Change in Lipofectamine Carrier as a Tool to Fine-Tune Immunostimulation of Nucleic Acid Nanoparticles
Abstract
:1. Introduction
2. Results
2.1. Assembly of NANPs and Formation of Lipoplexes
2.2. Monocytes Have Greater NANP Uptake Than Lymphocytes Regardless of Lipofectamine Carrier
2.3. RNA Fibers Delivered with LMM Carrier Decrease IFN Production in PBMCs
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. NANP Preparation
4.3. Characterization of NANPs
4.4. PBMC Isolation
4.5. Uptake of Alexa Fluor-488 NANPs in PBMCs
4.6. IFN Production of PBMCs after NANPs Treatment
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Halman, J.R.; Satterwhite, E.; Roark, B.; Chandler, M.; Viard, M.; Ivanina, A.; Bindewald, E.; Kasprzak, W.K.; Panigaj, M.; Bui, M.N.; et al. Functionally-interdependent shape-switching nanoparticles with controllable properties. Nucleic Acids Res. 2017, 45, 2210–2220. [Google Scholar] [CrossRef] [PubMed]
- Chandler, M.; Afonin, K.A. Smart-Responsive Nucleic Acid Nanoparticles (NANPs) with the Potential to Modulate Immune Behavior. Nanomaterials 2019, 9, 611. [Google Scholar] [CrossRef] [PubMed]
- Johnson, M.B.; Halman, J.R.; Miller, D.K.; Cooper, J.S.; Khisamutdinov, E.F.; Marriott, I.; Afonin, K.A. The immunorecognition, subcellular compartmentalization, and physicochemical properties of nucleic acid nanoparticles can be controlled by composition modification. Nucleic Acids Res. 2020, 48, 11785–11798. [Google Scholar] [CrossRef] [PubMed]
- Panigaj, M.; Skelly, E.; Beasock, D.; Marriott, I.; Johnson, M.B.; Salotti, J.; Afonin, K.A. Therapeutic immunomodulation by rationally designed nucleic acids and nucleic acid nanoparticles. Front. Immunol. 2023, 14, 1053550. [Google Scholar] [CrossRef] [PubMed]
- Hong, E.; Halman, J.R.; Shah, A.B.; Khisamutdinov, E.F.; Dobrovolskaia, M.A.; Afonin, K.A. Structure and Composition Define Immunorecognition of Nucleic Acid Nanoparticles. Nano Lett. 2018, 18, 4309–4321. [Google Scholar] [CrossRef] [PubMed]
- Hong, E.; Halman, J.R.; Shah, A.; Cedrone, E.; Truong, N.; Afonin, K.A.; Dobrovolskaia, M.A. Toll-Like Receptor-Mediated Recognition of Nucleic Acid Nanoparticles (NANPs) in Human Primary Blood Cells. Molecules 2019, 24, 1094. [Google Scholar] [CrossRef] [PubMed]
- Avila, Y.I.; Chandler, M.; Cedrone, E.; Newton, H.S.; Richardson, M.; Xu, J.; Clogston, J.D.; Liptrott, N.J.; Afonin, K.A.; Dobrovolskaia, M.A. Induction of Cytokines by Nucleic Acid Nanoparticles (NANPs) Depends on the Type of Delivery Carrier. Molecules 2021, 26, 652. [Google Scholar] [CrossRef] [PubMed]
- Bila, D.; Radwan, Y.; Dobrovolskaia, M.A.; Panigaj, M.; Afonin, K.A. The Recognition of and Reactions to Nucleic Acid Nanoparticles by Human Immune Cells. Molecules 2021, 26, 4231. [Google Scholar] [CrossRef] [PubMed]
- Nordmeier, S.; Ke, W.; Afonin, K.A.; Portnoy, V. Exosome mediated delivery of functional nucleic acid nanoparticles (NANPs). Nanomedicine 2020, 30, 102285. [Google Scholar] [CrossRef] [PubMed]
- Chu, Y.; Masoud, M.; Gebeyehu, G. Transfection Agents. International Patent WO2000027795A1, May 2000. Available online: https://patents.google.com/patent/WO2000027795A1/en (accessed on 1 March 2023).
- ThermoFisher Scientific. Lipofectamine™ 2000 Transfection Reagent. Available online: https://www.thermofisher.com/order/catalog/product/11668019 (accessed on 27 February 2023).
- ThermoFischer Scientific. Lipofectamine™ MessengerMAX™ Transfection Reagent. Available online: https://www.thermofisher.com/order/catalog/product/LMRNA001 (accessed on 27 February 2023).
- Du, R.R.; Cedrone, E.; Romanov, A.; Falkovich, R.; Dobrovolskaia, M.A.; Bathe, M. Innate Immune Stimulation Using 3D Wireframe DNA Origami. ACS Nano 2022, 16, 20340–20352. [Google Scholar] [CrossRef] [PubMed]
- Ke, W.; Hong, E.; Saito, R.F.; Rangel, M.C.; Wang, J.; Viard, M.; Richardson, M.; Khisamutdinov, E.F.; Panigaj, M.; Dokholyan, N.V.; et al. RNA-DNA fibers and polygons with controlled immunorecognition activate RNAi, FRET and transcriptional regulation of NF-kappaB in human cells. Nucleic Acids Res. 2019, 47, 1350–1361. [Google Scholar] [CrossRef] [PubMed]
- Shlyakhtenko, L.S.; Gall, A.A.; Filonov, A.; Cerovac, Z.; Lushnikov, A.; Lyubchenko, Y.L. Silatrane-based surface chemistry for immobilization of DNA, protein-DNA complexes and other biological materials. Ultramicroscopy 2003, 97, 279–287. [Google Scholar] [CrossRef] [PubMed]
- Potter, T.M.; Cedrone, E.; Neun, B.W.; Dobrovolskaia, M.A. NCL Method-10: Preparation of Human Whole Blood and Peripheral Blood Mononuclear Cell Cultures to Analyze Nanoparticle Potential to Induce Cytokines In Vitro. NCI Hub. 2020. [Google Scholar] [CrossRef]
- Cedrone, E.; Potter, T.M.; Neun, B.W.; Tyler, A.; Dobrovolskaia, M.A. NCL Method ITA-27: Multiplex Enzyme-Linked Immunosorbent Assay (ELISA) for Detection of Human Cytokines in Culture Supernatants. NCI Hub. 2020. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Newton, H.S.; Radwan, Y.; Xu, J.; Clogston, J.D.; Dobrovolskaia, M.A.; Afonin, K.A. Change in Lipofectamine Carrier as a Tool to Fine-Tune Immunostimulation of Nucleic Acid Nanoparticles. Molecules 2023, 28, 4484. https://doi.org/10.3390/molecules28114484
Newton HS, Radwan Y, Xu J, Clogston JD, Dobrovolskaia MA, Afonin KA. Change in Lipofectamine Carrier as a Tool to Fine-Tune Immunostimulation of Nucleic Acid Nanoparticles. Molecules. 2023; 28(11):4484. https://doi.org/10.3390/molecules28114484
Chicago/Turabian StyleNewton, Hannah S., Yasmine Radwan, Jie Xu, Jeffrey D. Clogston, Marina A. Dobrovolskaia, and Kirill A. Afonin. 2023. "Change in Lipofectamine Carrier as a Tool to Fine-Tune Immunostimulation of Nucleic Acid Nanoparticles" Molecules 28, no. 11: 4484. https://doi.org/10.3390/molecules28114484
APA StyleNewton, H. S., Radwan, Y., Xu, J., Clogston, J. D., Dobrovolskaia, M. A., & Afonin, K. A. (2023). Change in Lipofectamine Carrier as a Tool to Fine-Tune Immunostimulation of Nucleic Acid Nanoparticles. Molecules, 28(11), 4484. https://doi.org/10.3390/molecules28114484