Untargeted Metabolomics Analysis for Studying Differences in High-Quality Colombian Cocoa Beans
Abstract
:1. Introduction
2. Results and Discussion
2.1. Physicochemical Characterization of Cocoa Samples
2.1.1. Physical Analysis
2.1.2. Chemical Analysis
2.1.3. Sensory Analysis
2.2. Untargeted Metabolic Profiling Analysis
2.3. Relation of Physicochemical, Sensory, and Metabolic Analyses
3. Materials and Methods
3.1. Sampling and Sensorial Analysis
3.2. Quantification of Cadmium Content
3.3. Metabolite Extraction and Sample Preparation
3.4. Total Polyphenols Content
3.5. Chromatographic Analysis of Metabolic Extracts
3.6. Data Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Ríos, F.; Rahpani, C.; Ruiz, A.; Lecaro, J. Estrategias País para la Pferta de Cacaos Especiales-Políticas e Iniciativas Privadas Exitosas en el Perú, Ecuador; Colombia República Dominicana: Bogotá, Colombia, 2017. [Google Scholar]
- Ministerio de Agricultura y Desarrollo Rural Colombia’s Goverment. Cadena de Cacao; Ministerio de Agricultura y Desarrollo Rural Colombia’s Goverment: Bogotá, Colombia, 2021. [Google Scholar]
- Contreras-Pedraza, C. Análisis de la Cadena de Valor del Cacao en Colombia: Generación de Estrategias Tecnológicas en Operaciones de Cosecha y Poscosecha, Organizativas, de Capacidad Instalada y de Mercado; Universidad Nacional de Colombia: Bogotá, Colombia, 2017. [Google Scholar]
- Barrientos, L.D.P.; Oquendo, J.D.T.; Garzón, M.A.G.; Álvarez, O.L.M. Effect of the Solar Drying Process on the Sensory and Chemical Quality of Cocoa (Theobroma Cacao L.) Cultivated in Antioquia, Colombia. Food Res. Int. 2019, 115, 259–267. [Google Scholar] [CrossRef] [PubMed]
- Aguilar, H. Manual para la Evaluación de La Calidad del Grano de Cacao; FHIA: Tegucigalpa, Honduras, 2016. [Google Scholar]
- Figueira, A.; Alemanno, L. Theobroma Cacao Cacao. In Biotechnology of Fruit and Nut Crops; CAB International: Wallingford, UK, 2005; pp. 639–669. [Google Scholar]
- Aprotosoaie, A.C.; Luca, S.V.; Miron, A. Flavor Chemistry of Cocoa and Cocoa Products-An Overview. Compr. Rev. Food Sci. Food Saf. 2016, 15, 73–91. [Google Scholar] [CrossRef]
- Sánchez Vargas, A.d.P.; Castellanos Domínguez, O.F.; Domínguez Martínez, K.P. Mejoramiento de La Poscosecha Del Cacao a Partir Del Roadmapping. Ing. Investig. 2008, 28, 150–158. [Google Scholar] [CrossRef]
- Martínez López, S. Alimentos Ricos en Fitoquímicos con Propiedades Beneficiosas en Salud: Estudios de Biodisponibilidad de Metilxantinas y Efectos en Salud en Voluntarios Sanos y Con Riesgo Cardiovascular. Ph.D. Thesis, Universidad Complutense de Madrid, Madrid, Spain, 2014. [Google Scholar]
- Calvo, A.M.; Botina, B.L.; García, M.C.; Cardona, W.A.; Montenegro, A.C.; Criollo, J. Dynamics of Cocoa Fermentation and Its Effect on Quality. Sci. Rep. 2021, 11, 16746. [Google Scholar] [CrossRef] [PubMed]
- Ordoñez, E.S.; Quispe C, Y.; García C, L.F. Cuantificación de Fenoles, Antocianinas y Caracterización Sensorial de Nibs y Licor de Cinco Variedades de Cacao, En Dos Sistemas de Fermentación. Sci. Agropec. 2020, 11, 473–481. [Google Scholar] [CrossRef]
- Marseglia, A.; Acquotti, D.; Consonni, R.; Cagliani, L.R.; Palla, G.; Caligiani, A. HR MAS 1H NMR and Chemometrics as Useful Tool to Assess the Geographical Origin of Cocoa Beans–Comparison with HR 1H NMR. Food Res. Int. 2016, 85, 273–281. [Google Scholar] [CrossRef]
- Mayorga-Gross, A.L.; Quirós-Guerrero, L.M.; Fourny, G.; Vaillant, F. An Untargeted Metabolomic Assessment of Cocoa Beans during Fermentation. Food Res. Int. 2016, 89, 901–909. [Google Scholar] [CrossRef]
- Rodriguez-Campos, J.; Escalona-Buendía, H.B.; Orozco-Avila, I.; Lugo-Cervantes, E.; Jaramillo-Flores, M.E. Dynamics of Volatile and Non-Volatile Compounds in Cocoa (Theobroma cacao L.) during Fermentation and Drying Processes Using Principal Components Analysis. Food Res. Int. 2011, 44, 250–258. [Google Scholar] [CrossRef]
- Fayeulle, N.; Preys, S.; Roger, J.M.; Boulanger, R.; Hue, C.; Cheynier, V.; Sommerer, N. Multiblock Analysis to Relate Polyphenol Targeted Mass Spectrometry and Sensory Properties of Chocolates and Cocoa Beans. Metabolites 2020, 10, 311. [Google Scholar] [CrossRef]
- Escobar, S.; Santander, M.; Zuluaga, M.; Chacón, I.; Rodríguez, J.; Vaillant, F. Fine Cocoa Beans Production: Tracking Aroma Precursors through a Comprehensive Analysis of Flavor Attributes Formation. Food Chem. 2021, 365, 130627. [Google Scholar] [CrossRef]
- Ceron, C.A.A.; de los Rios-Carmenado, I.; Martín Fernández, S. Illicit Crops Substitution and Rural Prosperity in Armed Conflict Areas: A Conceptual Proposal Based on the Working with People Model in Colombia. Land Use Policy 2018, 72, 201–214. [Google Scholar] [CrossRef]
- International Cocoa Organization. A Working Definition of Fine or Flavour Cocoa; International Cocoa Organization: Berlin, Germany, 2018. [Google Scholar]
- Nair, K.P.P. The Agronomy and Economy of Important Tree Crops of the Developing World; Elsevier: Amsterdam, The Netherlands, 2010; Volume 1. [Google Scholar]
- End, M.; Dand, R. Cocoa Beans: Chocolate & Cocoa Quality Requirements; CAOBISCO/ECA/FCC: Brussels, Belgium, 2015. [Google Scholar]
- García-Jerez, A.; Quintana-Fuentes, L.F.; Martinez, E.M. Determination of the Grain Index and Husk Percentage of Regional Cocoa Genotypes FSV41, FEAR5 and FLE2 and Universal Genotype CCN 51. Ing. Compet. 2022, 24, e21411420. [Google Scholar] [CrossRef]
- Colombian Institute of Technical Standards and Certification. Cocoa Beans. Specification and Quality Requirements; Colombian Institute of Technical Standards and Certification: Bogota, Colombia, 2021. [Google Scholar]
- Sotelo, A.; Alvarez, R.G. Chemical Composition of Wild Theobroma Species and Their Comparison to the Cacao Bean. J. Agric. Food Chem. 1991, 39, 1940–1943. [Google Scholar] [CrossRef]
- Urbańska, B.; Derewiaka, D.; Lenart, A.; Kowalska, J. Changes in the Composition and Content of Polyphenols in Chocolate Resulting from Pre-Treatment Method of Cocoa Beans and Technological Process. Eur. Food Res. Technol. 2019, 245, 2101–2112. [Google Scholar] [CrossRef]
- Carrillo, L.C.; Londoño-Londoño, J.; Gil, A. Comparison of Polyphenol, Methylxanthines and Antioxidant Activity in Theobroma Cacao Beans from Different Cocoa-Growing Areas in Colombia. Food Res. Int. 2014, 60, 273–280. [Google Scholar] [CrossRef]
- Brunetto, M.d.R.; Gutiérrez, L.; Delgado, Y.; Gallignani, M.; Zambrano, A.; Gómez, Á.; Ramos, G.; Romero, C. Determination of Theobromine, Theophylline and Caffeine in Cocoa Samples by a High-Performance Liquid Chromatographic Method with on-Line Sample Cleanup in a Switching-Column System. Food Chem 2007, 100, 459–467. [Google Scholar] [CrossRef]
- Jiménez Tobón, C.S. Estado Legal Mundial Del Cadmio En Cacao (Theobroma Cacao): Fantasía o Realidad. Prod. Limpia 2015, 10, 89–104. [Google Scholar] [CrossRef]
- Bravo, D.; Dominguez, O. Inicia Proyecto Para La Mitigación Del Cadmio En Cacao En Colombia; Fedecacao: Bogotá, Colombia, 2023. [Google Scholar]
- Barroso, J.M. COMMISSION REGULATION (EU) No 488/2014 of 12 May 2014 Amending Regulation (EC) No 1881/2006 as Regards Maximum Levels of Cadmium in Foodstuffs; Official Journal of the European Union: Maastricht, The Netherlands, 2014. [Google Scholar]
- Chetschik, I.; Pedan, V.; Chatelain, K.; Kneubühl, M.; Hühn, T. Characterization of the Flavor Properties of Dark Chocolates Produced by a Novel Technological Approach and Comparison with Traditionally Produced Dark Chocolates. J. Agric. Food Chem. 2019, 67, 3991–4001. [Google Scholar] [CrossRef]
- International Organization for Standardization. Sensory Analysis—Methodology—General Guidance for Establishing a Sensory Profile; International Organization for Standardization: Geneva, Switzerland, 2016. [Google Scholar]
- Sukha, D. Elements of Harmonized International Standards for Cocoa Quality and Flavour Assessment. 2017. Available online: https://www.cocoaqualitystandards.org/fileadmin/templates/CocoaQuality/Uploads/Documents-and-reports/WG-Quality-Flavour-Standards-ENGLISH-11Set2017.pdf (accessed on 11 April 2023).
- Seyfried, C.; Granvogl, M. Characterization of Key Odorants of Dark Chocolate by Means of the Sensomics Approach. J. Agric. Food Chem. 2019, 67, 5827–5837. [Google Scholar] [CrossRef]
- Schnermann, P.; Schieberle, P. Evaluation of Key Odorants in Milk Chocolate and Cocoa Mass by Aroma Extract Dilution Analyses. J. Agric. Food Chem. 1997, 45, 867–872. [Google Scholar] [CrossRef]
- Amoa-Awua, W.K. Methods of Cocoa Fermentation and Drying, 1st ed.; Schwan, R.F., Fleet, G.H., Eds.; Cocoa and Coffee Fermentations; CRC Press-Taylor & Francis Group: New York, NY, USA, 2015; pp. 71–116. [Google Scholar]
- U.S. Food & Drug Administration. MPM: V-4. Chocolate, Sugars, and Related Products; U.S.A. 2017. Available online: https://www.fda.gov/food/laboratory-methods-food/mpm-v-4-chocolate-sugars-and-related-products (accessed on 11 April 2023).
- Sukha, D.A.; Butler, D.R.; Umaharan, P.; Boult, E. The Use of an Optimised Organoleptic Assessment Protocol to Describe and Quantify Different Flavour Attributes of Cocoa Liquors Made from Ghana and Trinitario Beans. Eur. Food Res. Technol. 2008, 226, 405–413. [Google Scholar] [CrossRef]
- Witten, D.; Tibshirani, R.A. Comparison of Fold-Change and the t-Statistic for Microarray Data Analysis; Technical Report; Stanford University: Stanford, CA, USA, 2007. [Google Scholar]
- Gil-De-La-Fuente, A.; Godzien, J.; Saugar, S.; Garcia-Carmona, R.; Badran, H.; Wishart, D.S.; Barbas, C.; Otero, A. CEU Mass Mediator 3.0: A Metabolite Annotation Tool. J. Proteome Res. 2019, 18, 797–802. [Google Scholar] [CrossRef]
- International Cocoa Organization Harvesting & Post-Harvest Processing. Available online: https://www.icco.org/harvesting-post-harvest-new/ (accessed on 11 April 2023).
- Rogers, S.; Bovee, B.; Segal, S. Effect of Uridine on Hepatic Galactose-1-Phosphate Uridyltransferase. Enzyme 1989, 42, 53–60. [Google Scholar] [CrossRef] [PubMed]
- Association of Official Analytical. Chemists AOAC Official Method 999.10; Lead, Cadmium, Zinc, Copper, and Iron in Foods. Atomic Absorption Spectrophotometry after Microwave Digestion. Available online: https://img.21food.cn/img/biaozhun/20100108/177/11285281.pdf (accessed on 11 April 2023).
- Menguy, L.; Prim, D.; Carlin-Sinclair, A.; Marc, I. The Determination of Methylxanthines in Chocolate and Cocoa by Different Separation Techniques: HPLC, Instrumental TLC, and MECC. J. Chem. Educ. 2009, 86, 1307. [Google Scholar] [CrossRef]
- Al-Owaisi, M.; Al-Hadiwi, N.; Khan, S.A. GC-MS Analysis, Determination of Total Phenolics, Flavonoid Content and Free Radical Scavenging Activities of Various Crude Extracts of Moringa Peregrina (Forssk.) Fiori Leaves. Asian Pac. J. Trop. Biomed. 2014, 4, 964–970. [Google Scholar] [CrossRef]
- Ortega, N.; Romero, M.-P.; Macià, A.; Reguant, J.; Anglès, N.; Morelló, J.-R.; Motilva, M.-J. Obtention and Characterization of Phenolic Extracts from Different Cocoa Sources. J. Agric. Food Chem. 2008, 56, 9621–9627. [Google Scholar] [CrossRef]
- Chen, Y.; Li, E.-M.; Xu, L.-Y. Guide to Metabolomics Analysis: A Bioinformatics Workflow. Metabolites 2022, 12, 357. [Google Scholar] [CrossRef]
I.D | Sample Identifier | Grain Index (g/Grain) | Total Defective Grains | Fermentation Degree | Cracking Degree | Global Rating |
---|---|---|---|---|---|---|
01 | MAN 1 | 1.04 | 7.5% | 97.0% | 69.5% | 8.1 |
02 | MAN 2 | 0.88 | 11.1% | 99.0% | 80.5% | 7.9 |
03 | MAN 3 | 0.90 | 11.0% | 94.0% | 76.0% | 8.1 |
04 | POR 1 | 1.28 | 4.0% | 96.5% | 86.5% | 8.9 |
05 | REG | 1.50 | 6.0% | 96.0% | 86.5% | 9.2 |
06 | SAR | 1.38 | 12.0% | 99.0% | 89.0% | 9.1 |
07 | MAK | 1.13 | 13.0% | 97.0% | 86.5% | 8.7 |
08 | URA 1 | 1.44 | 10.0% | 96.0% | 87.0% | 9.1 |
09 | URA 2 | 1.50 | 16.0% | 96.5% | 91.5% | 9.1 |
10 | POR 2 | 1.53 | 10.0% | 97.5% | 93.0% | 9.3 |
11 | SDR | 1.17 | 36.5% | 84.5% | 89.5% | 8.0 |
12 | URA 3 | 1.21 | 24.5% | 99.5% | 87.5% | 8.6 |
13 | CCN 1 | 1.43 | 3.0% | 65.5% | 96.0% | 8.7 |
14 | L8T7 | 1.38 | 4.5% | 61.0% | 92.5% | 8.5 |
15 | CCN 2 | 1.68 | 2.5% | 70.0% | 98.0% | 8.9 |
16 | CCN 3 | 1.50 | 14.0% | 78.5% | 92.0% | 8.7 |
17 | CCN 4 | 1.50 | 13.0% | 66.5% | 93.5% | 8.6 |
18 | CCN 5 | 1.50 | 12.0% | 80.5% | 94.0% | 8.9 |
19 | CCN 6 | 1.20 | 9.0% | 94.0% | 80.0% | 8.6 |
20 | CCN 7 | 1.26 | 8.0% | 94.6% | 87.5% | 8.7 |
21 | CCN 8 | 1.25 | 7.5% | 90.5% | 93.5% | 8.8 |
22 | CCN 9 | 1.53 | 10.0% | 90.0% | 90.5% | 9.0 |
23 | CCN 10 | 1.62 | 4.0% | 86.5% | 88.0% | 9.2 |
24 | CCN 11 | 1.42 | 11.5% | 77.5% | 93.0% | 8.6 |
25 | CCN 12 | 1.24 | 11.0% | 94.5% | 79.0% | 8.6 |
26 | CCN NO | 1.43 | 0.0% | 83.5% | 89.0% | 9.0 |
27 | MAN 4 | 1.09 | 13.0% | 93.5% | 89.5% | 8.6 |
28 | MAN 5 | 1.14 | 11.0% | 88.5% | 87.0% | 8.5 |
29 | SV 1 | 1.42 | 4.5% | 57.5% | 88.5% | 8.3 |
30 | SV 2 | 1.64 | 5.0% | 94.0% | 95.5% | 9.3 |
31 | CCN 13 | 1.48 | 17.5% | 75.0% | 94.5% | 8.6 |
32 | MEZ 1 | 1.85 | 10.0% | 67.0% | 79.0% | 8.7 |
33 | MAN 6 | 1.38 | 5.0% | 92.5% | 81.0% | 8.7 |
34 | MON | 1.02 | 10.0% | 98.0% | 89.0% | 8.7 |
35 | ICS | 1.22 | 6.5% | 76.5% | 85.5% | 8.4 |
36 | SNM | 1.68 | 9.5% | 95.0% | 87.0% | 9.3 |
I.D | Sample Identifier | Total Phenolic Content (mg G.A/ g Sample) | Total Cadmium Content (mg/kg in Almonds) | Relative Amount (%) of Caffeine (C) | Relative Amount (%) of Theobromine (T) | T/C |
---|---|---|---|---|---|---|
01 | MAN 1 | 126.8 | 0.4208 | 10.39 | 20.47 | 1.97 |
02 | MAN 2 | 103.4 | 0.2406 | 9.07 | 19.36 | 2.13 |
03 | MAN 3 | 151.5 | 0.5403 | 11.19 | 19.76 | 1.77 |
04 | POR 1 | 90.1 | 0.5760 | 10.87 | 13.94 | 1.28 |
05 | REG | 96.8 | 0.4380 | 7.95 | 15.16 | 1.91 |
06 | SAR | 112.8 | 8.576 | 4.35 | 11.97 | 2.75 |
07 | MAK | 100.0 | 0.4130 | 9.94 | 11.14 | 2.75 |
08 | URA 1 | 88.9 | 1.694 | 7.62 | 11.82 | 1.55 |
09 | URA 2 | 115.4 | 1.491 | 7.41 | 13.16 | 1.78 |
10 | POR 2 | 100.7 | 0.3600 | 11.84 | 13.59 | 1.15 |
11 | SDR | 119.8 | 7.069 | 7.60 | 11.47 | 1.51 |
12 | URA 3 | 122.8 | 1.379 | 5.66 | 10.42 | 1.84 |
13 | CCN 1 | 128.0 | 0.3611 | 7.33 | 18.83 | 2.57 |
14 | L8T7 | 153.1 | 0.6477 | 6.22 | 16.67 | 2.68 |
15 | CCN 2 | 131.0 | 0.5370 | 10.20 | 16.75 | 1.64 |
16 | CCN 3 | 141.4 | 0.5352 | 8.67 | 17.95 | 2.07 |
17 | CCN 4 | 136.5 | 0.3593 | 6.94 | 16.80 | 2.42 |
18 | CCN 5 | 118.2 | 0.2927 | 6.55 | 15.26 | 2.33 |
19 | CCN 6 | 140.6 | 0.4177 | 5.43 | 13.30 | 2.45 |
20 | CCN 7 | 141.3 | 0.1806 | 4.69 | 14.59 | 3.11 |
21 | CCN 8 | 124.1 | 0.2934 | 6.36 | 15.35 | 2.41 |
22 | CCN 9 | 138.5 | 0.4642 | 6.45 | 15.64 | 2.43 |
23 | CCN 10 | 168.2 | 0.5400 | 6.76 | 17.69 | 2.62 |
24 | CCN 11 | 146.9 | 0.6878 | 7.42 | 18.08 | 2.44 |
25 | CCN 12 | 147.1 | 0.4817 | 4.80 | 14.63 | 3.05 |
26 | CCN NO | 121.4 | 0.2903 | 10.97 | 17.22 | 1.57 |
27 | MAN 4 | 120.8 | 2.934 | 10.00 | 17.57 | 1.76 |
28 | MAN 5 | 134.5 | 1.582 | 9.02 | 14.82 | 1.64 |
29 | SV 1 | 118.9 | 0.9624 | 8.91 | 15.37 | 1.72 |
30 | SV 2 | 88.1 | 0.7161 | 9.93 | 14.83 | 1.49 |
31 | CCN 13 | 143.4 | 0.4819 | 8.45 | 12.86 | 1.52 |
32 | MEZ 1 | 117.3 | 0.6325 | 8.48 | 16.41 | 1.93 |
33 | MAN 6 | 122.5 | 0.1190 | 10.29 | 18.73 | 1.82 |
34 | MON | 91.7 | 10.130 | 3.30 | 11.97 | 3.62 |
35 | ICS | 143.4 | 0.3570 | 7.17 | 17.40 | 2.43 |
36 | SNM | 124.7 | 0.3540 | 6.58 | 16.14 | 2.45 |
I.D | Sample Identifier | Cocoa | Fresh Fruit | Dried Fruit | Floral | Wood | Spice | Nut | Sweet | Degree of Toast |
---|---|---|---|---|---|---|---|---|---|---|
01 | MAN 1 | 3.2 | 3.8 | 1.3 | 0.5 | 0.2 | 1.2 | 2.0 | 1.5 | 3.0 |
02 | MAN 2 | 3.3 | 1.1 | 1.9 | 0.3 | 0.4 | 0.4 | 1.7 | 1.6 | 2.9 |
03 | MAN 3 | 2.7 | 2.1 | 0.3 | 0.4 | 0.4 | 2.4 | 1.8 | 1.0 | 3.4 |
04 | POR 1 | 2.6 | 1.9 | 1.3 | 1.3 | 0.1 | 0.9 | 2.1 | 1.1 | 2.9 |
05 | REG | 3.0 | 0.3 | 1.7 | 0.4 | 0.6 | 0.1 | 2.4 | 1.1 | 3.0 |
06 | SAR | 2.6 | 4.4 | 1.4 | 0.6 | 0.5 | 1.6 | 1.8 | 1.4 | 2.4 |
07 | MAK | 3.6 | 1.7 | 1.4 | 0.4 | 0.1 | 0.0 | 2.7 | 1.9 | 2.3 |
08 | URA 1 | 3.8 | 1.5 | 1.3 | 0.5 | 0.3 | 1.0 | 2.5 | 2.8 | 2.6 |
09 | URA 2 | 4.0 | 2.2 | 1.5 | 0.7 | 0.8 | 0.7 | 2.7 | 1.7 | 2.5 |
10 | POR 2 | 3.7 | 1.7 | 1.4 | 0.9 | 0.4 | 0.7 | 2.9 | 1.7 | 2.9 |
11 | SDR | 3.6 | 3.6 | 1.3 | 0.4 | 0.3 | 0.9 | 2.1 | 1.4 | 3.1 |
12 | URA 3 | 3.3 | 1.0 | 1.1 | 1.1 | 0.3 | 0.9 | 2.6 | 1.8 | 2.6 |
13 | CCN 1 | 4.3 | 1.3 | 1.3 | 0.3 | 1.1 | 1.1 | 3.1 | 1.3 | 3.0 |
14 | L8T7 | 2.9 | 0.0 | 0.1 | 0.0 | 0.1 | 0.4 | 1.3 | 0.8 | 5.8 |
15 | CCN 2 | 3.3 | 1.8 | 0.8 | 0.4 | 0.0 | 0.6 | 2.8 | 1.4 | 3.5 |
16 | CCN 3 | 3.6 | 0.9 | 0.9 | 1.0 | 0.5 | 0.9 | 2.6 | 1.4 | 4.0 |
17 | CCN 4 | 5.0 | 2.0 | 1.0 | 0.0 | 1.0 | 2.0 | 2.0 | 2.0 | 3.0 |
18 | CCN 5 | 3.1 | 1.8 | 0.9 | 0.4 | 0.4 | 0.9 | 1.9 | 1.5 | 3.1 |
19 | CCN 6 | 2.8 | 1.5 | 1.5 | 0.5 | 0.5 | 1.0 | 1.8 | 1.5 | 3.0 |
20 | CCN 7 | 2.7 | 1.1 | 0.9 | 0.1 | 0.0 | 1.0 | 2.0 | 1.1 | 2.7 |
21 | CCN 8 | 2.6 | 0.8 | 1.1 | 0.4 | 1.5 | 1.1 | 1.5 | 1.1 | 6.8 |
22 | CCN 9 | 3.7 | 0.9 | 1.0 | 0.1 | 0.4 | 0.7 | 1.9 | 1.1 | 3.4 |
23 | CCN 10 | 3.7 | 0.2 | 1.0 | 0.0 | 0.3 | 0.3 | 2.2 | 0.7 | 4.2 |
24 | CCN 11 | 2.7 | 0.5 | 1.7 | 0.3 | 0.5 | 0.2 | 2.2 | 1.0 | 3.7 |
25 | CCN 12 | 2.3 | 1.2 | 1.2 | 0.0 | 0.3 | 1.2 | 0.8 | 0.8 | 2.5 |
26 | CCN NO | 4.1 | 1.0 | 1.8 | 0.4 | 0.6 | 1.1 | 3.0 | 1.8 | 2.9 |
27 | MAN 4 | 2.5 | 2.5 | 1.3 | 0.5 | 0.5 | 1.3 | 2.2 | 1.5 | 3.0 |
28 | MAN 5 | 3.3 | 1.7 | 1.4 | 0.1 | 1.4 | 1.8 | 1.6 | 1.4 | 2.7 |
29 | SV 1 | 3.7 | 1.8 | 0.8 | 0.4 | 0.8 | 1.3 | 3.3 | 2.7 | 3.8 |
30 | SV 2 | 3.1 | 1.7 | 1.7 | 0.4 | 0.1 | 0.9 | 3.0 | 1.4 | 3.0 |
31 | CCN 13 | 3.4 | 0.6 | 1.7 | 0.8 | 1.3 | 0.7 | 3.2 | 2.4 | 3.1 |
32 | MEZ 1 | 3.0 | 3.0 | 0.9 | 0.4 | 0.0 | 0.4 | 1.7 | 1.1 | 3.1 |
33 | MAN 6 | 2.5 | 2.3 | 1.7 | 0.2 | 0.7 | 0.8 | 1.5 | 1.2 | 2.5 |
34 | MON | 2.7 | 3.2 | 1.0 | 0.5 | 0.5 | 1.0 | 1.8 | 1.2 | 2.2 |
35 | ICS | 2.6 | 1.1 | 1.3 | 0.6 | 0.6 | 0.4 | 1.9 | 1.1 | 2.9 |
36 | SNM | 3.8 | 1.3 | 2.3 | 0.5 | 0.5 | 1.0 | 1.8 | 1.7 | 2.3 |
I.D | Identification of the Sample | Acidity | Bitterness | Astringency | Atypical Flavors | Global Rating |
---|---|---|---|---|---|---|
01 | MAN 1 | 3.3 | 3.0 | 3.0 | 0.0 | 8.2 |
02 | MAN 2 | 2.1 | 3.7 | 1.4 | 0.0 | 7.0 |
03 | MAN 3 | 4.2 | 4.2 | 1.3 | 0.0 | 7.3 |
04 | POR 1 | 3.3 | 2.5 | 2.0 | 0.0 | 7.4 |
05 | REG | 2.0 | 3.4 | 1.6 | 1.0 | 6.3 |
06 | SAR | 6.0 | 2.3 | 1.6 | 0.0 | 8.4 |
07 | MAK | 2.1 | 2.4 | 1.3 | 0.0 | 7.3 |
08 | URA 1 | 2.9 | 1.8 | 1.9 | 0.0 | 8.8 |
09 | URA 2 | 2.2 | 3.0 | 1.8 | 0.0 | 7.7 |
10 | POR 2 | 2.6 | 2.3 | 1.4 | 0.0 | 8.0 |
11 | SDR | 4.3 | 3.0 | 1.4 | 0.0 | 8.3 |
12 | URA 3 | 2.1 | 2.4 | 1.4 | 0.0 | 7.9 |
13 | CCN 1 | 2.4 | 4.7 | 2.3 | 0.0 | 6.5 |
14 | L8T7 | 1.5 | 5.3 | 1.5 | 1.9 | 4.9 |
15 | CCN 2 | 3.4 | 4.0 | 2.4 | 0.0 | 7.1 |
16 | CCN 3 | 1.9 | 3.8 | 1.9 | 0.0 | 7.0 |
17 | CCN 4 | 5.0 | 4.9 | 3.0 | 0.0 | 7.2 |
18 | CCN 5 | 2.5 | 3.1 | 2.3 | 0.5 | 7.4 |
19 | CCN 6 | 3.8 | 3.0 | 1.6 | 0.0 | 7.8 |
20 | CCN 7 | 2.6 | 3.3 | 2.4 | 0.0 | 7.1 |
21 | CCN 8 | 2.4 | 3.4 | 2.2 | 0.0 | 6.0 |
22 | CCN 9 | 2.3 | 4.0 | 2.1 | 0.0 | 7.1 |
23 | CCN 10 | 1.5 | 3.7 | 3.3 | 0.0 | 7.0 |
24 | CCN 11 | 1.8 | 3.3 | 2.5 | 0.0 | 7.0 |
25 | CCN 12 | 5.0 | 3.2 | 1.7 | 1.3 | 5.3 |
26 | CCN NO | 2.1 | 3.4 | 1.4 | 0.0 | 8.3 |
27 | MAN 4 | 3.8 | 3.0 | 2.0 | 0.0 | 7.7 |
28 | MAN 5 | 3.7 | 3.3 | 1.7 | 0.0 | 6.3 |
29 | SV 1 | 2.7 | 3.8 | 2.1 | 0.0 | 6.8 |
30 | SV 2 | 3.6 | 3.0 | 2.0 | 0.0 | 7.7 |
31 | CCN 13 | 2.3 | 4.1 | 1.8 | 0.0 | 7.8 |
32 | MEZ 1 | 4.9 | 3.0 | 1.6 | 0.0 | 7.9 |
33 | MAN 6 | 4.3 | 3.7 | 1.7 | 0.0 | 7.5 |
34 | MON | 6.2 | 3.0 | 1.7 | 1.0 | 6.7 |
35 | ICS | 2.3 | 3.8 | 2.1 | 1.0 | 6.5 |
36 | SNM | 2.2 | 2.5 | 1.7 | 0.0 | 8.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bacca-Villota, P.; Acuña-García, L.; Sierra-Guevara, L.; Cano, H.; Hidalgo, W. Untargeted Metabolomics Analysis for Studying Differences in High-Quality Colombian Cocoa Beans. Molecules 2023, 28, 4467. https://doi.org/10.3390/molecules28114467
Bacca-Villota P, Acuña-García L, Sierra-Guevara L, Cano H, Hidalgo W. Untargeted Metabolomics Analysis for Studying Differences in High-Quality Colombian Cocoa Beans. Molecules. 2023; 28(11):4467. https://doi.org/10.3390/molecules28114467
Chicago/Turabian StyleBacca-Villota, Paula, Luis Acuña-García, Leidy Sierra-Guevara, Herminsul Cano, and William Hidalgo. 2023. "Untargeted Metabolomics Analysis for Studying Differences in High-Quality Colombian Cocoa Beans" Molecules 28, no. 11: 4467. https://doi.org/10.3390/molecules28114467
APA StyleBacca-Villota, P., Acuña-García, L., Sierra-Guevara, L., Cano, H., & Hidalgo, W. (2023). Untargeted Metabolomics Analysis for Studying Differences in High-Quality Colombian Cocoa Beans. Molecules, 28(11), 4467. https://doi.org/10.3390/molecules28114467