In-Depth Study on the Effects of Impurity Ions in Saline Wastewater Electrolysis
Abstract
:1. Introduction
2. Results and Discussion
2.1. Effect of NaCl Concentration
2.2. Effect of K+
2.3. Effect of Ca2+ and Mg2+
2.4. Effect of SO42−
2.5. Electrochemical Analysis and Comparision of All Cases
3. Materials and Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Chen, T.; Bi, J.; Ji, Z.; Yuan, J.; Zhao, Y. Application of bipolar membrane electrodialysis for simultaneous recovery of high-value acid/alkali from saline wastewater: An in-depth review. Water Res. 2022, 226, 119274. [Google Scholar] [CrossRef] [PubMed]
- Cho, S.; Lim, J.; Cho, H.; Yoo, Y.; Kang, D.; Kim, J. Novel process design of desalination wastewater recovery for CO2 and SOx utilization. Chem. Eng. J. 2022, 433, 133602. [Google Scholar] [CrossRef]
- Yang, L.; Zhang, X.; Cao, C.; Huang, X.; Wan, L. Sustainable and efficient leaching of tungsten from scheelite using the mixture of ammonium phosphate, ammonia and calcium fluoride. Hydrometallurgy 2022, 210, 105846. [Google Scholar] [CrossRef]
- Li, J.L.; Li, G.H.; Ma, S.L.; Wang, H. Overview of the progress and development prospects of key technologies for hydrogen production under the goal of carbon neutrality. Therm. Power Gener. 2021, 50, 1–8. [Google Scholar]
- Chen, B.-K.; Wang, C.-K. Electrolyzed Water and Its Pharmacological Activities: A Mini-Review. Molecules 2022, 27, 1222. [Google Scholar] [CrossRef]
- Han, J.; Guan, J. Multicomponent transition metal oxides and (oxy)hydroxides for oxygen evolution. Nano Res. 2023, 16, 1913–1966. [Google Scholar] [CrossRef]
- López-Fernández, E.; Sacedón, C.G.; Gil-Rostra, J.; Yubero, F.; González-Elipe, A.R.; de Lucas-Consuegra, A. Recent Advances in Alkaline Exchange Membrane Water Electrolysis and Electrode Manufacturing. Molecules 2021, 26, 6326. [Google Scholar] [CrossRef]
- Vazquez-Gomez, L.; Ferro, S.; De Battisti, A. Preparation and characterization of RuO2-IrO2-SnO2 ternary mixtures for advanced electrochemical technology. Appl. Catal. B Environ. 2006, 67, 34–40. [Google Scholar] [CrossRef]
- Martínez-Huitle, C.A.; Rodrigo, M.A.; Sirés, I.; Scialdone, O. A critical review on latest innovations and future challenges of electrochemical technology for the abatement of organics in water. Appl. Catal. B Environ. 2023, 328, 122430. [Google Scholar] [CrossRef]
- Lü, X.; Shao, S.; Wu, J.; Zhao, Y.; Lu, B.; Li, J.; Liang, L.; Tian, L. Recovery of Acid and Alkaline from Industrial Saline Wastewater by Bipolar Membrane Electrodialysis under High-Chemical Oxygen Demand Concentration. Molecules 2022, 27, 7308. [Google Scholar] [CrossRef]
- Dionigi, F.; Reier, T.; Pawolek, Z.; Gliech, M.; Strasser, P.P. Design criteria, operating conditions, and nickel-iron hydroxide catalyst materials for selective seawater electrolysis. ChemSusChem 2016, 9, 962–972. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Herrero, I.; Margallo, M.; Onandía, R.; Aldaco, R.; Irabien, A. Life cycle assessment model for the chlor-alkali process: A comprehensive review of resources and available technologies. Sustain. Prod. Consum. 2017, 12, 44–58. [Google Scholar] [CrossRef] [Green Version]
- Ding, P.; Wu, P.; Jie, Z.; Cui, M.-H.; Liu, H. Damage of anodic biofilms by high salinity deteriorates pahs degradation in single-chamber microbial electrolysis cell reactor. Sci. Total Environ. 2021, 777, 145752. [Google Scholar] [CrossRef] [PubMed]
- Mahmud, N.; Alvarez, D.V.F.; Ibrahim, M.H.; El-Naas, M.H.; Esposito, D.V. Magnesium recovery from desalination reject brine as pretreatment for membraneless electrolysis. Desalination 2022, 525, 115489. [Google Scholar] [CrossRef]
- Díaz Nieto, C.H.; Palacios, N.A.; Verbeeck, K.; Prévoteau, A.; Rabaey, K.; Flexer, V. Membrane electrolysis for the removal of Mg2+ and Ca2+ from lithium rich brines. Water Res. 2019, 154, 117–124. [Google Scholar] [CrossRef]
- Amikam, G.; Nativ, P.; Gendel, Y. Chlorine-free alkaline seawater electrolysis for hydrogen production. Int. J. Hydrogen Energy 2018, 43, 6504–6514. [Google Scholar] [CrossRef]
- Fabbri, E.; Habereder, A.; Waltar, K.; Kötz, R.; Schmidt, T.J. Developments and perspectives of oxide-based catalysts for the oxygen evolution reaction. Catal. Sci. Technol. 2014, 4, 3800–3821. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Feng, J.L.; Xu, L. Study of electrolytic cell for hydrogen production based on electrolysis of water in different concentration solutions. Inorg Chem. 2013, 5, 142–146. [Google Scholar]
- Sun, J.; Li, J.; Li, Z.; Li, C.; Ren, G.; Zhang, Z.; Meng, X. Modulating the electronic structure on cobalt sites by compatible heterojunction fabrication for greatly improved overall water/seawater electrolysis. ACS Sustain. Chem. Eng. 2022, 10, 9980–9990. [Google Scholar] [CrossRef]
- Wang, X.Z.; Zhang, D.L.; Song, X.K.; Wang, L.; Zhang, Y.M. Study on resistance of chlor-alklai ion-exchange membrane to calcium and magnesium impurity. Chlor-Alkali Ind. 2017, 53, 21–25. [Google Scholar]
- Khajouei, G.; Park, H.I.; Finklea, H.O.; Ziemkiewicz, P.F.; Peltier, E.F.; Lin, L.S. Produced water softening using high-ph catholyte from brine electrolysis: Reducing chemical transportation and environmental footprints. J. Water Process Eng. 2021, 40, 101911. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, Q.; Wang, Y.; Yun, R.; Xiang, X. Recent advances in magnesium/lithium separation and lithium extraction technologies from salt lake brine. Sep. Purif. Technol. 2021, 256, 117807. [Google Scholar] [CrossRef]
- Buddhi, D.; Kothari, R.; Sawhney, R.L. An experimental study on the effect of electrolytic concentration on the rate of hydrogen production. Int. J. Green Energy 2006, 3, 381–395. [Google Scholar] [CrossRef]
- Lima, P.R.; Mirapalheta, A.; dos Santos Andrade, M.H.; Vilar, E.O.; e Silva, C.L.D.P.; Tonholo, J. Energy loss in electrochemical diaphragm process of chlorine and alkali industry—A collateral effect of the undesirable generation of chlorate. Energy 2010, 35, 2174–2178. [Google Scholar] [CrossRef]
- Wang, J.; Wang, X.; Dou, P.; Zhang, H.; Zhang, Y. Morphology and properties of perfluorosulfonic acid polymer/perfluorocarboxylic acid polymer blend membranes. Polym. Eng. Sci. 2015, 55, 180–189. [Google Scholar] [CrossRef]
- Lei, J.; Chen, X.; Liu, X.; Feng, W.; Zhang, J.; Li, H.; Zhang, Y. Under-brine superaerophobic perfluorinated ion exchange membrane with re-entrant superficial microstructures for high energy efficiency of nacl aqueous solution electrolysis. J. Membr. Sci. 2021, 619, 118801. [Google Scholar] [CrossRef]
- Liu, G.Z. Modern Chlor-Alkali Technical Manual; Chemical Industry Press: Beijing, China, 2018. [Google Scholar]
- Pan, X.-J.; Dou, Z.-H.; Zhang, T.-A.; Meng, D.-L.; Fan, Y.-Y. Separation of metal ions and resource utilization of magnesium from saline lake brine by membrane electrolysis. Sep. Purif. Technol. 2020, 251, 117316. [Google Scholar] [CrossRef]
- Lu, J.Z. Problems occurring in brine system running and solutions. Chlor-Alkali Ind. 2014, 50, 4–6. [Google Scholar]
- Chen, Y.; Zhang, J. Development of chlor-alkali industry and existing problems. Resour. Environ. 2020, 46, 157–158. [Google Scholar]
- Yuan, F.; Wu, S. Analysis on the development of chlor-alkali industry and existing problems. Chem. Manag. 2021, 19, 81–82. [Google Scholar]
- Choi, W.Y.; Aravena, C.; Park, J.; Kang, D.; Yoo, Y. Performance prediction and evaluation of CO2 utilization with conjoined electrolysis and carbonation using desalinated rejected seawater brine. Desalination 2021, 509, 115068. [Google Scholar] [CrossRef]
- Wei, W.; Xu, J.; Chen, W.; Mi, L.; Zhang, J. A review of sodium chloride-based electrolytes and materials for electrochemical energy technology. J. Mater. Chem. A 2022, 10, 2637–2671. [Google Scholar] [CrossRef]
- Safizadeh, F.; Ghali, E.; Houlachi, G. Electrocatalysis developments for hydrogen evolution reaction in alkaline solutions—A Review. Int. J. Hydrogen Energy 2015, 40, 256–274. [Google Scholar] [CrossRef]
- Wu, L.; Yu, L.; Zhang, F.; McElhenny, B.; Luo, D.; Karim, A.; Chen, S.; Ren, Z. Heterogeneous Bimetallic Phosphide Ni2P-Fe2P as an Efficient Bifunctional Catalyst for Water/Seawater Splitting. Adv. Funct. Mater. 2021, 31, 2006484. [Google Scholar] [CrossRef]
- Yu, L.; Wu, L.; McElhenny, B.; Song, S.; Luo, D.; Zhang, F.; Yu, Y.; Chen, S.; Ren, Z. Ultrafast room-temperature synthesis of porous S-doped Ni/Fe (oxy)hydroxide electrodes for oxygen evolution catalysis in seawater splitting. Energy Environ. Sci. 2020, 13, 3439–3446. [Google Scholar] [CrossRef]
- De Silva, Y.S.K.; Middleton, P.H.; Kolhe, M.L. Performance comparison of mono-polar and bi-polar configurations of alkaline electrolysis stack through 3-D modelling and experimental fabrication. Renew. Energy 2020, 149, 760–772. [Google Scholar] [CrossRef]
Group | Concentration of the Ions (mol/L) | |||||
---|---|---|---|---|---|---|
Na+ | K+ | Ca2+ | Mg2+ | Cl− | SO42− | |
Group 0 (Control group) | 4 | 0 | 0 | 0 | 0 | 0 |
Group 1 (Effect of K+) | 3.5 | 0.5 | 0 | 0 | 4 | 0 |
3 | 1 | |||||
2.5 | 1.5 | |||||
2 | 2 | |||||
Group 2 (Effect of Ca2+) | 3.99 | 0 | 0.005 | 0 | 4 | 0 |
3.98 | 0.01 | |||||
3.96 | 0.02 | |||||
3.9 | 0.05 | |||||
3.8 | 0.1 | |||||
Group 3 (Effect of Mg2+) | 3.95 | 0 | 0 | 0.01 | 4 | 0 |
3.9 | 0.05 | |||||
3.8 | 0.1 | |||||
3.7 | 0.15 | |||||
3.6 | 0.2 | |||||
Group 4 (Effect of SO42−) | 4 | 0 | 0 | 0 | 3.98 | 0.01 |
3.9 | 0.05 | |||||
3.8 | 0.1 | |||||
3.6 | 0.2 | |||||
3 | 0.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, Q.; Zhao, P.; Gao, L.; Liu, H.; Hu, H.; Dong, L. In-Depth Study on the Effects of Impurity Ions in Saline Wastewater Electrolysis. Molecules 2023, 28, 4576. https://doi.org/10.3390/molecules28124576
Pan Q, Zhao P, Gao L, Liu H, Hu H, Dong L. In-Depth Study on the Effects of Impurity Ions in Saline Wastewater Electrolysis. Molecules. 2023; 28(12):4576. https://doi.org/10.3390/molecules28124576
Chicago/Turabian StylePan, Qicheng, Peixuan Zhao, Linxia Gao, Huimin Liu, Hongyun Hu, and Lu Dong. 2023. "In-Depth Study on the Effects of Impurity Ions in Saline Wastewater Electrolysis" Molecules 28, no. 12: 4576. https://doi.org/10.3390/molecules28124576
APA StylePan, Q., Zhao, P., Gao, L., Liu, H., Hu, H., & Dong, L. (2023). In-Depth Study on the Effects of Impurity Ions in Saline Wastewater Electrolysis. Molecules, 28(12), 4576. https://doi.org/10.3390/molecules28124576