Computational Study of Photodegradation Process and Conversion Products of the Antidepressant Citalopram in Water
Abstract
:1. Introduction
2. Results and Discussion
2.1. CIT Optimized Geometry
2.2. Indirect Photodegradation of CIT via ·OH in Water
2.3. Indirect Photodegradation of CIT in Water via 1O2
2.4. Direct Photochemical Reaction of CIT in Water
3. Computational Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ledford, H. If Depression Were Cancer. Nature 2014, 515, 182–184. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.Y.; Bang, M.; Wee, J.H.; Min, C.; Yoo, D.M.; Han, S.-M.; Kim, S.; Choi, H.G. Short- and long-term exposure to air pollution and lack of sunlight are associated with an increased risk of depression: A nested case-control study using meteorological data and national sample cohort data. Sci. Total Environ. 2020, 757, 143960. [Google Scholar] [CrossRef] [PubMed]
- Himle, J.A.; Weaver, A.; Zhang, A.; Xiang, X. Digital mental health interventions for depression. Cogn. Behav. Pract. 2021, 29, 50–59. [Google Scholar] [CrossRef]
- Abbott, A. COVID’s mental-health toll: How scientists are tracking a surge in depression. Nature 2021, 590, 194–195. [Google Scholar] [CrossRef] [PubMed]
- Tsang, S.; Avery, A.R.; Duncan, G.E. Fear and depression linked to COVID-19 exposure A study of adult twins during the COVID-19 pandemic. Psychiatry Res. 2020, 296, 113699. [Google Scholar] [CrossRef] [PubMed]
- Servidio, R.; Bartolo, M.G.; Palermiti, A.L.; Costabile, A. Fear of COVID-19, depression, anxiety, and their association with Internet addiction disorder in a sample of Italian students. J. Affect. Disord. Rep. 2021, 4, 100097. [Google Scholar] [CrossRef]
- OECD. Health at a Glance 2019: OECD Indicators; OECD Publishing: Paris, France, 2019. [Google Scholar] [CrossRef]
- Yuan, S.; Jiang, X.; Xia, X.; Zhang, H.; Zheng, S. Detection, occurrence and fate of 22 psychiatric pharmaceuticals in psychiatric hospital and municipal wastewater treatment plants in Beijing, China. Chemosphere 2013, 90, 2520–2525. [Google Scholar] [CrossRef]
- Metcalfe, C.D.; Chu, S.; Judt, C.; Li, H.; Oakes, K.D.; Servos, M.R.; Andrews, D.M. Antidepressants and their metabolites in municipal wastewater, and downstream exposure in an urban watershed. Environ. Toxicol. Chem. 2009, 29, 79–89. [Google Scholar] [CrossRef]
- Lajeunesse, A.; Gagnon, C.; Sauvé, S. Determination of Basic Antidepressants and Their N-Desmethyl Metabolites in Raw Sewage and Wastewater Using Solid-Phase Extraction and Liquid Chromatography−Tandem Mass Spectrometry. Anal. Chem. 2008, 80, 5325–5333. [Google Scholar] [CrossRef]
- Himmelbach, M.; Buchberger, W.; Klampfi, C.W. Determination of antidepresents in surface and wastewater samples by ca-pillary electrophoresis with electrospry ionization mass spectrometric detection after preconcentration using off-line solid-phase extraction. Electrophoreses. 2006, 27, 1220–1226. [Google Scholar] [CrossRef]
- Schultz, M.M.; Furlong, E.T. Trace Analysis of Antidepressant Pharmaceuticals and Their Select Degradates in Aquatic Matrixes by LC/ESI/MS/MS. Anal. Chem. 2008, 80, 1756–1762. [Google Scholar] [CrossRef] [PubMed]
- Vasskog, T.; Anderssen, T.; Pedersen-Bjergaard, S.; Kallenborn, R.; Jensen, E. Occurrence of selective serotonin reuptake in-hibitors in sewage and receiving waters at Spitsbergen and in Norway. J. Chromatogr. A. 2008, 1185, 194–205. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Qu, R.; Pan, X.; Wang, Z. Oxidative degradation of triclosan by potassium permanganate: Kinetics, degradation products, reaction mechanism, and toxicity evaluation. Water Res. 2016, 103, 215–223. [Google Scholar] [CrossRef] [PubMed]
- Hörsing, M.; Ledin, A.; Grabic, R.; Fick, J.; Tysklind, M.; la Cour Jansen, J.; Andersen, H.R. Determination of sorption of sev-enty-five pharmaceuticals in sewage sludge. Water Res. 2011, 45, 4470–4482. [Google Scholar] [CrossRef] [Green Version]
- Richards, S.M.; Cole, S.E. A toxicity and hazard assessment of fourteen pharmaceuticals to Xenopus laevis larvae. Ecotoxicology 2006, 15, 647–656. [Google Scholar] [CrossRef]
- Chiffre, A.; Clérandeau, C.; Dwoinikoff, C.; Le Bihanic, F.; Budzinski, H.; Geret, F.; Cachot, J. Psychotropic drugs in mixture alter swimming behaviour of Japanese medaka (Oryzias latipes) larvae above environmental concentrations. Environ. Sci. Pollut. Res. 2014, 23, 4964–4977. [Google Scholar] [CrossRef]
- Fong, P.P.; Hoy, C.M. Antidepressants (venlafaxine and citalopram) cause foot detachment from the substrate in freshwater snails at environmentally relevant concentrations. Mar. Freshw. Behav. Physiol. 2012, 45, 145–153. [Google Scholar] [CrossRef]
- Kwon, J.-W.; Armbrust, K.L. Laboratory Persistence and Fate of Fluoxetine in Aquatic Environments. Environ. Toxicol. Chem. 2006, 25, 2561–2568. [Google Scholar] [CrossRef]
- Lam, M.W.; Young, C.J.; Mabury, S.A. Aqueous Photochemical Reaction Kinetics and Transformations of Fluoxetine. Environ. Sci. Technol. 2004, 39, 513–522. [Google Scholar] [CrossRef]
- Edhlund, B.L.; Arnold, W.A.; McNeill, K. Aquatic photochemistry of nitrofuran antibiotics. Environ. Sci. Technol. 2006, 40, 5422–5427. [Google Scholar] [CrossRef]
- Shah, S.; Hao, C. Density functional theory study of direct and indirect photodegradation mechanisms of sulfameter. Environ. Sci. Pollut. Res. 2016, 23, 19921–19930. [Google Scholar] [CrossRef]
- Tisler, S.; Zindler, F.; Freeling, F.; Nödler, K.; Toelgyesi, L.; Braunbeck, T.; Zwiener, C. Transformation Products of Fluoxetine Formed by Photodegradation in Water and Biodegradation in Zebrafish Embryos (Danio rerio). Environ. Sci. Technol. 2019, 53, 7400–7409. [Google Scholar] [CrossRef]
- Gornik, T.; Vozic, A.; Heath, E.; Trontelj, J.; Roskar, R.; Zigon, D.; Vione, D.; Kosjek, T. Determination and photodegradation of sertraline residues in aqueous environment. Environ. Pollut. 2019, 256, 113431. [Google Scholar] [CrossRef]
- Jakimska, A.; Śliwka Kaszyńska, M.; Nagórski, P.; Kot Wasik, A.; Namieśnik, J. Environmental fate of two psychiatric drugs, diazepam and sertraline: Phototransformation and investigation of their photoproducts in natural waters. J. Chromatogr. Sep. Tech. 2014, 5, 6. [Google Scholar] [CrossRef] [Green Version]
- Kwon, J.W.; Armbrust, K.L. Hydrolysis and photolysis of paroxetine, a selective serotonin reuptake inhibitor, in aqueous solutions. Environ. Toxicol. Chem. 2004, 23, 1394–1399. [Google Scholar] [CrossRef]
- Gornik, T.; Carena, L.; Kosjek, T.; Vione, D. Phototransformation study of the antidepressant paroxetine in surface waters. Sci. Total. Environ. 2021, 774, 145380. [Google Scholar] [CrossRef]
- Dong, M.M.; Rosario-Ortiz, F.L. Photochemical Formation of Hydroxyl Radical from Effluent Organic Matter. Environ. Sci. Technol. 2012, 46, 3788–3794. [Google Scholar] [CrossRef]
- Osawa, R.A.; Carvalho, A.P.; Monteiro, O.C.; Oliveira, M.C.; Florêncio, M.H. Transformation products of citalopram: Identification, wastewater analysis and in silico toxicological assessment. Chemosphere 2018, 217, 858–868. [Google Scholar] [CrossRef]
- Guo, Y.; Guo, Z.; Wang, J.; Ye, Z.; Zhang, L.; Niu, J. Photodegradation of three antidepressants in natural waters: Important roles of dissolved organic matter and nitrate. Sci. Total. Environ. 2021, 802, 149825. [Google Scholar] [CrossRef]
- Qu, R.; Liu, H.; Feng, M.; Yang, X.; Wang, Z. Investigation on Intramolecular Hydrogen Bond and Some Thermodynamic Properties of Polyhydroxylated Anthraquinones. J. Chem. Eng. Data. 2012, 57, 2442–2455. [Google Scholar] [CrossRef]
- Qu, R.; Liu, J.; Li, C.; Wang, L.; Wang, Z.; Wu, J. Experimental and theoretical insights into the photochemical decomposition of environmentally persistent perfluorocarboxylic acids. Water Res. 2016, 104, 34–43. [Google Scholar] [CrossRef] [PubMed]
- Qu, R.; Li, C.; Pan, X.; Zeng, X.; Liu, J.; Huang, Q.; Feng, J.; Wang, Z. Solid surface-mediated photochemical transformation of decabromodiphenyl ether (BDE-209) in aqueous solution. Water Res. 2017, 125, 114–122. [Google Scholar] [CrossRef] [PubMed]
- Qu, R.; Li, C.; Liu, J.; Xiao, R.; Pan, X.; Zeng, X.; Wang, Z.; Wu, J. Hydroxyl Radical Based Photocatalytic Degradation of Hal-ogenated Organic Contaminants and Paraffin on Silica Gel. Environ. Sci. Technol. 2018, 52, 7220–7229. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Qu, R.; Feng, M.; Wang, X.; Wang, L.; Yang, S.; Wang, Z. Oxidative Degradation of Decabromodiphenyl Ether (BDE 209) by Potassium Permanganate: Reaction Pathways, Kinetics, and Mechanisms Assisted by Density Functional Theory Calculations. Environ. Sci. Technol. 2015, 49, 4209–4217. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Song, X.; Hao, C.; Gao, Z.; Chen, J.; Qiu, J. Elucidating triplet-sensitized photolysis mechanisms of sulfadiazine and metal ions effects by quantum chemical calculations. Chemosphere 2015, 122, 62–69. [Google Scholar] [CrossRef]
- Xu, F.; Shi, X.; Zhang, Q.; Wang, W. Mechanism for the growth of polycyclic aromatic hydrocarbons from the reactions of naphthalene with cyclopentadienyl and indenyl. Chemosphere 2016, 162, 345–354. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09 Package; Gaussian, Inc.: Wallingford, CT, USA, 2009. [Google Scholar]
- Zeng, X.; Zhang, X.; Wang, Z. Theoretical study on the OH-initiated oxidation mechanism of polyfluorinated dibenzo-p-dioxins under the atmospheric conditions. Chemosphere. 2016, 144, 2036–2043. [Google Scholar] [CrossRef]
- Kohn, W.; Becke, A.D.; Parr, R.G. Density functional theory of electronic structure. J. Chem. Phys. 1996, 100, 12974–12980. [Google Scholar] [CrossRef] [Green Version]
- Becke, A.D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648–5652. [Google Scholar] [CrossRef] [Green Version]
- Burke, K.; Werschnik, J.; Gross, E. Time-dependent density functional theory: Past, present, and future. J. Chem. Phys. 2005, 123, 062206. [Google Scholar] [CrossRef] [Green Version]
- Zhao, G.-J.; Han, K.-L. Excited state electronic structures and photochemistry of heterocyclic annulated perylene (HAP) ma-terials tuned by heteroatoms: S, Se, N, O, C, Si, and B. J. Phys. Chem. A. 2009, 113, 4788–4794. [Google Scholar] [CrossRef]
- Zhao, G.-J.; Han, K.-L. pH-Controlled twisted intramolecular charge transfer (TICT) excited state via changing the charge transfer direction. Phys. Chem. Chem. Phys. 2010, 12, 8914–8918. [Google Scholar] [CrossRef]
- Zhao, G.-J.; Han, K.-L. Hydrogen Bonding in the Electronic Excited State. Accounts Chem. Res. 2011, 45, 404–413. [Google Scholar] [CrossRef]
- Zhang, M.-X.; Zhao, G.-J. Dimerization assembly mechanism involving proton coupled electron transfer for hydrogen evolution from water by molybdenum-oxo catalyst. J. Alloy. Compd. 2016, 664, 439–443. [Google Scholar] [CrossRef]
- Tomasi, J.; Mennucci, B.; Cammi, R. Quantum Mechanical Continuum Solvation Models. Chem. Rev. 2005, 105, 2999–3094. [Google Scholar] [CrossRef]
- Zhang, H.; Wei, X.; Song, X.; Shah, S.; Chen, J.; Liu, J.; Hao, C.; Chen, Z. Photophysical and photochemical insights into the photodegradation of sulfapyridine in water: A joint experimental and theoretical study. Chemosphere 2018, 191, 1021–1027. [Google Scholar] [CrossRef]
- Fukui, K. The path of chemical reactions—the IRC approach. Accounts Chem. Res. 1981, 14, 363–368. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, Y.; Wang, S.; Lu, Y.; Chen, K.; Luo, L.; Hao, C. Computational Study of Photodegradation Process and Conversion Products of the Antidepressant Citalopram in Water. Molecules 2023, 28, 4620. https://doi.org/10.3390/molecules28124620
Shen Y, Wang S, Lu Y, Chen K, Luo L, Hao C. Computational Study of Photodegradation Process and Conversion Products of the Antidepressant Citalopram in Water. Molecules. 2023; 28(12):4620. https://doi.org/10.3390/molecules28124620
Chicago/Turabian StyleShen, Yifan, Se Wang, Ying Lu, Kai Chen, Li Luo, and Ce Hao. 2023. "Computational Study of Photodegradation Process and Conversion Products of the Antidepressant Citalopram in Water" Molecules 28, no. 12: 4620. https://doi.org/10.3390/molecules28124620
APA StyleShen, Y., Wang, S., Lu, Y., Chen, K., Luo, L., & Hao, C. (2023). Computational Study of Photodegradation Process and Conversion Products of the Antidepressant Citalopram in Water. Molecules, 28(12), 4620. https://doi.org/10.3390/molecules28124620