How Accurate Can Crystal Structure Predictions Be for High-Energy Molecular Crystals?
Abstract
:1. Introduction
2. Methods
2.1. Molecular Crystal Structure Generation and Analysis with USPEX
2.2. Ab Initio Variable-Cell Optimizations
2.2.1. Quantum Espresso
2.2.2. CP2K
3. The β-HMX Test Case
3.1. Importance of the Good First Guess
3.2. Rotational Mutation and Soft Mutation as the Most Relevant Evolutions
3.3. Neutral vs. β-Conformation of the Input Molecule
4. Handling More Molecules and (Re)Discovering α-RDX
5. The Shallow Conformational Differences and Hindered Evolutions of CL-20
6. The Case of Small but Not Easier FOX-7
7. Can We Afford Faster Methods Than DFT-D?
7.1. Semi-Empirical GFN1-xTB
7.2. How about a Hybrid xTB/DFT-D Approach?
8. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Reilly, A.M.; Cooper, R.I.; Adjiman, C.S.; Bhattacharya, S.; Boese, A.D.; Brandenburg, J.G.; Bygrave, P.J.; Bylsma, R.; Campbell, J.E.; Car, R.; et al. Report on the Sixth Blind Test of Organic Crystal Structure Prediction Methods. Acta Crystallogr. Sect. B Struct. Sci. Cryst. Eng. Mater. 2016, 72, 439–459. [Google Scholar] [CrossRef]
- Zhu, Q.; Oganov, A.R.; Glass, C.W.; Stokes, H.T. Constrained Evolutionary Algorithm for Structure Prediction of Molecular Crystals: Methodology and Applications. Acta Crystallogr. B 2012, 68, 215–226. [Google Scholar] [CrossRef]
- LeBlanc, L.M.; Otero-de-la-Roza, A.; Johnson, E.R. Composite and Low-Cost Approaches for Molecular Crystal Structure Prediction. J. Chem. Theory Comput. 2018, 14, 2265–2276. [Google Scholar] [CrossRef]
- Case, D.H.; Campbell, J.E.; Bygrave, P.J.; Day, G.M. Convergence Properties of Crystal Structure Prediction by Quasi-Random Sampling. J. Chem. Theory Comput. 2016, 12, 910–924. [Google Scholar] [CrossRef] [PubMed]
- Nikhar, R.; Szalewicz, K. Reliable Crystal Structure Predictions from First Principles. Nat. Commun. 2022, 13, 3095. [Google Scholar] [CrossRef]
- Hoja, J.; Ko, H.-Y.; Neumann, M.A.; Car, R.; DiStasio, R.A.; Tkatchenko, A. Reliable and Practical Computational Description of Molecular Crystal Polymorphs. Sci. Adv. 2019, 5, eaau3338. [Google Scholar] [CrossRef]
- Vasileiadis, M.; Pantelides, C.C.; Adjiman, C.S. Prediction of the Crystal Structures of Axitinib, a Polymorphic Pharmaceutical Molecule. Chem. Eng. Sci. 2015, 121, 60–76. [Google Scholar] [CrossRef]
- Wang, C.; Ni, Y.; Zhang, C.; Xue, X. Crystal Structure Prediction of 2,4,6,8,10,12-Hexanitro-2,4,6,8,10,12-Hexaazaisowurtzitane (CL-20) by a Tailor-Made OPLS-AA Force Field. Cryst. Growth Des. 2021, 21, 3037–3046. [Google Scholar] [CrossRef]
- Pakhnova, M.; Kruglov, I.; Yanilkin, A.; Oganov, A.R. Search for Stable Cocrystals of Energetic Materials Using the Evolutionary Algorithm USPEX. Phys. Chem. Chem. Phys. 2020, 22, 16822–16830. [Google Scholar] [CrossRef]
- Egorova, O.; Hafizi, R.; Woods, D.C.; Day, G.M. Multifidelity Statistical Machine Learning for Molecular Crystal Structure Prediction. J. Phys. Chem. A 2020, 124, 8065–8078. [Google Scholar] [CrossRef]
- Han, Y.; Ali, I.; Wang, Z.; Cai, J.; Wu, S.; Tang, J.; Zhang, L.; Ren, J.; Xiao, R.; Lu, Q.; et al. Machine Learning Accelerates Quantum Mechanics Predictions of Molecular Crystals. Phys. Rep. 2021, 934, 1–71. [Google Scholar] [CrossRef]
- Bolton, O.; Simke, L.R.; Pagoria, P.F.; Matzger, A.J. High Power Explosive with Good Sensitivity: A 2:1 Cocrystal of CL-20:HMX. Cryst. Growth Des. 2012, 12, 4311–4314. [Google Scholar] [CrossRef]
- Bidault, X.; Chaudhuri, S. Improved Predictions of Thermomechanical Properties of Molecular Crystals from Energy and Dispersion Corrected DFT. J. Chem. Phys. 2021, 154, 164105. [Google Scholar] [CrossRef]
- Bidault, X.; Chaudhuri, S. Can a Shock-Induced Phonon up-Pumping Model Relate to Impact Sensitivity of Molecular Crystals, Polymorphs and Cocrystals? RSC Adv. 2022, 12, 31282–31292. [Google Scholar] [CrossRef] [PubMed]
- Glass, C.W.; Oganov, A.R.; Hansen, N. USPEX—Evolutionary Crystal Structure Prediction. Comput. Phys. Commun. 2006, 175, 713–720. [Google Scholar] [CrossRef]
- Hanwell, M.D.; Curtis, D.E.; Lonie, D.C.; Vandermeersch, T.; Zurek, E.; Hutchison, G.R. Avogadro: An Advanced Semantic Chemical Editor, Visualization, and Analysis Platform. J. Cheminformatics 2012, 4, 17. [Google Scholar] [CrossRef]
- Bond, A.D. Automated Derivation of Structural Class Symbols and Extended Z ′ Descriptors for Molecular Crystal Structures in the Cambridge Structural Database. CrystEngComm 2008, 10, 411–415. [Google Scholar] [CrossRef]
- Hajinazar, S.; Thorn, A.; Sandoval, E.D.; Kharabadze, S.; Kolmogorov, A.N. MAISE: Construction of Neural Network Interatomic Models and Evolutionary Structure Optimization. Comput. Phys. Commun. 2021, 259, 107679. [Google Scholar] [CrossRef]
- Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G.L.; Cococcioni, M.; Dabo, I.; et al. QUANTUM ESPRESSO: A Modular and Open-Source Software Project for Quantum Simulations of Materials. J. Phys. Condens. Matter 2009, 21, 395502. [Google Scholar] [CrossRef] [PubMed]
- Kühne, T.D.; Iannuzzi, M.; Del Ben, M.; Rybkin, V.V.; Seewald, P.; Stein, F.; Laino, T.; Khaliullin, R.Z.; Schütt, O.; Schiffmann, F.; et al. CP2K: An Electronic Structure and Molecular Dynamics Software Package—Quickstep: Efficient and Accurate Electronic Structure Calculations. J. Chem. Phys. 2020, 152, 194103. [Google Scholar] [CrossRef]
- Grimme, S.; Bannwarth, C.; Shushkov, P. A Robust and Accurate Tight-Binding Quantum Chemical Method for Structures, Vibrational Frequencies, and Noncovalent Interactions of Large Molecular Systems Parametrized for All Spd-Block Elements (Z = 1–86). J. Chem. Theory Comput. 2017, 13, 1989–2009. [Google Scholar] [CrossRef]
- Pujari, N.; Saundh, S.L.; Acquah, F.A.; Mooers, B.H.M.; Ferré-D’Amaré, A.R.; Leung, A.K.-W. Engineering Crystal Packing in RNA Structures I: Past and Future Strategies for Engineering RNA Packing in Crystals. Crystals 2021, 11, 952. [Google Scholar] [CrossRef]
- Hidalgo, A.Y.; Velasco, M.; Sánchez-Lara, E.; Gómez-Rivera, A.; Vilchis-Reyes, M.A.; Alvarado, C.; Herrera-Ruiz, M.; López-Rodríguez, R.; Romero-Ceronio, N.; Lobato-García, C.E. Synthesis, Crystal Structures, and Molecular Properties of Three Nitro-Substituted Chalcones. Crystals 2021, 11, 1589. [Google Scholar] [CrossRef]
- Shawish, I.; Soliman, S.M.; Haukka, M.; Aldalbahi, A.; Barakat, A.; El-Faham, A. Synthesis, and Molecular Structure Investigations of a New s-Triazine Derivatives Incorporating Pyrazole/Piperidine/Aniline Moieties. Crystals 2021, 11, 1500. [Google Scholar] [CrossRef]
- Russell, T.P.; Miller, P.J.; Piermarini, G.J.; Block, S. Pressure/Temperature Phase Diagram of Hexanitrohexaazaisowurtzitane. J. Phys. Chem. 1993, 97, 1993–1997. [Google Scholar] [CrossRef]
- Bidault, X.; Chaudhuri, S. A Flexible-Molecule Force Field to Model and Study Hexanitrohexaazaisowurtzitane (CL-20)—Polymorphism under Extreme Conditions. RSC Adv. 2019, 9, 39649–39661. [Google Scholar] [CrossRef]
- Evers, J.; Klapötke, T.M.; Mayer, P.; Oehlinger, G.; Welch, J. α- and β-FOX-7, Polymorphs of a High Energy Density Material, Studied by X-ray Single Crystal and Powder Investigations in the Temperature Range from 200 to 423 K. Inorg. Chem. 2006, 45, 4996–5007. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Liu, Y.; Zybin, S.V.; Sun, H.; Goddard, W.A. ReaxFF-Lg: Correction of the ReaxFF Reactive Force Field for London Dispersion, with Applications to the Equations of State for Energetic Materials. J. Phys. Chem. A 2011, 115, 11016–11022. [Google Scholar] [CrossRef]
- Larentzos, J.P.; Rice, B.M.; Byrd, E.F.C.; Weingarten, N.S.; Lill, J.V. Parameterizing Complex Reactive Force Fields Using Multiple Objective Evolutionary Strategies (MOES). Part 1: ReaxFF Models for Cyclotrimethylene Trinitramine (RDX) and 1,1-Diamino-2,2-Dinitroethene (FOX-7). J. Chem. Theory Comput. 2015, 11, 381–391. [Google Scholar] [CrossRef] [PubMed]
- Yoo, P.; Sakano, M.; Desai, S.; Islam, M.M.; Liao, P.; Strachan, A. Neural Network Reactive Force Field for C, H, N, and O Systems. NPJ Comput. Mater. 2021, 7, 9. [Google Scholar] [CrossRef]
- Lindsey, R.; Pham, C.; Fried, L.; Goldman, N.; Bastea, S. ChIMES: A Machine-Learned Interatomic Model Targeting Improved Description of Condensed Phase Chemistry in Energetic Materials; OSTI: Oak Ridge, TN, USA, 2020. [Google Scholar] [CrossRef]
Initial Vol. (Å3) | SG for Random | USPEX Evolutionary Parameters | β-HMX Found at Gen. # | |||||
---|---|---|---|---|---|---|---|---|
Heredity | Random from SG | Soft Mut. | Rotation | Lattice Mut. | ||||
QE | ||||||||
1a | 432 (def.) | 14 | 0.1 | 0.1 | 0.2 | 0.4 | 0.2 | 1 |
1b | 432 (def.) | Common | 0.1 | 0.1 | 0.2 | 0.4 | 0.2 | 2 |
2a | 570 | 14 | 0.1 | 0.1 | 0.2 | 0.4 | 0.2 | 6 |
2b | 570 | Common | 0.1 | 0.1 | 0.2 | 0.4 | 0.2 | 14 |
3a | 570 | 4 | 0.2 | 0 | 0.2 | 0.4 | 0.2 | 2 |
3b | 570 | 4 | 0.2 | 0 | 0.2 | 0.4 | 0.2 | 2 |
3c | 570 | 4 | 0.2 | 0 | 0.2 | 0.4 | 0.2 | 3 |
4a | 520 | 14 | 0.1 | 0.1 | 0.2 | 0.4 | 0.2 | 3 |
4b | 520 | Common | 0.1 | 0.1 | 0.2 | 0.4 | 0.2 | 5 |
5a | 520 flat | 14 | 0.1 | 0.1 | 0.2 | 0.4 | 0.2 | 9 |
5b | 520 flat | Common | 0.1 | 0.1 | 0.2 | 0.4 | 0.2 | 2 |
CP2K | ||||||||
6a | 520 | 14 | 0.1 | 0.1 | 0.2 | 0.4 | 0.2 | 1 |
6b | 520 | Common | 0.1 | 0.1 | 0.2 | 0.4 | 0.2 | 12 |
7 | 520 flat | Common | 0.1 | 0.1 | 0.2 | 0.4 | 0.2 | 2 |
xTB | ||||||||
8a | 432 flat | 14 | 0 | 0.4 | 0.2 | 0.4 | 0 | 6 |
8b | 432 flat | Common | 0 | 0.4 | 0.2 | 0.4 | 0 | 3 |
a (Å) | b (Å) | c (Å) | α (°) | β (°) | γ (°) | V (Å3) | Space Group | Etot (eV/atom) | |
---|---|---|---|---|---|---|---|---|---|
QE alone | 6.530 | 10.822 | 7.367 | 90.00 | 102.35 | 90.00 | 508.569 | 14 | −230.3176 |
USPEX + QE (4b) | 6.538 | 10.841 | 6.538 | 90.00 | 102.51 | 90.00 | 509.539 | 14 | −230.3176 |
CP2K alone | 6.545 | 10.919 | 7.335 | 90.00 | 102.80 | 90.00 | 511.105 | 14 | −251.6243 |
USPEX + CP2K (7) | 6.542 | 10.909 | 7.328 | 90.00 | 102.68 | 90.00 | 510.266 | 14 | −251.6243 |
xTB alone | 6.228 | 10.031 | 7.384 | 90.00 | 101.78 | 90.00 | 451.592 | 14 | −73.3768 |
USPEX + xTB (8b) | 6.228 | 10.028 | 7.386 | 90.00 | 101.78 | 90.00 | 451.636 | 14 | −73.3768 |
Initial Vol. (Å3) | SG for Random | USPEX Evolutionary Parameters | α-RDX Found at Gen. # | |||||
---|---|---|---|---|---|---|---|---|
Heredity | Random from SG | Soft Mut. | Rotation | Lattice Mut. | ||||
QE | ||||||||
1a | 1298 (def.) | 61 | 0.1 | 0.1 | 0.2 | 0.4 | 0.2 | 1 |
1b | 1640 | 61 | 0.1 | 0.1 | 0.2 | 0.4 | 0.2 | 1 |
2a | 1298 (def.) | Common | 0.1 | 0.1 | 0.2 | 0.4 | 0.2 | 3 |
2b | 1640 | Common | 0.1 | 0.1 | 0.2 | 0.4 | 0.2 | 1 |
3 | 1640 flat | Common | 0.1 | 0.1 | 0.2 | 0.4 | 0.2 | 4 |
CP2K | ||||||||
4 | 1640 | Common | 0.1 | 0.1 | 0.2 | 0.4 | 0.2 | 2 |
5 | 1640 flat | Common | 0.1 | 0.1 | 0.2 | 0.4 | 0.2 | 3 |
xTB | ||||||||
6a | 1298 flat | 61 | 0 | 0.4 | 0.2 | 0.4 | 0 | 1 |
6b | 1298 flat | Common | 0 | 0.4 | 0.2 | 0.4 | 0 | 2 |
A (Å) | b (Å) | c (Å) | α (°) | β (°) | γ (°) | V (Å3) | Space Group | Etot (eV/atom) | |
---|---|---|---|---|---|---|---|---|---|
QE alone | 13.232 | 11.396 | 10.698 | 90.00 | 90.00 | 90.00 | 1613.172 | 61 | −230.3134 |
USPEX + QE (3) | 13.246 | 11.396 | 10.689 | 89.96 | 90.09 | 89.87 | 1613.413 | 61 | −230.3132 |
CP2K alone | 13.251 | 11.434 | 10.723 | 90.00 | 90.00 | 90.00 | 1624.791 | 61 | −251.6209 |
USPEX + CP2K (5) | 13.248 | 11.427 | 10.728 | 90.00 | 90.00 | 90.00 | 1624.087 | 61 | −251.6209 |
xTB alone | 12.850 | 10.767 | 10.205 | 90.00 | 90.00 | 90.00 | 1411.888 | 61 | −73.3771 |
USPEX + xTB (6b) | 12.847 | 10.683 | 10.130 | 90.00 | 90.00 | 90.00 | 1390.382 | 61 | −73.3779 |
CL-20 | Exp. Amb. Conditions | QE PP | QE PP | CP2K PP | CP2K PP | CP2K AE | CP2K AE |
---|---|---|---|---|---|---|---|
GBRV 1.5 D2 50 Ry | PSlib 1.0.0 D2 90 Ry | GTH- mDZVP-SR D2 600 Ry | GTH- mDZVP D2 600 Ry | DZVP D3(BJ) 600 Ry | 6-311G** D3(BJ) 600 Ry | ||
E (meV/atom) | |||||||
ε | 0 | 0 | 0 | 0 | 0 | 0 | |
γ | +0.19 | +0.20 | −0.05 | −0.15 | +0.78 | +2.01 | |
β | +0.90 | +0.97 | +0.66 | +0.70 | +1.13 | +1.97 | |
V (Å3) | |||||||
ε | 1424.146 | 1433.032 | 1457.523 | 1448.528 | 1460.138 | 1442.687 | 1407.928 |
γ | 1518.886 | 1521.047 | 1543.233 | 1533.996 | 1544.774 | 1533.098 | 1492.080 |
β | 1465.981 | 1460.221 | 1485.979 | 1475.071 | 1487.424 | 1472.267 | 1440.647 |
CxC | |||||||
β vs. ε | 0.720 | ||||||
γ vs. ε | 0.728 | ||||||
β vs. γ | 0.737 |
Initial Vol. (Å3) | SG for Random | USPEX Evolutionary Parameters | ε-CL20 Found at Gen. # | |||||
---|---|---|---|---|---|---|---|---|
Heredity | Random from SG | Soft Mut. | Rotation | Lattice Mut. | ||||
QE | ||||||||
1 | 1179 (def.) neutral | 14 | 0 | 0.4 | 0.2 | 0.4 | 0 | 15 |
2a | 1420 neutral | 14 | 0 | 0.4 | 0.2 | 0.4 | 0 | 2 |
2b | 1420 neutral | Common | 0 | 0.4 | 0.2 | 0.4 | 0 | - |
3 | 1420 neutral | 19 | 0.25 | 0 | 0.25 | 0.25 | 0.25 | - |
CP2K | ||||||||
4a (PP) | 1420 neutral | 14 | 0 | 0.4 | 0.2 | 0.4 | 0 | 8 |
4b (PP) | 1420 neutral | Common | 0 | 0.4 | 0.2 | 0.4 | 0 | - |
5 (PP) | 1420 neutral | 19 | 0.25 | 0 | 0.25 | 0.25 | 0.25 | - |
6 (PP) | 1420 neutral | 14, 19 | 0 | 0.4 | 0.2 | 0.4 | 0 | - |
7a (AE) | 1420 neutral | 14 | 0 | 0.4 | 0.2 | 0.4 | 0 | 1 |
7b (AE) | 1420 neutral | Common | 0 | 0.4 | 0.2 | 0.4 | 0 | - |
8 (AE) | 1420 neutral | 14, 19 | 0 | 0.4 | 0.2 | 0.4 | 0 | - |
xTB | ||||||||
10a | 1179 neutral | 14 | 0 | 0.4 | 0.2 | 0.4 | 0 | - |
10b | 1179 neutral | Common | 0 | 0.4 | 0.2 | 0.4 | 0 | - |
(A) QE + GBRV PP | |||||||||
CL-20 | a (Å) | b (Å) | c (Å) | α (°) | β (°) | γ (°) | V (Å3) | Space group | Etot (meV/atom) |
QE alone | |||||||||
ε | 8.896 | 12.562 | 13.353 | 90.00 | 106.20 | 90.00 | 1433.032 | 14 | 0 |
γ | 13.192 | 8.253 | 14.757 | 90.00 | 108.79 | 90.00 | 1521.047 | 14 | +0.19 |
β | 9.626 | 13.184 | 11.506 | 90.00 | 90.00 | 90.00 | 1460.221 | 29 | +0.90 |
USPEX + QE | |||||||||
(2a) | 8.898 | 12.555 | 13.346 | 89.87 | 106.18 | 90.03 | 1431.964 | 14 | +0.05 |
(2b) | 8.852 | 12.650 | 13.082 | 90.00 | 90.00 | 90.00 | 1464.865 | 19 | +0.92 |
(B) CP2K + hybrid GTH-mDZVP-SR | |||||||||
a (Å) | b (Å) | c (Å) | α (°) | β (°) | γ (°) | V (Å3) | Space group | Etot (meV/atom) | |
CP2K alone | |||||||||
ε | 8.925 | 12.622 | 13.398 | 90.00 | 106.297 | 90.00 | 1448.528 | 14 | 0 |
γ | 13.190 | 8.300 | 14.816 | 90.00 | 108.947 | 90.00 | 1533.996 | 14 | −0.05 |
β | 9.642 | 13.255 | 11.541 | 90.00 | 90.00 | 90.00 | 1475.071 | 29 | +0.66 |
USPEX + CP2K | |||||||||
(4a) | 8.921 | 12.614 | 13.387 | 90.00 | 106.21 | 90.07 | 1446.614 | 14 | −0.03 |
(4b) | 8.894 | 12.639 | 13.137 | 90.00 | 90.00 | 90.00 | 1476.769 | 19 | +0.87 |
(6) | 13.247 | 8.813 | 13.020 | 90.00 | 91.20 | 90.00 | 1519.752 | 7 | +0.09 |
(C) CP2K + AE 6-311G** | |||||||||
a (Å) | b (Å) | c (Å) | α (°) | β (°) | γ (°) | V (Å3) | Space group | Etot (meV/atom) | |
CP2K alone | |||||||||
ε | 8.799 | 12.495 | 13.366 | 90.00 | 106.647 | 90.00 | 1407.928 | 14 | 0 |
γ | 13.049 | 8.180 | 14.755 | 90.00 | 108.665 | 90.00 | 1492.080 | 14 | +2.01 |
β | 9.678 | 13.082 | 11.379 | 90.00 | 90.00 | 90.00 | 1440.647 | 29 | +1.97 |
USPEX + CP2K | |||||||||
(7a) | 8.800 | 12.489 | 13.368 | 90.00 | 106.622 | 90.00 | 1407.627 | 14 | −0.00 |
(8) | 8.781 | 12.450 | 13.053 | 90.00 | 90.00 | 90.00 | 1427.030 | 19 | +0.92 |
(D) CP2K + GFN1-xTB | |||||||||
a (Å) | b (Å) | c (Å) | α (°) | β (°) | γ (°) | V (Å3) | Space group | Etot (meV/atom) | |
xTB alone | |||||||||
ε | 8.602 | 11.872 | 12.797 | 90.00 | 105.919 | 90.00 | 1256.695 | 14 | 0 |
γ | 12.691 | 7.765 | 14.057 | 90.00 | 105.103 | 90.00 | 1337.267 | 14 | +2.19 |
β | 9.230 | 12.096 | 11.512 | 90.00 | 90.00 | 90.00 | 1285.266 | 29 | +4.59 |
USPEX + xTB | |||||||||
(10a&b) | 12.544 | 7.101 | 13.941 | 90.00 | 90.00 | 87.282 | 1240.368 | 14 | −6.11 |
FOX-7 | Exp. Amb. Conditions | QE | QE | CP2K | CP2K | CP2K | CP2K |
---|---|---|---|---|---|---|---|
GBRV 1.4 D2 50 Ry | PSlib 1.0.0 D2 90 Ry | GTH- mDZVP-SR D2 600 Ry | GTH- mDZVP D2 600 Ry | AE DZVP D3(BJ) 600 Ry | AE 6-311G** D3(BJ) 600 Ry | ||
E (meV/atom) | |||||||
α | 0 | 0 | 0 | 0 | 0 | 0 | |
β | −0.09 | +0.12 | +0.01 | −0.06 | +0.91 | +1.89 | |
V (Å3) | |||||||
α | 519.470 | 507.265 | 513.614 | 507.249 | 511.681 | 512.884 | 502.698 |
β | 538.943 | 514.987 | 520.842 | 516.439 | 520.505 | 522.947 | 511.591 |
CxC | |||||||
β vs. α | 0.496 |
Initial Vol. (Å3) | SG for Random | USPEX Evolutionary Parameters | x-FOX-7 Found at Gen. # | |||||
---|---|---|---|---|---|---|---|---|
Heredity | Random from SG | Soft Mut. | Rotation | Lattice Mut. | ||||
QE | ||||||||
1a | 520 flat | 14 | 0 | 0.4 | 0.2 | 0.4 | 0 | SG 33 at #7 |
1b | 520 flat | Common | 0 | 0.4 | 0.2 | 0.4 | 0 | β at #2 |
CP2K | ||||||||
2a | 520 flat | 14 | 0 | 0.4 | 0.2 | 0.4 | 0 | - |
2b | 520 flat | Common | 0 | 0.4 | 0.2 | 0.4 | 0 | β at #3 |
3a (AE) | 520 flat | 14 | 0 | 0.4 | 0.2 | 0.4 | 0 | α at #6 |
3b (AE) | 520 flat | 14 | 0 | 0.4 | 0.2 | 0.4 | 0 | SG 33 at #1 |
3c (AE) | 520 flat | Common | 0 | 0.4 | 0.2 | 0.4 | 0 | SG 33 at #3 |
3d (AE) | 520 flat | Common | 0 | 0.4 | 0.2 | 0.4 | 0 | α at #5 |
xTB | ||||||||
4a | 433 flat | 14 | 0 | 0.4 | 0.2 | 0.4 | 0 | - |
4b | 433 flat | Common | 0 | 0.4 | 0.2 | 0.4 | 0 | SG33 at #2 |
(A) QE + GBRV PP | |||||||||
CL-20 | a (Å) | b (Å) | c (Å) | α (°) | β (°) | γ (°) | V (Å3) | Space group | Etot (meV/atom) |
QE alone | |||||||||
α | 6.982 | 6.446 | 11.272 | 90.00 | 90.879 | 90.00 | 507.265 | 14 | 0 |
β | 7.006 | 6.321 | 11.629 | 90.00 | 90.00 | 90.00 | 514.987 | 19 | −0.09 |
USPEX + QE | |||||||||
(1a) | 6.576 | 7.001 | 11.194 | 90.00 | 90.00 | 89.70 | 516.020 | 33 | +0.05 |
(1b) | 7.008 | 6.313 | 11.629 | 90.00 | 90.00 | 90.00 | 514.477 | 19 | −0.07 |
(B) CP2K + hybrid GTH-mDZVP-SR | |||||||||
a (Å) | b (Å) | c (Å) | α (°) | β (°) | γ (°) | V (Å3) | Space group | Etot (meV/atom) | |
CP2K alone | |||||||||
α | 6.981 | 6.464 | 11.243 | 90.00 | 90.895 | 90.00 | 507.249 | 14 | 0 |
β | 7.004 | 6.345 | 11.622 | 90.00 | 90.00 | 90.00 | 516.439 | 19 | +0.01 |
USPEX + CP2K | |||||||||
(2a) | 6.973 | 6.863 | 12.189 | 90.00 | 90.00 | 60.60 | 508.181 | 14 | +1.62 |
(2b) | 7.004 | 6.345 | 11.628 | 90.00 | 90.00 | 90.00 | 516.445 | 19 | +0.01 |
(C) CP2K + AE 6-311G** | |||||||||
a (Å) | b (Å) | c (Å) | α (°) | β (°) | γ (°) | V (Å3) | Space group | Etot (meV/atom) | |
CP2K alone | |||||||||
α | 6.926 | 6.432 | 11.285 | 90.00 | 90.602 | 90.00 | 502.698 | 14 | 0 |
β | 6.957 | 6.307 | 11.658 | 90.00 | 90.00 | 90.00 | 511.591 | 19 | +1.89 |
USPEX + CP2K | |||||||||
(3a) | 6.925 | 6.434 | 11.274 | 90.10 | 90.598 | 90.30 | 502.328 | 14 α | +0.00 |
(3b) | 6.941 | 6.435 | 11.368 | 90.00 | 90.00 | 89.76 | 507.730 | 33 | +0.00 |
(3c) | 6.941 | 6.437 | 11.364 | 90.00 | 90.00 | 90.00 | 507.773 | 33 | +0.00 |
(3d) | 14 α | +0.00 | |||||||
(D) CP2K + GFN1-xTB | |||||||||
a (Å) | b (Å) | c (Å) | α (°) | β (°) | γ (°) | V (Å3) | Space group | Etot (meV/atom) | |
xTB alone | |||||||||
α | 6.962 | 5.865 | 11.188 | 90.00 | 89.546 | 90.00 | 456.824 | 14 | 0 |
β | 6.864 | 5.698 | 11.364 | 90.00 | 90.00 | 90.00 | 444.463 | 19 | −0.67 |
USPEX + xTB | |||||||||
(4a) | 6.281 | 6.102 | 11.783 | 90.00 | 91.73 | 89.97 | 451.367 | 14 * | −7.79 |
(4b) | 6.353 | 6.654 | 11.237 | 90.00 | 90.00 | 90.00 | 475.040 | 33 | −6.13 |
Times (CPU Hours) for 1 Generation Using USPEX and … | ||||
---|---|---|---|---|
QE | CP2K PP | CP2K AE | xTB | |
HMX | 900 | 600 | - | 110 * |
RDX | 5000 | 3300 | - | 180 * |
CL-20 | 7600 | 3400 | 23,400 * | 170 * |
FOX-7 | 1600 | 1500 * | 2900 * | 100 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bidault, X.; Chaudhuri, S. How Accurate Can Crystal Structure Predictions Be for High-Energy Molecular Crystals? Molecules 2023, 28, 4471. https://doi.org/10.3390/molecules28114471
Bidault X, Chaudhuri S. How Accurate Can Crystal Structure Predictions Be for High-Energy Molecular Crystals? Molecules. 2023; 28(11):4471. https://doi.org/10.3390/molecules28114471
Chicago/Turabian StyleBidault, Xavier, and Santanu Chaudhuri. 2023. "How Accurate Can Crystal Structure Predictions Be for High-Energy Molecular Crystals?" Molecules 28, no. 11: 4471. https://doi.org/10.3390/molecules28114471
APA StyleBidault, X., & Chaudhuri, S. (2023). How Accurate Can Crystal Structure Predictions Be for High-Energy Molecular Crystals? Molecules, 28(11), 4471. https://doi.org/10.3390/molecules28114471