue X-GB and Basic Blue X-GRRL by the Fenton’s Process and its Kinetics. 2018, 233, 361–373. Zeitschrift für Physikalische Chemie 2018, 233, 361–373. [Google Scholar] [CrossRef]
- Varghese, S.; Kuriakose, S.; Jose, S. Antimicrobial Activity of Carbon Nanoparticles Isolated from Natural Sources against Pathogenic Gram-Negative and Gram-Positive Bacteria. J. Nanosci. 2013, 2013, 457865. [Google Scholar] [CrossRef] [Green Version]
- Jabeen, S.; Ali, S.; Nadeem, M.; Arif, K.; Qureshi, N.; Shar, G.A.; Soomro, G.A.; Iqbal, M.; Nazir, A.; Siddiqua, U.H. Statistical Modeling for the Extraction of Dye from Natural Source and Industrial Applications. Pol. J. Environ. Stud. 2019, 28, 2145–2150. [Google Scholar] [CrossRef]
- Bouatay, F.; Meksi, N.; Adeel, S.; Salah, F.; Mhenni, F. Dyeing Behavior of the Cellulosic and Jute Fibers with Cationic Dyes: Process Development and Optimization Using Statistical Analysis. J. Nat. Fibers 2016, 13, 423–436. [Google Scholar] [CrossRef]
- Ahmad, M.; Abbas, G.; Haider, R.; Jalal, F.; Shar, G.A.; Soomro, G.A.; Qureshi, N.; Iqbal, M.; Nazir, A. Kinetics and Equilibrium Studies of Eriobotrya Japonica: A Novel Adsorbent Preparation for Dyes Sequestration. Zeitschrift für Physikalische Chemie 2019, 233, 1469–1484. [Google Scholar] [CrossRef]
- Pandimurugan, R.; Thambidurai, S. UV protection and antibacterial properties of seaweed capped ZnO nanoparticles coated cotton fabrics. Int. J. Biol. Macromol. 2017, 105, 788–795. [Google Scholar] [CrossRef] [PubMed]
- Mondal, I.H.; Saha, J. Antimicrobial, UV Resistant and Thermal Comfort Properties of Chitosan- and Aloe vera-Modified Cotton Woven Fabric. J. Polym. Environ. 2019, 27, 405–420. [Google Scholar] [CrossRef]
- Liman, L.R.; Islam, M.T.; Repon, R.; Hossain, M.; Sarker, P. Comparative dyeing behavior and UV protective characteristics of cotton fabric treated with polyphenols enriched banana and watermelon biowaste. Sustain. Chem. Pharm. 2021, 21, 100417. [Google Scholar] [CrossRef]
Sl. No | ANI (%) | FANC (%) | UPF |
---|---|---|---|
1 | 25 | 1.58579 | 40.39 |
2 | 30 | 4 | 53.82 |
3 | 32.0711 | 3 | 46.82 |
4 | 25 | 3 | 64.25 |
5 | 17.9289 | 3 | 46.36 |
6 | 20 | 2 | 44.92 |
7 | 25 | 3 | 64.2 |
8 | 25 | 3 | 64.2 |
9 | 25 | 3 | 64.21 |
10 | 25 | 4.41421 | 52.68 |
11 | 25 | 3 | 64.2 |
12 | 30 | 2 | 39.55 |
13 | 20 | 4 | 47.9 |
Source | Sum of Squares | df | Mean Square | F-Value | p-Value | |
---|---|---|---|---|---|---|
Model | 1141.25 | 5 | 228.25 | 2.79 × 105 | <0.0001 | Significant |
A-PA | 380.47 | 1 | 380.47 | 4.65 × 105 | <0.0001 | |
B-FC | 162.1 | 1 | 162.1 | 1.98 × 105 | <0.0001 | |
AB | 31.87 | 1 | 31.87 | 38,940.36 | <0.0001 | |
A2 | 540.52 | 1 | 540.52 | 6.61 × 105 | <0.0001 | |
B2 | 543.9 | 1 | 543.9 | 6.65 × 105 | <0.0001 | |
Residual | 0.0057 | 7 | 0.0008 | |||
Lack of fit | 0.0038 | 3 | 0.0013 | 2.73 | 0.1783 | Not significant |
Pure error | 0.0019 | 4 | 0.0005 | |||
Cor total | 1141.26 | 12 |
Degradation Temperatures | |||
---|---|---|---|
Samples | T5% (°C) | T10% (°C) | Char Yield at 750 °C |
Primitive cotton | 231 | 282 | 0 |
CA25Ca3 | 244 | 297 | 2.1 |
Sample | Tensile Strength (lbf) | Elongation at Break (%) | Bending Length (cm) | Air Permeability (cc/s/cm2) | |||
---|---|---|---|---|---|---|---|
Weft | Warp | Weft | Warp | Weft | Warp | ||
Primitive cotton | 68.1 | 74.2 | 28.6 | 26.1 | 1.97 | 2.06 | 283.7 |
FANCPCF | 77.35 | 79.36 | 33.15 | 31.98 | 1.77 | 1.93 | 101.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sahile, K.; Alemayehu, E.; Worku, A.; Prabhu, S.V.; Lennartz, B. Fabrication of Enhanced UV Protective Cotton Fabric Using Activated Nano-Biocarbon Derived from Teff Hay Grafted by Polyaniline: RSM-Based Optimization and Characterization. Molecules 2023, 28, 5142. https://doi.org/10.3390/molecules28135142
Sahile K, Alemayehu E, Worku A, Prabhu SV, Lennartz B. Fabrication of Enhanced UV Protective Cotton Fabric Using Activated Nano-Biocarbon Derived from Teff Hay Grafted by Polyaniline: RSM-Based Optimization and Characterization. Molecules. 2023; 28(13):5142. https://doi.org/10.3390/molecules28135142
Chicago/Turabian StyleSahile, Kibebe, Esayas Alemayehu, Abebe Worku, Sundramurthy Venkatesa Prabhu, and Bernd Lennartz. 2023. "Fabrication of Enhanced UV Protective Cotton Fabric Using Activated Nano-Biocarbon Derived from Teff Hay Grafted by Polyaniline: RSM-Based Optimization and Characterization" Molecules 28, no. 13: 5142. https://doi.org/10.3390/molecules28135142
APA StyleSahile, K., Alemayehu, E., Worku, A., Prabhu, S. V., & Lennartz, B. (2023). Fabrication of Enhanced UV Protective Cotton Fabric Using Activated Nano-Biocarbon Derived from Teff Hay Grafted by Polyaniline: RSM-Based Optimization and Characterization. Molecules, 28(13), 5142. https://doi.org/10.3390/molecules28135142