Europium(III) Meets Etidronic Acid (HEDP): A Coordination Study Combining Spectroscopic, Spectrometric, and Quantum Chemical Methods
Abstract
:1. Introduction
2. Results and Discussion
2.1. HEDP Characterization and pKa Values at I = 0.1 M (NaCl)
2.2. Solubility of Europium(III) in the Presence of HEDP
2.3. Structural Investigations on Soluble Europium(III)–HEDP Complexes
2.4. Thermodynamic Studies of the Fundamental Europium(III)–HEDP System
2.5. Europium(III) Complex Formation with HEDP in Cell Culture Medium
3. Conclusions
4. Materials and Methods
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Fattal, E.; Tsapis, N.; Phan, G. Novel drug delivery systems for actinides (uranium and plutonium) decontamination agents. Adv. Drug Deliv. Rev. 2015, 90, 40–54. [Google Scholar] [CrossRef]
- Jacopin, C.; Sawicki, M.; Plancque, G.; Doizi, D.; Taran, F.; Ansoborlo, E.; Amekraz, B.; Moulin, C. Investigation of the interaction between 1-hydroxyethane-1,1′-diphosphonic acid (HEDP) and uranium(VI). Inorg. Chem. 2003, 42, 5015–5022. [Google Scholar] [CrossRef]
- Bozal, C.B.; Martinez, A.B.; Cabrini, R.L.; Ubios, A.M. Effect of ethane-1-hydroxy-1,1-bisphosphonate (EHBP) on endochondral ossification lesions induced by a lethal oral dose of uranyl nitrate. Arch. Toxicol. 2005, 79, 475–481. [Google Scholar] [CrossRef]
- Uehara, A.; Matsumura, D.; Tsuji, T.; Yakumaru, H.; Tanaka, I.; Shiro, A.; Saitoh, H.; Ishihara, H.; Homma-Takeda, S. Uranium chelating ability of decorporation agents in serum evaluated by X-ray absorption spectroscopy. Anal. Methods 2022, 14, 2439–2445. [Google Scholar] [CrossRef] [PubMed]
- Farooqi, I.H.; Hussain, A.; Quraishi, M.A.; Saini, P.A. Study of low cost eco-friendly compounds as corrosion inhibitors for cooling systems. Anti-Corros. Methods Mater. 1999, 46, 328–331. [Google Scholar] [CrossRef]
- Browning, F.H.; Fogler, H.S. Effect of precipitating conditions on the formation of calcium-HEDP precipitates. Langmuir 1996, 12, 5231–5238. [Google Scholar] [CrossRef]
- Rott, E.; Steinmetz, H.; Metzger, J.W. Organophosphonates: A review on environmental relevance, biodegradability and removal in wastewater treatment plants. Sci. Total Environ. 2018, 615, 1176–1191. [Google Scholar] [CrossRef]
- Jurisson, S.; Berning, D.; Jia, W.; Ma, D.S. Coordination-compounds in nuclear-medicine. Chem. Rev. 1993, 93, 1137–1156. [Google Scholar] [CrossRef]
- Lange, R.; Overbeek, F.; de Klerk, J.M.H.; Pasker-de Jong, P.C.M.; van den Berk, A.M.; ter Heine, R.; Rodenburg, C.J.; Kooistra, A.; Hendrikse, N.H.; Bloemendal, H.J. Treatment of painful bone metastases in prostate and breast cancer patients with the therapeutic radio pharmaceutical rhenium-188-HEDP Clinical benefit in a real-world study. Nuklearmed.-Nucl. Med. 2016, 55, 188–195. [Google Scholar]
- Stone, M. Didronel PMO. Br. J. Hosp. Med. 1993, 49, 275–277. [Google Scholar]
- Fleisch, H. Bisphosphonates—Pharmacology and use in the treatment of tumor-induced hypercalcemic and metastatic bone-disease. Drugs 1991, 42, 919–944. [Google Scholar] [CrossRef]
- Cukrowski, I.; Popovic, L.; Barnard, W.; Paul, S.O.; van Rooyen, P.H.; Liles, D.C. Modeling and spectroscopic studies of bisphosphonate-bone interactions. The Raman, NMR and crystallographic investigations of Ca-HEDP complexes. Bone 2007, 41, 668–678. [Google Scholar] [CrossRef]
- Dietsch, P.; Gunther, T.; Rohnelt, M. Dissociation-constants of ethane-1-hydroxy-1,1-diphosphonate ehdp and dichloromethylene-diphosphonate cl2mdp for H+, Ca2+, Mg2+, and Zn2+. Z. Naturforsch. C 1976, 31, 661–663. [Google Scholar] [CrossRef]
- Wada, H.; Fernando, Q. Determination of Formation Constants of Copper(ll) Complexes of Ethane-l-hydroxy-l,l-diphosphomc Acid with a Solid State Cupric Ion-Selective Electrode. Anal. Chem. 1971, 43, 751–755. [Google Scholar] [CrossRef]
- Rizkalla, E.N.; Zaki, M.T.M.; Ismail, M.I. Metal Chelates of Phosphonate-Containing Ligands—V. Stability of Some 1-Hydroxyethane-1,1-diphosphonic Acid Meal Chelates. Talanta 1980, 27, 715–719. [Google Scholar] [CrossRef]
- Claessens, R.; Vanderlinden, J.G.M. Stability Constants of Tin(I1) and Calcium Diphosphonate Complexes. J. Inorg. Biochem. 1984, 21, 73–82. [Google Scholar] [CrossRef]
- Wu, D.; Kang, R.K.; Guo, J.; Liu, Z.T.; Wan, C.; Jin, Z.J. On the reaction mechanism of a hydroxyethylidene diphosphonic acid-based electrolyte for electrochemical mechanical polishing of copper. Electrochem. Commun. 2019, 103, 48–54. [Google Scholar] [CrossRef]
- Wang, X.; Han, B.; Gao, Y.; Wang, L.; Bai, M. HEDP-capped Terbium Orthophosphate Nanoparticles as Sensitive Luminescent Probes for the Detection of Pb2+ Ions. Chem. Res. Chin. Univ. 2016, 32, 325–328. [Google Scholar] [CrossRef]
- Afonin, E.G.; Pechurova, N.I.; Martynenko, L.I. Stability of Diprotonated Lanthanide Hydroxyethylidenediphosphonates in Aqueous Solution. Russ. J. Inorg. Chem. 1987, 32, 1810–1811. [Google Scholar]
- Afonin, E.G.; Pechurova, N.I.; Martynenko, L.I. Spectrographic study on neodymium complexing with hydroxyethylenediphosphonic acid in the acidic medium. Zh. Neorg. Khim. 1987, 32, 53–57. [Google Scholar]
- Nash, K.L. A review of basic chemistry and recent developments in trivalent F-elements separation. Solvent Extr. Ion Exch. 1993, 11, 729–768. [Google Scholar] [CrossRef]
- Nash, K.L. f-Element complexation by diphosphonate ligands. J. Alloys Compd. 1997, 249, 33–40. [Google Scholar] [CrossRef]
- Nash, K.L.; Horwitz, E.P. Stability Constants for Europium(III) Complexes with Substituted Methane Diphosphonic Acids in Acid Solutions. Inorg. Chim. Acta 1990, 169, 245–252. [Google Scholar] [CrossRef]
- Nash, K.L.; Rao, L.F.; Choppin, G.R. Calorimetric and Laser Induced Fluorescence Investigation of the Complexation Geometry of Selected Europium-Gem-Diphosphonate Complexes in Acidic Solution. Inorg. Chem. 1995, 34, 2753–2758. [Google Scholar] [CrossRef]
- Sergienko, V.S. Structural chemistry of 1-hydroxyethylidenediphosphonic acid complexes. Russ. J. Coord. Chem. 2001, 27, 681–710. [Google Scholar] [CrossRef]
- Khramov, V.P.; Koltsov, A.A. Physicochemical Investigation of Hydroxyethylidenediphosphonates of Rare-Earth Elements of Cerium Subgroup. Zh. Neorg. Khim. 1973, 18, 2947–2951. [Google Scholar]
- Shi, F.N.; Cunha-Silva, L.; Ferreira, R.A.S.; Mafra, L.; Trindade, T.; Carlos, L.D.; Paz, F.A.A.; Rocha, J. Interconvertable modular framework and layered lanthanide(III)-etidronic acid coordination polymers. J. Am. Chem. Soc. 2008, 130, 150–167. [Google Scholar] [CrossRef]
- Nash, K.L.; Rogers, R.D.; Ferraro, J.; Zhang, J. Lanthanide complexes with 1-hydroxyethane-1,1-diphosphonic acid: Solvent organization and coordination geometry in crystalline and amorphous solids. Inorg. Chim. Acta 1998, 269, 211–223. [Google Scholar] [CrossRef]
- Liu, F.Y.; Roces, L.; Ferreira, R.A.S.; Garcia-Granda, S.; Garcia, J.R.; Carlos, L.D.; Rocha, J. Crystal structure and photoluminescence properties of lanthanide diphosphonates. J. Mater. Chem. 2007, 17, 3696–3701. [Google Scholar] [CrossRef]
- Popov, K.; Ronkkomaki, H.; Lajunen, L.H.J. Critical evaluation of stability constants of phosphonic acids (IUPAC technical report). Pure Appl. Chem. 2001, 73, 1641–1677. [Google Scholar] [CrossRef]
- Heller, A.; Barkleit, A.; Bernhard, G. Chemical speciation of trivalent actinides and lanthanides in biological fluids: The dominant in vitro binding form of curium(III) and europium(III) in human urine. Chem. Res. Toxicol. 2011, 24, 193–203. [Google Scholar] [CrossRef] [PubMed]
- Heller, A.; Barkleit, A.; Foerstendorf, H.; Tsushima, S.; Bernhard, G. Curium(III) citrate speciation in biological systems: An europium(III) assisted spectroscopic and quantum chemical study. Dalton Trans. 2012, 41, 13969–13983. [Google Scholar] [CrossRef] [PubMed]
- Barkleit, A.; Heller, A.; Ikeda-Ohno, A.; Bernhard, G. Interaction of europium and curium with alpha-amylase. Dalton Trans. 2016, 45, 8724–8733. [Google Scholar] [CrossRef] [PubMed]
- Barkleit, A.; Wilke, C.; Heller, A.; Stumpf, T.; Ikeda-Ohno, A. Trivalent f-elements in human saliva: A comprehensive speciation study by time-resolved laser-induced fluorescence spectroscopy and thermodynamic calculations. Dalton Trans. 2017, 46, 1593–1605. [Google Scholar] [CrossRef] [PubMed]
- Carroll, R.L.; Irani, R.R. On acidity of substituted methylenediphosphonates and their interaction with alkali metal ions. Inorg. Chem. 1967, 6, 1994–1998. [Google Scholar] [CrossRef]
- Grabenstetter, R.J.; Quimby, O.T.; Flautt, T.J. The Acid Dissociation Constants of Substituted Methanediphosphonic Acids: A Correlation with P31 Magnetic Resonance Chemical Shift and with Taft σ*. J. Phys. Chem. 1967, 71, 4194–4202. [Google Scholar] [CrossRef]
- Mioduski, T. Protonation constants of 1-hydroxyethylidene-1,1-diphosphonic acid, diethylenetriamino-n,n,n′,n″,n″-penta-acetic acid and trans-1,2-diaminocyclohexane-n,n,n′,n′-tetra-acetic acid. Talanta 1980, 27, 299–303. [Google Scholar] [CrossRef]
- Collins, A.J.; Perkins, P.G. Acidity constants and salt formation by 1-hydroxyethyl-1,1-diphosphonic acid (HEDPA). J. Appl. Chem. Biotechnol. 1977, 27, 651–661. [Google Scholar] [CrossRef]
- Kabachnik, M.I.; Lastovskii, R.P.; Medved’, T.Y.; Medyntsev, V.V.; Kolpakova, I.D.; Dyatlova, N.M. Complexing properties of oxyethylidenediphosphonic acid in aqueous solutions. Dokl. Akad. Nauk SSSR (Proc. Acad. Sci. USSR) 1967, 177, 582–585. [Google Scholar]
- Popov, K.; Niskanen, E.; Ronkkomaki, H.; Lajunen, L.H.J. P-31 NMR Study of organophosphonate protonation equilibrium at high pH. New J. Chem. 1999, 23, 1209–1213. [Google Scholar] [CrossRef]
- Kretzschmar, J.; Tsushima, S.; Lucks, C.; Jackel, E.; Meyer, R.; Steudtner, R.; Muller, K.; Rossberg, A.; Schmeide, K.; Brendler, V. Dimeric and Trimeric Uranyl(VI)-Citrate Complexes in Aqueous Solution. Inorg. Chem. 2021, 60, 7998–8010. [Google Scholar] [CrossRef] [PubMed]
- Zenobi, M.C.; Luengo, C.V.; Avena, M.J.; Rueda, E.H. An ATR-FTIR study of different phosphonic acids in aqueous solution. Spectrochim. Acta Part A-Mol. Biomol. Spectrosc. 2008, 70, 270–276. [Google Scholar] [CrossRef] [PubMed]
- Thomas, L.C.; Chittenden, R.A. Characteristic infrared absorption frequencies of organophosphorus compounds—II. P-O-(X) bonds. Spectrochim. Acta 1964, 20, 489–502. [Google Scholar] [CrossRef]
- Thomas, L.C.; Chittenden, R.A. Characteristic infrared absorption frequencies of organophosphorus compounds—I The phosphoryl (P=O) group. Spectrochim. Acta 1964, 20, 467–487. [Google Scholar] [CrossRef]
- Kakihana, M.; Nagumo, T.; Okamoto, M.; Kakihana, H. Coordination Structures for Uranyl Carboxylate Complexes in Aqueous Solution Studied by IR and C13 NMR Spectra. J. Phys. Chem. 1987, 91, 6128–6136. [Google Scholar] [CrossRef]
- Deacon, G.B.; Phillips, R.J. Relationships Between the Carbon-Oxygen Stretching Frequences of Carboxylato Complexes and The Type of Carboxylate Coordination. Coord. Chem. Rev. 1980, 33, 227–250. [Google Scholar] [CrossRef]
- Vogel, M.; Steudtner, R.; Fankhanel, T.; Raff, J.; Drobot, B. Spatially resolved Eu(III) environments by chemical microscopy. Analyst 2021, 146, 6741–6745. [Google Scholar] [CrossRef] [PubMed]
- Kimura, T.; Kato, Y. Luminescence study on hydration states of lanthanide(III)-polyaminopolycarboxylate complexes in aqueous solution. J. Alloys Compd. 1998, 277, 806–810. [Google Scholar] [CrossRef]
- Pribil, R.; Vesely, V. 1-Hydroxy-ethylidene-1,1-diphosphonic acid as a Titrimetric Agent. Talanta 1967, 14, 591–595. [Google Scholar] [CrossRef]
- Drobot, B.; Bauer, A.; Steudtner, R.; Tsushima, S.; Bok, F.; Patzschke, M.; Raff, J.; Brendler, V. Speciation Studies of Metals in Trace Concentrations: The Mononuclear Uranyl(VI) Hydroxo Complexes. Anal. Chem. 2016, 88, 3548–3555. [Google Scholar] [CrossRef]
- Drobot, B.; Schmidt, M.; Mochizuki, Y.; Abe, T.; Okuwaki, K.; Brulfert, F.; Falke, S.; Samsonov, S.A.; Komeiji, Y.; Betzel, C.; et al. Cm3+/Eu3+ induced structural, mechanistic and functional implications for calmodulin. Phys. Chem. Chem. Phys. 2019, 21, 21213–21222. [Google Scholar] [CrossRef] [PubMed]
- Heller, A.; Barkleit, A.; Bok, F.; Wober, J. Effect of four lanthanides onto the viability of two mammalian kidney cell lines. Ecotoxicol. Environ. Saf. 2019, 173, 469–481. [Google Scholar] [CrossRef] [PubMed]
- Heller, A.; Pisarevskaja, A.; Bolicke, N.; Barkleit, A.; Bok, F.; Wober, J. The effect of four lanthanides onto a rat kidney cell line (NRK-52E) is dependent on the composition of the cell culture medium. Toxicology 2021, 456, 152771. [Google Scholar] [CrossRef] [PubMed]
- Willcott, M.R. MestRe Nova. J. Am. Chem. Soc. 2009, 131, 13180. [Google Scholar] [CrossRef]
- Kretzschmar, J.; Wollenberg, A.; Tsushima, S.; Schmeide, K.; Acker, M. 2-Phosphonobutane-1,2,4,-Tricarboxylic Acid (PBTC): pH-Dependent Behavior Studied by Means of Multinuclear NMR Spectroscopy. Molecules 2022, 27, 4067. [Google Scholar] [CrossRef] [PubMed]
- Pettit, L.D.; Puigdomenech, I.; Wanner, H.; Sukhno, I.; Buzko, I.V. Academic Software. 2004. Available online: http://www.acadsoft.co.uk (accessed on 12 January 2023).
- Gans, P.; Sabatini, A.; Vacca, A. HySS2006, Version 4.0.21; Protonic Software: Leeds, UK, 2008.
- Bünzli, J.-C.G.; Choppin, G.R. Lanthanide Probes in Life, Chemical and Earth Sciences: Theory and Practice; Elsevier Science B.V.: Amsterdam, The Netherlands, 1989; p. 427. [Google Scholar]
- Beitz, J.V. Similarities and Differences in Trivalent Lanthanide- and Actinide-Solution Absorption Spectra and Luminescence Studies. In Lanthanides/Actinides: Chemistry; Gschneidner, K.A., Jr., Eyring, L., Choppin, G.R., Lander, G.H., Eds.; Handbook on the Physics and Chemistry of Rare Earths; Elsevier Science B.V.: Amsterdam, The Netherlands, 1994; Volume 18, pp. 159–196. [Google Scholar]
- Horrocks, W.D., Jr.; Albin, M. Lanthanide Ion Luminescence in Coordination Chemistry and Biochemistry. In Progress in Inorganic Chemistry; Lippard, S.J., Ed.; John Wiley: Hoboken, NJ, USA, 1984; Volume 31, pp. 1–104. [Google Scholar]
- Binstead, R.A.; Zuberbühler, A.D.; Jung, B. SPECFIT—Global Analysis System, version 3.0.37; Spectrum Software Associates: Marlborough, MA, USA, 2005. [Google Scholar]
- Andersson, C.A.; Bro, R. The N-way Toolbox for MATLAB. Chemom. Intell. Lab. Syst. 2000, 52, 1–4. [Google Scholar] [CrossRef]
- Drobot, B.; Steudtner, R.; Raff, J.; Geipel, G.; Brendler, V.; Tsushima, S. Combining luminescence spectroscopy, parallel factor analysis and quantum chemistry to reveal metal speciation—A case study of uranyl(VI) hydrolysis. Chem. Sci. 2015, 6, 964–972. [Google Scholar] [CrossRef] [PubMed]
- Barkleit, A.; Kretzschmar, J.; Tsushimaa, S.; Acker, M. Americium(III) and europium(III) complex formation with lactate at elevated temperatures studied by spectroscopy and quantum chemical calculations. Dalton Trans. 2014, 43, 11221–11232. [Google Scholar] [CrossRef] [PubMed]
- Stadler, J.; Vogel, M.; Steudtner, R.; Drobot, B.; Kogiomtzidis, A.L.; Weiss, M.; Walther, C. The chemical journey of Europium(III) through winter rye (Secale cereale L.)—Understanding through mass spectrometry and chemical microscopy. Chemosphere 2023, 313, 137252. [Google Scholar] [CrossRef] [PubMed]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16, revision B.01; Gaussian, Inc.: Wallingford, CT, USA, 2016.
- Dolg, M.; Stoll, H.; Savin, A.; Preuss, H. Energy-Adjusted Pseudpotentials for the Rare-Earth Elements. Theor. Chim. Acta 1989, 75, 173–194. [Google Scholar] [CrossRef]
- Krishnan, R.; Binkley, J.S.; Seeger, R.; Pople, J.A. Self-consistent molecular-orbital methods. XX. A basis set for correlated wave-functions. J. Chem. Phys. 1980, 72, 650–654. [Google Scholar] [CrossRef]
- Barkleit, A.; Tsushima, S.; Savchuk, O.; Philipp, J.; Heim, K.; Acker, M.; Taut, S.; Fahmy, K. Eu(3+)-Mediated Polymerization of Benzenetetracarboxylic Acid Studied by Spectroscopy, Temperature-Dependent Calorimetry, and Density Functional Theory. Inorg. Chem. 2011, 50, 5451–5459. [Google Scholar] [CrossRef]
- Harris, R.K.; Merwin, L.H.; Hagele, G. Salts of phosphonic acid-derivatives—Illustrative examples of solid-state NMR-spectroscopy. Z. Naturforsch. B J. Chem. Sci. 1989, 44, 1407–1413. [Google Scholar] [CrossRef]
- Harris, R.K.; Merwin, L.H.; Hagele, G. Solid-state nuclear magnetic-resonance study of a series of phosphonic and phosphinic acids. J. Chem. Soc.-Faraday Trans. I 1989, 85, 1409–1423. [Google Scholar] [CrossRef]
- Hagele, G. Protolysis and Complex Formation of Organophosphorus Compounds-Characterization by NMR-Controlled Titrations. Molecules 2019, 24, 3238. [Google Scholar] [CrossRef] [PubMed]
- Hagele, G.; Szakacs, Z.; Ollig, J.; Hermens, S.; Pfaff, C. NMR-controlled titrations: Characterizing aminophosphonates and related structures. Heteroat. Chem. 2000, 11, 562–582. [Google Scholar] [CrossRef]
- Nash, K.L. Stability and Stoichiometry of Uranyl Phosphonate Coordination Compunds in Acidic Aqueous Solutions. Radiochim. Acta 1993, 61, 147–154. [Google Scholar] [CrossRef]
- Lee, J.H.; Byrne, R.H. Examination of comparative rare earth element complexation behavior using linear free-energy relationships. Geochim. Cosmochim. Acta 1992, 56, 1127–1137. [Google Scholar] [CrossRef]
- Millero, F.J. Stability-constants for the formation of rare-earth inorganic complexes as a function of ionic-strength. Geochim. Cosmochim. Acta 1992, 56, 3123–3132. [Google Scholar] [CrossRef]
- Moeller, T. Observations on the rare earths. LV. Hydrolysis studies upon yttrium and certain rare earth(III) sulfate solutions at 25 °C. J. Phys. Chem. 1946, 50, 242–250. [Google Scholar] [CrossRef]
- Schmidt, K.H.; Sullivan, J.C.; Gordon, S.; Thompson, R.C. Determination of hydrolysis constants of metal-cations by a transient conductivity method. Inorg. Nucl. Chem. Lett. 1978, 14, 429–434. [Google Scholar] [CrossRef]
- Mohapatra, P.K.; Khopkar, P.K. Hydrolysis of actinides and lanthanides—Hydrolysis of some trivalent actinide and lanthanide ions studied by extraction with thenoyltrifluoroacetone. Polyhedron 1989, 8, 2071–2076. [Google Scholar] [CrossRef]
- Jimenez-Reyes, M.; Solache-Rios, M.; Rojas-Hernandez, A. Application of the specific ion interaction theory to the solubility product and first hydrolysis constant of europium. J. Solut. Chem. 2006, 35, 201–214. [Google Scholar] [CrossRef]
- Jimenez-Reyes, M.; Solacherios, M. The 1st hydrolysis constant of EU(III) in 4 M ionic-strength at 303-K. Radiochim. Acta 1994, 64, 201–203. [Google Scholar] [CrossRef]
- Ramirez-Garcia, J.J.; Jimenez-Reyes, M.; Solache-Rios, M.; Fernandez-Ramirez, E.; Lopez-Gonzalez, H.; Rojas-Hernandez, A. Solubility and first hidrolysis constants of europium at different ionic strength and 303 K. J. Radioanal. Nucl. Chem. 2003, 257, 299–303. [Google Scholar] [CrossRef]
- Bentouhami, E.; Bouet, G.M.; Meullemeestre, J.; Vierling, F.; Khan, M.A. Physicochemical study of the hydrolysis of Rare-Earth elements (III) and thorium (IV). Compt. Rendus Chem. 2004, 7, 537–545. [Google Scholar] [CrossRef]
- Nair, G.M.; Chander, K.; Joshi, J.K. hydrolysis constants of plutonium(III) and americium(III). Radiochim. Acta 1982, 30, 37–40. [Google Scholar] [CrossRef]
- Bilal, B.A.; Koss, V. Complex-formation of trace-elements in geochemical systems—5. Study on the distribution of hydroxo complexes of rare-earth elements. J. Inorg. Nucl. Chem. 1981, 43, 3393–3394. [Google Scholar] [CrossRef]
- Chirkst, D.E.; Lobacheva, O.L.; Berlinskii, I.V.; Sulimova, M.I. The thermodynamic properties of hydroxo compounds and the mechanism of ion flotation for cerium, europium, and yttrium. Russ. J. Phys. Chem. A 2009, 83, 2022–2027. [Google Scholar] [CrossRef]
Site | pKa ± SD (I = 0.1 M NaCl) | pKa0 (I → 0) 1 |
---|---|---|
-PO3H2 | 1.36 ± 0.35 | 1.57 |
-PO3H2 | 2.46 ± 0.19 | 2.89 |
-PO3H− | 6.93 ± 0.14 | 7.57 |
-PO3H− | 11.12 ± 0.09 | 11.98 |
-OH | >14 | >15 |
Equation | Eu:H:L | log K0 | log β0 | Literature Data |
---|---|---|---|---|
Eu3+ + H2L2− ⇌ EuH2L+ | 1:2:1 | 5.6 ± 0.4 | – | 5.81 ± 0.05 [19] 1 4.6 ± 0.2 (I = 2 M) [23] 2 5.62 ± 0.07 (Nd(III)) [20] 1 |
Eu3+ + 2 H2L2−⇌ EuH4L2− | 1:4:2 | 10.5 ± 0.2 | – | – |
Eu3+ + HL3− ⇌ EuHL0s | 1:1:1 | 15.2 ± 0.2 | – | 6.4 ± 0.2 (I = 2 M) [23] 2 |
Eu3+ + L4− ⇌ EuL− | 1:0:1 | 13.8 ± 0.2 | 13.8 ± 0.2 | – |
Eu3+ + L4− + H+ ⇌ EuHL0s | 1:1:1 | – | 27.2 ± 0.2 | 19.9 (I = 2 M) [22] |
Eu3+ + 2 L4− + 4 H+ ⇌ EuH4L2− | 1:4:2 | – | 49.6 ± 0.2 | – |
Eu3+ + L4− + 2 H+ ⇌ EuH2L+ | 1:2:1 | – | 25.2 ± 0.4 | – |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Heller, A.; Senwitz, C.; Foerstendorf, H.; Tsushima, S.; Holtmann, L.; Drobot, B.; Kretzschmar, J. Europium(III) Meets Etidronic Acid (HEDP): A Coordination Study Combining Spectroscopic, Spectrometric, and Quantum Chemical Methods. Molecules 2023, 28, 4469. https://doi.org/10.3390/molecules28114469
Heller A, Senwitz C, Foerstendorf H, Tsushima S, Holtmann L, Drobot B, Kretzschmar J. Europium(III) Meets Etidronic Acid (HEDP): A Coordination Study Combining Spectroscopic, Spectrometric, and Quantum Chemical Methods. Molecules. 2023; 28(11):4469. https://doi.org/10.3390/molecules28114469
Chicago/Turabian StyleHeller, Anne, Christian Senwitz, Harald Foerstendorf, Satoru Tsushima, Linus Holtmann, Björn Drobot, and Jerome Kretzschmar. 2023. "Europium(III) Meets Etidronic Acid (HEDP): A Coordination Study Combining Spectroscopic, Spectrometric, and Quantum Chemical Methods" Molecules 28, no. 11: 4469. https://doi.org/10.3390/molecules28114469
APA StyleHeller, A., Senwitz, C., Foerstendorf, H., Tsushima, S., Holtmann, L., Drobot, B., & Kretzschmar, J. (2023). Europium(III) Meets Etidronic Acid (HEDP): A Coordination Study Combining Spectroscopic, Spectrometric, and Quantum Chemical Methods. Molecules, 28(11), 4469. https://doi.org/10.3390/molecules28114469