Grafting of Crown Ether and Cryptand Macrocycles on Large Pore Stellate Mesoporous Silica for Sodium Cation Extraction
Abstract
:1. Introduction
2. Results and Discussion
2.1. Crown Ether Functionalization on STMS and Sodium Extraction
2.1.1. Grafting of Crown Ether on STMS Nanoparticles
2.1.2. Sodium Capture with Crown Ether Grafted STMS Nanoparticles
2.2. Cryptand Functionalization on STMS and Sodium Extraction
2.2.1. Grafting of Cryptand221 on STMS Nanoparticles
2.2.2. Sodium Capture with C221-Grafted STMS Nanoparticles in Water Media
2.2.3. Sodium Selectivity of the C221-STMS Grafted STMS Nanoparticles
3. Experimental Section
3.1. Crown Ether Experiments: Grafting on STMS and Sodium Capture
3.1.1. Grafting of Crown Ether (CE)
3.1.2. Sodium Capture with CE-STMS
3.2. Cryptand Experiments: Grafting on STMS and Sodium Capture
3.2.1. Preparation of Cryptand221 and Grafting Studies
3.2.2. Sodium Capture with C221-STMS
3.2.3. Na+ Selectivity of the C221-STMS
3.3. Characterizations Methods
3.3.1. TEM
3.3.2. Dynamic Light Scattering (DLS) and Zeta Potential (ZP)
3.3.3. Thermal Gravimetric Analysis (TGA)
3.3.4. ICP-AES
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ross, E.J.; Christie, S.B.M. Hypernatremia. Medicine 1969, 48, 441–474. [Google Scholar] [CrossRef]
- Adrogué, H.J.; Madias, N.E. Hypernatremia. N. Engl. J. Med. 2000, 342, 1493–1499. [Google Scholar] [CrossRef] [PubMed]
- Seay, N.W.; Lehrich, R.W.; Greenberg, A. Diagnosis and Management of Disorders of Body Tonicity—Hyponatremia and Hypernatremia: Core Curriculum 2020. Am. J. Kidney Dis. 2020, 75, 272–286. [Google Scholar] [CrossRef] [Green Version]
- Arzhan, S.; Lew, S.Q.; Ing, T.S.; Tzamaloukas, A.H.; Unruh, M.L. Dysnatremias in Chronic Kidney Disease: Pathophysiology, Manifestations, and Treatment. Front. Med. 2021, 8, 769287. [Google Scholar] [CrossRef]
- Kramer, A.; Stel, V.S.; Tizard, J.; Verrina, E.; Rönnholm, K.; Pálsson, R.; Maxwell, H.; Jager, K.J. Characteristics and survival of young adults who started renal replacement therapy during childhood. Nephrol. Dial. Transplant. 2008, 24, 926–933. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chesnaye, N.; Schaefer, F.; Groothoff, J.W.; Bonthuis, M.; Reusz, G.; Heaf, J.G.; Lewis, M.; Maurer, E.; Paripović, D.; Zagozdzon, I.; et al. Mortality risk in European children with end-stage renal disease on dialysis. Kidney Int. 2016, 89, 1355–1362. [Google Scholar] [CrossRef] [PubMed]
- Thein, H.; Haloob, I.; Marshall, M.R. Associations of a facility level decrease in dialysate sodium concentration with blood pressure and interdialytic weight gain. Nephrol. Dial. Transplant. 2007, 22, 2630–2639. [Google Scholar] [CrossRef] [Green Version]
- Marsenic, O.; Anderson, M.; Couloures, K.; Hong, W.S.; Hall, E.K.; Dahl, N. Effect of the decrease in dialysate sodium in pediatric patients on chronic hemodialysis. Hemodial. Int. 2015, 20, 277–285. [Google Scholar] [CrossRef]
- Song, J.H.; Lee, S.W.; Suh, C.-K.; Kim, M.-J. Time-averaged concentration of dialysate sodium relates with sodium load and interdialytic weight gain during sodium-profiling hemodialysis. Am. J. Kidney Dis. 2002, 40, 291–301. [Google Scholar] [CrossRef]
- Salerno, F.R.; Akbari, A.; Lemoine, S.; Filler, G.; Scholl, T.J.; McIntyre, C.W. Outcomes and predictors of skin sodium concentration in dialysis patients. Clin. Kidney J. 2022, 15, 1129–1136. [Google Scholar] [CrossRef]
- Kooman, J.P.; Van Der Sande, F.; Leunissen, K.; Locatelli, F. Editorials: Sodium Balance in Hemodialysis Therapy. Semin. Dial. 2003, 16, 351–355. [Google Scholar] [CrossRef] [PubMed]
- Duong, H.C.; Duke, M.; Gray, S.; Nelemans, B.; Nghiem, L.D. Membrane distillation and membrane electrolysis of coal seam gas reverse osmosis brine for clean water extraction and NaOH production. Desalination 2016, 397, 108–115. [Google Scholar] [CrossRef]
- Parmentier, D.; Lavenas, M.; Güler, E.; Metz, S.J.; Kroon, M.C. Selective removal of sodium from alkali-metal solutions with tetraoctylammonium monensin. Desalination 2016, 399, 124–127. [Google Scholar] [CrossRef] [Green Version]
- Czarnik, A.W. Fluorescent Chemosensors of Ion and Molecule Recognition. ACS Symp. Ser. 1994, 561, 314–323. [Google Scholar] [CrossRef]
- Atwood, J.L.; Lehn, J.-M. Comprehensive Supramolecular Chemistry; Pergamon: New York, NY, USA, 1996. [Google Scholar]
- Bazaev, N.A.; Grinval’d, V.M.; Selishchev, S.V.; Strokov, A.G. A Wearable Device for Low-Flow Detoxification of Human Body by Peritoneal Dialysis. Biomed. Eng. 2018, 52, 147–151. [Google Scholar] [CrossRef]
- Rippe, B. A three-pore model of peritoneal transport. Perit. Dial. Int. J. Int. Soc. Perit. Dial. 1993, 13, S35–S38. [Google Scholar] [CrossRef]
- Waniewski, J. Mathematical modeling of fluid and solute transport in hemodialysis and peritoneal dialysis. J. Membr. Sci. 2006, 274, 24–37. [Google Scholar] [CrossRef]
- Kouli, M.-E.; Banis, G.; Tsarabaris, P.; Ferraro, A.; Hristoforou, E. A study on magnetic removal of sodium, calcium and potassium ions from seawater using magnetite/clinoptilolite–Na composite nanoparticles. J. Magn. Magn. Mater. 2018, 465, 692–699. [Google Scholar] [CrossRef]
- Park, J.; Lee, M.-Y.; Han, S.; Lee, K.-Y.; Kang, S. Selective removal of Na+ by NaTi2(PO4)3-MWCNT composite hollow-fiber membrane electrode in capacitive deionization. NPJ Clean Water 2022, 5, 14. [Google Scholar] [CrossRef]
- Li, G.; Zhao, Z.; Liu, J.; Jiang, G. Effective heavy metal removal from aqueous systems by thiol functionalized magnetic mesoporous silica. J. Hazard. Mater. 2011, 192, 277–283. [Google Scholar] [CrossRef]
- Rostamian, R.; Najafi, M.; Rafati, A.A. Synthesis and characterization of thiol-functionalized silica nano hollow sphere as a novel adsorbent for removal of poisonous heavy metal ions from water: Kinetics, isotherms and error analysis. Chem. Eng. J. 2011, 171, 1004–1011. [Google Scholar] [CrossRef]
- Thakur, A.K.; Nisola, G.M.; Limjuco, L.A.; Parohinog, K.J.; Torrejos, R.E.C.; Shahi, V.K.; Chung, W.-J. Polyethylenimine-modified mesoporous silica adsorbent for simultaneous removal of Cd(II) and Ni(II) from aqueous solution. J. Ind. Eng. Chem. 2017, 49, 133–144. [Google Scholar] [CrossRef]
- Dindar, M.H.; Yaftian, M.R.; Rostamnia, S. Potential of functionalized SBA-15 mesoporous materials for decontamination of water solutions from Cr(VI), As(V) and Hg(II) ions. J. Environ. Chem. Eng. 2015, 3, 986–995. [Google Scholar] [CrossRef]
- Heidari, A.; Younesi, H.; Mehraban, Z. Removal of Ni(II), Cd(II), and Pb(II) from a ternary aqueous solution by amino functionalized mesoporous and nano mesoporous silica. Chem. Eng. J. 2009, 153, 70–79. [Google Scholar] [CrossRef]
- Adam, A.; Parkhomenko, K.; Duenas-Ramirez, P.; Nadal, C.; Cotin, G.; Zorn, P.-E.; Choquet, P.; Bégin-Colin, S.; Mertz, D. Orienting the Pore Morphology of Core-Shell Magnetic Mesoporous Silica with the Sol-Gel Temperature. Influence on MRI and Magnetic Hyperthermia Properties. Molecules 2021, 26, 971. [Google Scholar] [CrossRef]
- Zhang, K.; Xu, L.-L.; Jiang, J.-G.; Calin, N.; Lam, K.-F.; Zhang, S.-J.; Wu, H.-H.; Wu, G.-D.; Albela, B.; Bonneviot, L.; et al. Facile Large-Scale Synthesis of Monodisperse Mesoporous Silica Nanospheres with Tunable Pore Structure. J. Am. Chem. Soc. 2013, 135, 2427–2430. [Google Scholar] [CrossRef] [PubMed]
- Duenas-Ramirez, P.; Bertagnolli, C.; Müller, R.; Sartori, K.; Boos, A.; Elhabiri, M.; Bégin-Colin, S.; Mertz, D. Highly chelating stellate mesoporous silica nanoparticles for specific iron removal from biological media. J. Colloid Interface Sci. 2020, 579, 140–151. [Google Scholar] [CrossRef]
- Bizeau, J.; Adam, A.; Bégin-Colin, S.; Mertz, D. Serum Albumin Antifouling Effects of Hydroxypropyl-Cellulose and Pluronic F127 Adsorbed on Isobutyramide-Grafted Stellate Silica Nanoparticles. Eur. J. Inorg. Chem. 2021, 2021, 4799–4805. [Google Scholar] [CrossRef]
- Bizeau, J.; Adam, A.; Nadal, C.; Francius, G.; Siniscalco, D.; Pauly, M.; Bégin-Colin, S.; Mertz, D. Protein sustained release from isobutyramide-grafted stellate mesoporous silica nanoparticles. Int. J. Pharm. X 2022, 4, 100130. [Google Scholar] [CrossRef]
- Perton, F.; Harlepp, S.; Follain, G.; Parkhomenko, K.; Goetz, J.; Bégin-Colin, S.; Mertz, D. Wrapped stellate silica nanocomposites as biocompatible luminescent nanoplatforms assessed in vivo. J. Colloid Interface Sci. 2019, 542, 469–482. [Google Scholar] [CrossRef]
- Perton, F.; Tasso, M.; Medina, G.A.M.; Ménard, M.; Blanco-Andujar, C.; Portiansky, E.; van Raap, M.B.F.; Bégin, D.; Meyer, F.; Begin-Colin, S.; et al. Fluorescent and magnetic stellate mesoporous silica for bimodal imaging and magnetic hyperthermia. Appl. Mater. Today 2019, 16, 301–314. [Google Scholar] [CrossRef]
- Adam, A.; Harlepp, S.; Ghilini, F.; Cotin, G.; Freis, B.; Goetz, J.; Bégin, S.; Tasso, M.; Mertz, D. Core-shell iron oxide@stellate mesoporous silica for combined near-infrared photothermia and drug delivery: Influence of pH and surface chemistry. Colloids Surfaces A Physicochem. Eng. Asp. 2022, 640, 128407. [Google Scholar] [CrossRef]
- Pedersen, C.J.; Frensdorff, H.K. Macrocyclic Polyethers and Their Complexes. Angew. Chem. Int. Ed. 1972, 11, 16–25. [Google Scholar] [CrossRef] [PubMed]
- Lehn, J.M.; Sauvage, J.P. Cryptates. XVI. [2]-Cryptates. Stability and selectivity of alkali and alkaline-earth macrobicyclic complexes. J. Am. Chem. Soc. 1975, 97, 6700–6707. [Google Scholar] [CrossRef]
- Oshchepkov, M.S.; Perevalov, V.P.; Kuzmina, L.G.; Anisimov, A.V.; Fedorova, O.A. Synthesis of azacrown ethers and benzocryptands by macrocyclization of podands at high concentrations of reactants. Russ. Chem. Bull. 2011, 60, 478–485. [Google Scholar] [CrossRef]
- Li, B.; Criado-Gonzalez, M.; Adam, A.; Bizeau, J.; Mélart, C.; Carvalho, A.; Bégin, S.; Bégin, D.; Jierry, L.; Mertz, D. Peptide Hydrogels Assembled from Enzyme-Adsorbed Mesoporous Silica Nanostructures for Thermoresponsive Doxorubicin Release. ACS Appl. Nano Mater. 2022, 5, 120–125. [Google Scholar] [CrossRef]
- Carbodiimide Crosslinker Chemistry—FR. Available online: https://www.thermofisher.com/fr/fr/home/life-science/protein-biology/protein-biology-learning-center/protein-biology-resource-library/pierce-protein-methods/carbodiimide-crosslinker-chemistry.html (accessed on 16 November 2022).
- Azaroon, M.; Kiasat, A.R. An efficient and new protocol for the Heck reaction using palladium nanoparticle-engineered dibenzo-18-crown-6-ether/MCM-41 nanocomposite in water. Appl. Organomet. Chem. 2018, 32, e4271. [Google Scholar] [CrossRef]
- Lin, J.D.; Popov, A.I. Nuclear magnetic resonance studies of some sodium ion complexes with crown ethers and [2]-cryptands in various solvents. J. Am. Chem. Soc. 1981, 103, 3773–3777. [Google Scholar] [CrossRef]
- Buschmann, H.-J. The influence of acetonitrile on complex formation of crown ethers containing different donor atoms. J. Solut. Chem. 1988, 17, 277–286. [Google Scholar] [CrossRef]
- Dishong, D.M.; Gokel, G.W. Crown cation complex effects. 16. Solvent dependence of the 15-crown-5 and 18-crown-6 equilibriums with sodium cation. J. Org. Chem. 1982, 47, 147–148. [Google Scholar] [CrossRef]
- Hamilton, A.D. 5. 21—Crown Ethers and Cryptands. 1984. Available online: https://www.sciencedirect.com/science/article/abs/pii/B9780080965192001272?via%3Dihub (accessed on 1 June 2023).
- Tephly, T.R. The toxicity of methanol. Life Sci. 1991, 48, 1031–1041. [Google Scholar] [CrossRef] [PubMed]
- Knerr, T. Solution for Peritoneal Dialysis. US6277815B1, 21 August 2001. [Google Scholar]
- Fischbach, M.; Schmitt, C.P.; Shroff, R.; Zaloszyc, A.; Warady, B.A. Increasing sodium removal on peritoneal dialysis: Applying dialysis mechanics to the peritoneal dialysis prescription. Kidney Int. 2016, 89, 761–766. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katritzky, A.R.; Rees, C.W. Foreword to ‘Comprehensive Heterocyclic Chemistry’. In Handbook of Heterocyclic Chemistry; Elsevier: Amsterdam, The Netherlands, 1985; pp. 3–4. [Google Scholar] [CrossRef]
- Domenici, A.; Scabbia, L.; Sivo, F.; Falcone, C.; Punzo, G.; Menè, P. Determinants of sodium removal with tidal automated peritoneal dialysis. Adv. Perit. Dial. Conf. Perit. Dial. 2012, 28, 16–20. [Google Scholar]
MeOH:H2O (80:20) | H2O | ||||
---|---|---|---|---|---|
Na:CE 0.9:1 | Na:CE 4.7:1 | Na:CE 0.9:1 pH = 7 | Na:CE 4.7:1 pH = 7 | Na:CE 4.7:1 pH = 5 | |
Capture efficiency (%) | 25 | 31 | 2.8 | 2.4 | 2.1 |
Capture capacity (nmolNa+·mg−1SiO2) | 245 | 1600 | 28 | 124 | 108 |
Coverage (%) | 25 | 216 | 3.7 | 16.7 | 14.5 |
Na:C221 (0.9:1) pH = 7 | Na:C221 (4.7:1) pH = 7 | |
---|---|---|
Capture Capacity (nmolNa+·mg−1SiO2) | 34.1 | 368 |
Capture Efficiency (%) | 12.5 | 26.2 |
Cryptand coverage (%) | 15.5 | 168 |
Ion | Na+ | Ca2+ | Mg2+ | |
---|---|---|---|---|
Multi-element solution | Initial concentration (M) | 2.0·10−4 | ||
Capture Capacity (nmolion·mg−1SiO2) | 5.9 | 65.5 | 11.3 | |
Capture Efficiency (%) | 2.2 | 24.3 | 4.2 | |
Cryptand coverage (%) | 3 | 30 | 5.1 | |
Equivalent to peritoneal dialysis solution | Initial concentration (M) | 5.5·10−4 | 2.2·10−6 | 8.7·10−6 |
Capture Capacity (nmolion·mg−1SiO2) | 20.7 | 0 | 0.75 | |
Capture Efficiency (%) | 2.8 | 0 | 6.4 | |
Cryptand coverage (%) | 9.5 | 0 | 0.03 | |
Ks Ion-C221 | 105.40 | 106.95 | <102 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duenas-Ramirez, P.; Bertagnolli, C.; Weiss, R.; Bizeau, J.; Jierry, L.; Choquet, P.; Zaloszyc, A.; Bégin-Colin, S.; Mertz, D. Grafting of Crown Ether and Cryptand Macrocycles on Large Pore Stellate Mesoporous Silica for Sodium Cation Extraction. Molecules 2023, 28, 4622. https://doi.org/10.3390/molecules28124622
Duenas-Ramirez P, Bertagnolli C, Weiss R, Bizeau J, Jierry L, Choquet P, Zaloszyc A, Bégin-Colin S, Mertz D. Grafting of Crown Ether and Cryptand Macrocycles on Large Pore Stellate Mesoporous Silica for Sodium Cation Extraction. Molecules. 2023; 28(12):4622. https://doi.org/10.3390/molecules28124622
Chicago/Turabian StyleDuenas-Ramirez, Paula, Caroline Bertagnolli, Robin Weiss, Joëlle Bizeau, Loïc Jierry, Philippe Choquet, Ariane Zaloszyc, Sylvie Bégin-Colin, and Damien Mertz. 2023. "Grafting of Crown Ether and Cryptand Macrocycles on Large Pore Stellate Mesoporous Silica for Sodium Cation Extraction" Molecules 28, no. 12: 4622. https://doi.org/10.3390/molecules28124622
APA StyleDuenas-Ramirez, P., Bertagnolli, C., Weiss, R., Bizeau, J., Jierry, L., Choquet, P., Zaloszyc, A., Bégin-Colin, S., & Mertz, D. (2023). Grafting of Crown Ether and Cryptand Macrocycles on Large Pore Stellate Mesoporous Silica for Sodium Cation Extraction. Molecules, 28(12), 4622. https://doi.org/10.3390/molecules28124622