Antinociceptive Effect of a p-Cymene/β-Cyclodextrin Inclusion Complex in a Murine Cancer Pain Model: Characterization Aided through a Docking Study
Abstract
:1. Introduction
2. Results
2.1. Docking Studies
2.2. Complexation Efficiency (CE%)
2.3. NMR Analysis
2.4. Pharmacological Evaluation
3. Discussion
4. Materials and Methods
4.1. Docking Studies
4.2. Obtaining and Characterizing the PC/β-CD Complex
4.2.1. Drugs and Chemicals
4.2.2. Preparation of the Complexes
4.2.3. Complexation Efficiency (CE%)
4.2.4. Nuclear Magnetic Resonance (NMR)
4.3. Pharmacological Evaluation
4.3.1. Animals
4.3.2. Tumor Cell and Implantation
4.3.3. Treatment and Behavioral Studies
4.3.4. Mechanical Hyperalgesia
4.3.5. Spontaneous and Palpation-Induced Nociception
4.3.6. Movement-Evoked Pain
4.3.7. Acute Oral Toxicity
4.3.8. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Schug, S.A.; Chandrasena, C. Pain Management of the Cancer Patient. Expert Opin. Pharmacother. 2015, 16, 5–15. [Google Scholar] [CrossRef] [PubMed]
- Neufeld, N.J.; Elnahal, S.M.; Alvarez, R.H. Cancer Pain: A Review of Epidemiology, Clinical Quality and Value Impact. Future Oncol. 2017, 13, 833–841. [Google Scholar] [CrossRef] [PubMed]
- Snijders, R.A.H.; Brom, L.; Theunissen, M.; van den Beuken-van Everdingen, M.H.J. Update on Prevalence of Pain in Patients with Cancer 2022: A Systematic Literature Review and Meta-Analysis. Cancers 2023, 15, 591. [Google Scholar] [CrossRef] [PubMed]
- Paice, J.A. Managing Pain in Patients and Survivors: Challenges Within the United States Opioid Crisis. J. Natl. Compr. Cancer Netw. 2019, 17, 595–598. [Google Scholar] [CrossRef]
- Lara-Solares, A.; Ahumada Olea, M.; Basantes Pinos, A.d.L.Á.; Bistre Cohén, S.; Bonilla Sierra, P.; Duarte Juárez, E.R.; Símon Escudero, O.A.; Santacruz Escudero, J.G.; Flores Cantisani, J.A. Latin-American Guidelines for Cancer Pain Management. Pain Manag. 2017, 7, 287–298. [Google Scholar] [CrossRef]
- Pergolizzi, J.V.; Magnusson, P.; Christo, P.J.; LeQuang, J.A.; Breve, F.; Mitchell, K.; Varrassi, G. Opioid Therapy in Cancer Patients and Survivors at Risk of Addiction, Misuse or Complex Dependency. Front. Pain Res. 2021, 2, 691720. [Google Scholar]
- Bakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M. Biological Effects of Essential Oils—A Review. Food Chem. Toxicol. 2008, 46, 446–475. [Google Scholar] [CrossRef]
- Gouveia, D.N.; Pina, L.T.S.; Rabelo, T.K.; da Rocha Santos, W.B.; Quintans, J.S.S.; Guimaraes, A.G. Monoterpenes as Perspective to Chronic Pain Management: A Systematic Review. Curr. Drug Targets 2018, 19, 960–972. [Google Scholar] [CrossRef]
- Guimarães, A.G.; Quintans, J.S.S.; Quintans-Junior, L.J. Monoterpenes with Analgesic Activity—A Systematic Review. Phytother. Res. 2012, 27, 1–15. [Google Scholar] [CrossRef]
- Marchese, A.; Arciola, C.R.; Barbieri, R.; Silva, A.S.; Nabavi, S.F.; Tsetegho Sokeng, A.J.; Izadi, M.; Jafari, N.J.; Suntar, I.; Daglia, M.; et al. Update on Monoterpenes as Antimicrobial Agents: A Particular Focus on p-Cymene. Materials 2017, 10, 947. [Google Scholar] [CrossRef] [Green Version]
- Assis, D.B.; Aragão Neto, H.d.C.; da Fonsêca, D.V.; de Andrade, H.H.N.; Braga, R.M.; Badr, N.; Maia, M.D.S.; Castro, R.D.; Scotti, L.; Scotti, M.T.; et al. Antinociceptive Activity of Chemical Components of Essential Oils That Involves Docking Studies: A Review. Front. Pharmacol. 2020, 11, 777. [Google Scholar] [CrossRef]
- Bonjardim, L.R.; Cunha, E.S.; Guimarães, A.G.; Santana, M.F.; Oliveira, M.G.B.; Serafini, M.R.; Araújo, A.A.S.; Antoniolli, A.R.; Cavalcanti, S.C.H.; Santos, M.R.V.; et al. Evaluation of the Anti-Inflammatory and Antinociceptive Properties of p-Cymene in Mice. Z. Nat. C 2012, 67, 15–21. [Google Scholar] [CrossRef]
- de Santana, M.F.; Guimarães, A.G.; Chaves, D.O.; Silva, J.C.; Bonjardim, L.R.; de Lucca Júnior, W.; Ferro, J.N.d.S.; Barreto, E.d.O.; dos Santos, F.E.; Soares, M.B.P.; et al. The Anti-Hyperalgesic and Anti-Inflammatory Profiles of p-Cymene: Evidence for the Involvement of Opioid System and Cytokines. Pharm. Biol. 2015, 53, 1583–1590. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Formiga, R.d.O.; Alves Júnior, E.B.; Vasconcelos, R.C.; Guerra, G.C.B.; Antunes de Araújo, A.; Carvalho, T.G.d.; Garcia, V.B.; de Araújo Junior, R.F.; Gadelha, F.A.A.F.; Vieira, G.C.; et al. P-Cymene and Rosmarinic Acid Ameliorate TNBS-Induced Intestinal Inflammation Upkeeping ZO-1 and MUC-2: Role of Antioxidant System and Immunomodulation. Int. J. Mol. Sci. 2020, 21, 5870. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.; Mazhar, Z.; Alsayrafi, D.; Garelnabi, M. P-Cymene Modulate Oxidative Stress and Inflammation in Murine Macrophages: Potential Implication in Atherosclerosis. Cardiovasc. Hematol. Agents Med. Chem. 2020, 18, 151–157. [Google Scholar] [CrossRef]
- Zhong, W.; Chi, G.; Jiang, L.; Soromou, L.W.; Chen, N.; Huo, M.; Guo, W.; Deng, X.; Feng, H. P-Cymene Modulates in Vitro and in Vivo Cytokine Production by Inhibiting MAPK and NF-ΚB Activation. Inflammation 2013, 36, 529–537. [Google Scholar] [CrossRef]
- Santos, W.B.R.; Melo, M.A.O.; Alves, R.S.; de Brito, R.G.; Rabelo, T.K.; Prado, L.d.S.; Silva, V.K.d.S.; Bezerra, D.P.; de Menezes-Filho, J.E.R.; Souza, D.S.; et al. P-Cymene Attenuates Cancer Pain via Inhibitory Pathways and Modulation of Calcium Currents. Phytomedicine 2019, 61, 152836. [Google Scholar] [CrossRef]
- Quintans, J.d.S.S.; Menezes, P.P.; Santos, M.R.V.; Bonjardim, L.R.; Almeida, J.R.G.S.; Gelain, D.P.; Araújo, A.A.d.S.; Quintans-Júnior, L.J. Improvement of P-Cymene Antinociceptive and Anti-Inflammatory Effects by Inclusion in β-Cyclodextrin. Phytomedicine 2013, 20, 436–440. [Google Scholar] [CrossRef] [Green Version]
- Brito, R.G.; Araújo, A.A.S.; Quintans, J.S.S.; Sluka, K.A.; Quintans-Júnior, L.J. Enhanced Analgesic Activity by Cyclodextrins—A Systematic Review and Meta-Analysis. Expert Opin. Drug Deliv. 2015, 12, 1677–1688. [Google Scholar] [CrossRef]
- Miranda, G.M.; Santos, V.O.R.E.; Bessa, J.R.; Teles, Y.C.F.; Yahouédéhou, S.C.M.A.; Goncalves, M.S.; Ribeiro-Filho, J. Inclusion Complexes of Non-Steroidal Anti-Inflammatory Drugs with Cyclodextrins: A Systematic Review. Biomolecules 2021, 11, 361. [Google Scholar] [CrossRef]
- Galvão, J.G.; Silva, V.F.; Ferreira, S.G.; França, F.R.M.; Santos, D.A.; Freitas, L.S.; Alves, P.B.; Araújo, A.A.S.; Cavalcanti, S.C.H.; Nunes, R.S. β-Cyclodextrin Inclusion Complexes Containing Citrus sinensis (L.) Osbeck Essential Oil: An Alternative to Control Aedes Aegypti Larvae. Thermochim. Acta 2015, 608, 14–19. [Google Scholar] [CrossRef]
- Manosroi, J.; Apriyani, M.G.; Foe, K.; Manosroi, A. Enhancement of the Release of Azelaic Acid through the Synthetic Membranes by Inclusion Complex Formation with Hydroxypropyl-Beta-Cyclodextrin. Int. J. Pharm. 2005, 293, 235–240. [Google Scholar] [CrossRef] [PubMed]
- Kurkov, S.V.; Loftsson, T. Cyclodextrins. Int. J. Pharm. 2013, 453, 167–180. [Google Scholar] [CrossRef] [PubMed]
- EFSA Panel on Food Additives and Nutrient Sources added to Food (ANS); Mortensen, A.; Aguilar, F.; Crebelli, R.; Di Domenico, A.; Dusemund, B.; Frutos, M.J.; Galtier, P.; Gott, D.; Gundert-Remy, U.; et al. Re-Evaluation of β-Cyclodextrin (E 459) as a Food Additive. EFSA J. 2016, 14, e04628. [Google Scholar] [CrossRef]
- Du, X.; Li, Y.; Xia, Y.-L.; Ai, S.-M.; Liang, J.; Sang, P.; Ji, X.-L.; Liu, S.-Q. Insights into Protein–Ligand Interactions: Mechanisms, Models, and Methods. Int. J. Mol. Sci. 2016, 17, 144. [Google Scholar] [CrossRef] [Green Version]
- Abril-Sánchez, C.; Matencio, A.; Navarro-Orcajada, S.; García-Carmona, F.; López-Nicolás, J.M. Evaluation of the Properties of the Essential Oil Citronellal Nanoencapsulated by Cyclodextrins. Chem. Phys. Lipids 2019, 219, 72–78. [Google Scholar] [CrossRef]
- Santos, E.H.; Kamimura, J.A.; Hill, L.E.; Gomes, C.L. Characterization of Carvacrol Beta-Cyclodextrin Inclusion Complexes as Delivery Systems for Antibacterial and Antioxidant Applications. LWT Food Sci. Technol. 2015, 60, 583–592. [Google Scholar] [CrossRef]
- Menezes, P.d.P.; Serafini, M.R.; de Carvalho, Y.M.B.G.; Soares Santana, D.V.; Lima, B.S.; Quintans-Júnior, L.J.; Marreto, R.N.; de Aquino, T.M.; Sabino, A.R.; Scotti, L.; et al. Kinetic and Physical-Chemical Study of the Inclusion Complex of β-Cyclodextrin Containing Carvacrol. J. Mol. Struct. 2016, 1125, 323–330. [Google Scholar] [CrossRef]
- Serafini, M.R.; Menezes, P.P.; Costa, L.P.; Lima, C.M.; Quintans, L.J.; Cardoso, J.C.; Matos, J.R.; Soares-Sobrinho, J.L.; Grangeiro, S.; Nunes, P.S.; et al. Interaction of P-Cymene with β-Cyclodextrin. J. Therm. Anal. Calorim. 2012, 109, 951–955. [Google Scholar] [CrossRef]
- Kfoury, M.; Geagea, C.; Ruellan, S.; Greige-Gerges, H.; Fourmentin, S. Effect of Cyclodextrin and Cosolvent on the Solubility and Antioxidant Activity of Caffeic Acid. Food Chem. 2019, 278, 163–169. [Google Scholar] [CrossRef]
- de Oliveira, M.G.B.; Guimarães, A.G.; Araújo, A.A.S.; Quintans, J.S.S.; Santos, M.R.V.; Quintans-Júnior, L.J. Cyclodextrins: Improving the Therapeutic Response of Analgesic Drugs: A Patent Review. Expert Opin. Ther. Pat. 2015, 25, 897–907. [Google Scholar] [CrossRef] [PubMed]
- Gouveia, D.N.; Costa, J.S.; Oliveira, M.A.; Rabelo, T.K.; Silva, A.M.d.O.E.; Carvalho, A.A.; Miguel-Dos-Santos, R.; Lauton-Santos, S.; Scotti, L.; Scotti, M.T.; et al. α-Terpineol Reduces Cancer Pain via Modulation of Oxidative Stress and Inhibition of INOS. Biomed. Pharmacother. 2018, 105, 652–661. [Google Scholar] [CrossRef] [PubMed]
- Guimarães, A.G.; Scotti, L.; Scotti, M.T.; Mendonça Júnior, F.J.B.; Melo, N.S.R.; Alves, R.S.; De Lucca Júnior, W.; Bezerra, D.P.; Gelain, D.P.; Quintans Júnior, L.J. Evidence for the Involvement of Descending Pain-Inhibitory Mechanisms in the Attenuation of Cancer Pain by Carvacrol Aided through a Docking Study. Life Sci. 2014, 116, 8–15. [Google Scholar] [CrossRef] [PubMed]
- King, T.; Vardanyan, A.; Majuta, L.; Melemedjian, O.; Nagle, R.; Cress, A.E.; Vanderah, T.W.; Lai, J.; Porreca, F. Morphine Treatment Accelerates Sarcoma-Induced Bone Pain, Bone Loss, and Spontaneous Fracture in a Murine Model of Bone Cancer. Pain 2007, 132, 154–168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sandkühler, J. Models and Mechanisms of Hyperalgesia and Allodynia. Physiol. Rev. 2009, 89, 707–758. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Chu, Y.; Ma, G.; Li, W.; Wang, X.; Mo, H.; Yin, Q.; Guo, J.; Ma, X.; Zhou, S. Simultaneous Determination of Ascaridole, p-Cymene and α-Terpinene in Rat Plasma after Oral Administration of Chenopodium ambrosioides L. by GC-MS: Simultaneous Quantification of Ascaridole, p-Cymene and α-Terpinene. Biomed. Chromatogr. 2015, 29, 1682–1686. [Google Scholar] [CrossRef] [PubMed]
- Southwell, I.A.; Flynn, T.M.; Degabriele, R. Metabolism of α- and β-Pinene, β-Cymene and 1,8-Cineole in the Brushtail Possum, Trichosurus Vulpecula. Xenobiotica 1980, 10, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Pass, G.J.; McLean, S.; Stupans, I.; Davies, N.W. Microsomal Metabolism and Enyzme Kinetics of the Terpene P-Cymene in the Common Brushtail Possum (Trichosurus vulpecula), Koala (Phascolarctos cinereus) and Rat. Xenobiotica 2002, 32, 383–397. [Google Scholar] [CrossRef]
- Sheikholeslami, M.A.; Ghafghazi, S.; Parvardeh, S.; Koohsari, S.; Aghajani, S.H.; Pouriran, R.; Vaezi, L.A. Analgesic Effects of Cuminic Alcohol (4-Isopropylbenzyl Alcohol), a Monocyclic Terpenoid, in Animal Models of Nociceptive and Neuropathic Pain: Role of Opioid Receptors, L-Arginine/NO/CGMP Pathway, and Inflammatory Cytokines. Eur. J. Pharmacol. 2021, 900, 174075. [Google Scholar] [CrossRef]
- Lima, P.S.S.; Lucchese, A.M.; Araújo-Filho, H.G.; Menezes, P.P.; Araújo, A.A.S.; Quintans-Júnior, L.J.; Quintans, J.S.S. Inclusion of Terpenes in Cyclodextrins: Preparation, Characterization and Pharmacological Approaches. Carbohydr. Polym. 2016, 151, 965–987. [Google Scholar] [CrossRef]
- Alqahtani, S.; Bukhari, I.; Albassam, A.; Alenazi, M. An Update on the Potential Role of Intestinal First-Pass Metabolism for the Prediction of Drug–Drug Interactions: The Role of PBPK Modeling. Expert Opin. Drug Metab. Toxicol. 2018, 14, 625–634. [Google Scholar] [CrossRef] [PubMed]
- Hurst, S.; Loi, C.-M.; Brodfuehrer, J.; El-Kattan, A. Impact of Physiological, Physicochemical and Biopharmaceutical Factors in Absorption and Metabolism Mechanisms on the Drug Oral Bioavailability of Rats and Humans. Expert Opin. Drug Metab. Toxicol. 2007, 3, 469–489. [Google Scholar] [CrossRef]
- Oliveira, A.P.; Silva, A.L.N.; Viana, L.G.F.C.; Silva, M.G.; Lavor, É.M.; Oliveira-Júnior, R.G.; Alencar-Filho, E.B.; Lima, R.S.; Mendes, R.L.; Rolim, L.A.; et al. β-Cyclodextrin Complex Improves the Bioavailability and Antitumor Potential of Cirsiliol, a Flavone Isolated from Leonotis nepetifolia (Lamiaceae). Heliyon 2019, 5, e01692. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Freedman, K.A.; Klein, J.W.; Crosson, C.E. Beta-Cyclodextrins Enhance Bioavailability of Pilocarpine. Curr. Eye Res. 1993, 12, 641–647. [Google Scholar] [CrossRef] [PubMed]
- Jenner, P.M.; Hagan, E.C.; Taylor, J.M.; Cook, E.L.; Fitzhugh, O.G. Food Flavourings and Compounds of Related Structure I. Acute Oral Toxicity. Food Cosmet. Toxicol. 1964, 2, 327–343. [Google Scholar] [CrossRef]
- Zimmermann, M. Ethical Guidelines for Investigations of Experimental Pain in Conscious Animals. Pain 1983, 16, 109–110. [Google Scholar] [CrossRef]
- Guimarães, A.G.; Oliveira, M.A.; Alves, R.d.S.; Menezes, P.d.P.; Serafini, M.R.; Araújo, A.A.d.S.; Bezerra, D.P.; Quintans Júnior, L.J. Encapsulation of Carvacrol, a Monoterpene Present in the Essential Oil of Oregano, with β-Cyclodextrin, Improves the Pharmacological Response on Cancer Pain Experimental Protocols. Chem. Biol. Interact. 2015, 227, 69–76. [Google Scholar] [CrossRef]
- Sabino, M.A.C.; Luger, N.M.; Mach, D.B.; Rogers, S.D.; Schwei, M.J.; Mantyh, P.W. Different Tumors in Bone Each Give Rise to a Distinct Pattern of Skeletal Destruction, Bone Cancer-Related Pain Behaviors and Neurochemical Changes in the Central Nervous System. Int. J. Cancer 2003, 104, 550–558. [Google Scholar] [CrossRef]
- OECD. Test No. 425: Acute Oral Toxicity: Up-and-Down Procedure; Organisation for Economic Co-Ooperation and Development: Paris, France, 2022. [Google Scholar]
PC/β-CD Samples | CE (%) * |
---|---|
Physical mixture (PM) | 0.77 a ± 0.82 |
Slurry complexation (SC) | 82.61 b ± 0.58 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santos, W.B.R.; Pina, L.T.S.; de Oliveira, M.A.; Santos, L.A.B.O.; Batista, M.V.A.; Trindade, G.G.G.; Duarte, M.C.; Almeida, J.R.G.S.; Quintans-Júnior, L.J.; Quintans, J.S.S.; et al. Antinociceptive Effect of a p-Cymene/β-Cyclodextrin Inclusion Complex in a Murine Cancer Pain Model: Characterization Aided through a Docking Study. Molecules 2023, 28, 4465. https://doi.org/10.3390/molecules28114465
Santos WBR, Pina LTS, de Oliveira MA, Santos LABO, Batista MVA, Trindade GGG, Duarte MC, Almeida JRGS, Quintans-Júnior LJ, Quintans JSS, et al. Antinociceptive Effect of a p-Cymene/β-Cyclodextrin Inclusion Complex in a Murine Cancer Pain Model: Characterization Aided through a Docking Study. Molecules. 2023; 28(11):4465. https://doi.org/10.3390/molecules28114465
Chicago/Turabian StyleSantos, Wagner B. R., Lícia T. S. Pina, Marlange A. de Oliveira, Lucas A. B. O. Santos, Marcus V. A. Batista, Gabriela G. G. Trindade, Marcelo C. Duarte, Jackson R. G. S. Almeida, Lucindo J. Quintans-Júnior, Jullyana S. S. Quintans, and et al. 2023. "Antinociceptive Effect of a p-Cymene/β-Cyclodextrin Inclusion Complex in a Murine Cancer Pain Model: Characterization Aided through a Docking Study" Molecules 28, no. 11: 4465. https://doi.org/10.3390/molecules28114465
APA StyleSantos, W. B. R., Pina, L. T. S., de Oliveira, M. A., Santos, L. A. B. O., Batista, M. V. A., Trindade, G. G. G., Duarte, M. C., Almeida, J. R. G. S., Quintans-Júnior, L. J., Quintans, J. S. S., Serafini, M. R., Coutinho, H. D. M., Kowalska, G., Baj, T., Kowalski, R., & Guimarães, A. G. (2023). Antinociceptive Effect of a p-Cymene/β-Cyclodextrin Inclusion Complex in a Murine Cancer Pain Model: Characterization Aided through a Docking Study. Molecules, 28(11), 4465. https://doi.org/10.3390/molecules28114465