Ambipolar Charge Transport in Organic Semiconductors: How Intramolecular Reorganization Energy Is Controlled by Diradical Character
Abstract
:1. Introduction
2. Results and Discussion
2.1. Frontier Orbital Energies, Diradical Character, Orbital Mixing
2.2. Reorganization Energies from CS and BS Structures of the Neutral Species
2.3. Electronic Couplings and Favorable Charge Transfer Paths
3. Computational Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Ostroverkhova, O. Organic Optoelectronic Materials: Mechanisms and Applications. Chem. Rev. 2016, 116, 13279–13412. [Google Scholar] [CrossRef]
- Hudson, J.M.; Hele, T.J.H.; Evans, E.W. Efficient light-emitting diodes from organic radicals with doublet emission. J. Appl. Phys. 2021, 129, 180901. [Google Scholar] [CrossRef]
- Scaccabarozzi, A.D.; Basu, A.; Aniés, F.; Liu, J.; Zapata-Arteaga, O.; Warren, R.; Firdaus, Y.; Nugraha, M.I.; Lin, Y.; Campoy-Quiles, M.; et al. Doping Approaches for Organic Semiconductors. Chem. Rev. 2022, 122, 4420–4492. [Google Scholar] [CrossRef] [PubMed]
- Fratini, S.; Nikolka, M.; Salleo, A.; Schweicher, G.; Sirringhaus, H. Charge transport in high-mobility conjugated polymers and molecular semiconductors. Nat. Mater. 2020, 19, 491–502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, S.Y.; Qu, Y.K.; Liao, L.S.; Jiang, Z.Q.; Lee, S.T. Research Progress of Intramolecular π-Stacked Small Molecules for Device Applications. Adv. Mater. 2022, 34, 2104125. [Google Scholar] [CrossRef] [PubMed]
- Lüssem, B.; Keum, C.-M.; Kasemann, D.; Naab, B.; Bao, Z.; Leo, K. Doped Organic Transistors. Chem. Rev. 2016, 116, 13714–13751. [Google Scholar] [CrossRef]
- Huang, Y.; Egap, E. Open-shell organic semiconductors: An emerging class of materials with novel properties. Polym. J. 2018, 50, 603–614. [Google Scholar] [CrossRef]
- Hu, X.; Wang, W.; Wang, D.; Zheng, Y. The electronic applications of stable diradicaloids: Present and future. J. Mater. Chem. C 2018, 6, 11232–11242. [Google Scholar] [CrossRef]
- Shen, Y.; Xue, G.; Dai, Y.; Quintero, S.M.; Chen, H.; Wang, D.; Miao, F.; Negri, F.; Zheng, Y.; Casado, J. Normal & reversed spin mobility in a diradical by electron-vibration coupling. Nat. Commun. 2021, 12, 6262. [Google Scholar] [CrossRef]
- Morita, Y.; Nishida, S.; Murata, T.; Moriguchi, M.; Ueda, A.; Satoh, M.; Arifuku, K.; Sato, K.; Takui, T. Organic tailored batteries materials using stable open-shell molecules with degenerate frontier orbitals. Nat. Mater. 2011, 10, 947–951. [Google Scholar] [CrossRef]
- Ueda, H.; Yoshimoto, S. Multi-Redox Active Carbons and Hydrocarbons: Control of their Redox Properties and Potential Applications. Chem. Rec. 2021, 21, 2411–2429. [Google Scholar] [CrossRef]
- Friebe, C.; Schubert, U.S. High-Power-Density Organic Radical Batteries. Top. Curr. Chem. 2017, 375, 19. [Google Scholar] [CrossRef] [PubMed]
- Goujon, N.; Casado, N.; Patil, N.; Marcilla, R.; Mecerreyes, D. Organic batteries based on just redox polymers. Prog. Polym. Sci. 2021, 122, 101449. [Google Scholar] [CrossRef]
- Lu, Y.; Cai, Y.; Zhang, Q.; Chen, J. Insights into Redox Processes and Correlated Performance of Organic Carbonyl Electrode Materials in Rechargeable Batteries. Adv. Mater. 2022, 34, 2104150. [Google Scholar] [CrossRef]
- Lin, G.; Qin, Y.; Zhang, J.; Guan, Y.-S.; Xu, H.; Xu, W.; Zhu, D. Ambipolar organic field-effect transistors based on diketopyrrolopyrrole derivatives containing different π-conjugating spacers. J. Mater. Chem. C 2016, 4, 4470–4477. [Google Scholar] [CrossRef]
- Zhu, X.; Zhang, S.; Zhou, Y.; Han, S. Ambipolar polymers for transistor applications. Polym. Int. 2021, 70, 358–366. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Y.; Gao, C.; Ni, Z.; Zhang, X.; Hu, W.; Dong, H. Recent advances in n-type and ambipolar organic semiconductors and their multi-functional applications. Chem. Soc. Rev. 2023, 52, 1331–1381. [Google Scholar] [CrossRef] [PubMed]
- Higashino, T.; Mori, T. Small-molecule ambipolar transistors. Phys. Chem. Chem. Phys. 2022, 24, 9770–9806. [Google Scholar] [CrossRef]
- Rudebusch, G.E.; Espejo, G.L.; Zafra, J.L.; Peña-Alvarez, M.; Spisak, S.N.; Fukuda, K.; Wei, Z.; Nakano, M.; Petrukhina, M.A.; Casado, J.; et al. A Biradical Balancing Act: Redox Amphoterism in a Diindenoanthracene Derivative Results from Quinoidal Acceptor and Aromatic Donor Motifs. J. Am. Chem. Soc. 2016, 138, 12648–12654. [Google Scholar] [CrossRef]
- Rudebusch, G.E.; Zafra, J.L.; Jorner, K.; Fukuda, K.; Marshall, J.L.; Arrechea-Marcos, I.; Espejo, G.L.; Ponce Ortiz, R.; Gómez-García, C.J.; Zakharov, L.N.; et al. Diindeno-fusion of an anthracene as a design strategy for stable organic biradicals. Nat. Chem. 2016, 8, 753–759. [Google Scholar] [CrossRef] [PubMed]
- Chikamatsu, M.; Mikami, T.; Chisaka, J.; Yoshida, Y.; Azumi, R.; Yase, K.; Shimizu, A.; Kubo, T.; Morita, Y.; Nakasuji, K. Ambipolar organic field-effect transistors based on a low band gap semiconductor with balanced hole and electron mobilities. Appl. Phys. Lett. 2007, 91, 043506. [Google Scholar] [CrossRef]
- Li, J.; Qiao, X.; Xiong, Y.; Li, H.; Zhu, D. Five-ring fused tetracyanothienoquinoids as high-performance and solution-processable n-channel organic semiconductors: Effect of the branching position of alkyl chains. Chem. Mater. 2014, 26, 5782–5788. [Google Scholar] [CrossRef]
- Zeidell, A.M.; Jennings, L.; Frederickson, C.K.; Ai, Q.; Dressler, J.J.; Zakharov, L.N.; Risko, C.; Haley, M.M.; Jurchescu, O.D. Organic Semiconductors Derived from Dinaphtho-Fused s-Indacenes: How Molecular Structure and Film Morphology Influence Thin-Film Transistor Performance. Chem. Mater. 2019, 31, 6962–6970. [Google Scholar] [CrossRef]
- Zhang, K.; Huang, K.-W.; Li, J.; Luo, J.; Chi, C.; Wu, J. A Soluble and Stable Quinoidal Bisanthene with NIR Absorption and Amphoteric Redox Behavior. Org. Lett. 2009, 11, 4854–4857. [Google Scholar] [CrossRef]
- Konishi, A.; Hirao, Y.; Matsumoto, K.; Kurata, H.; Kishi, R.; Shigeta, Y.; Nakano, M.; Tokunaga, K.; Kamada, K.; Kubo, T. Synthesis and characterization of quarteranthene: Elucidating the characteristics of the edge state of graphene nanoribbons at the molecular level. J. Am. Chem. Soc. 2013, 135, 1430–1437. [Google Scholar] [CrossRef]
- Zhu, X.; Tsuji, H.; Nakabayashi, K.; Ohkoshi, S.; Nakamura, E. Air- and heat-stable planar tri-p-quinodimethane with distinct biradical characteristics. J. Am. Chem. Soc. 2011, 133, 16342–16345. [Google Scholar] [CrossRef]
- Ma, J.; Liu, J.; Baumgarten, M.; Fu, Y.; Tan, Y.-Z.; Schellhammer, K.S.; Ortmann, F.; Cuniberti, G.; Komber, H.; Berger, R.; et al. A Stable Saddle-Shaped Polycyclic Hydrocarbon with an Open-Shell Singlet Ground State. Angew. Chem. Int. Ed. 2017, 56, 3280–3284. [Google Scholar] [CrossRef]
- Zeng, W.; Sun, Z.; Herng, T.S.; Gonçalves, T.P.; Gopalakrishna, T.Y.; Huang, K.W.; Ding, J.; Wu, J. Super-heptazethrene. Angew. Chem.-Int. Ed. 2016, 55, 8615–8619. [Google Scholar] [CrossRef]
- Xia, D.; Keerthi, A.; An, C.; Baumgarten, M. Synthesis of a quinoidal dithieno[2,3-d;2′,3′-d]benzo[2,1-b;3,4-b′]-dithiophene based open-shell singlet biradicaloid. Org. Chem. Front. 2017, 4, 18–21. [Google Scholar] [CrossRef] [Green Version]
- Zeng, Z.; Ishida, M.; Zafra, J.L.; Zhu, X.; Sung, Y.M.; Bao, N.; Webster, R.D.; Lee, B.S.; Li, R.W.; Zeng, W.; et al. Pushing extended p-quinodimethanes to the limit: Stable tetracyano-oligo(N-annulated perylene)quinodimethanes with tunable ground states. J. Am. Chem. Soc. 2013, 135, 6363–6371. [Google Scholar] [CrossRef]
- Dressler, J.J.; Haley, M.M. Learning how to fine-tune diradical properties by structure refinement. J. Phys. Org. Chem. 2020, 33, e4114. [Google Scholar] [CrossRef]
- Zhang, C.; Medina Rivero, S.; Liu, W.; Casanova, D.; Zhu, X.; Casado, J. Stable Cross-Conjugated Tetrathiophene Diradical. Angew. Chem.-Int. Ed. 2019, 58, 11291–11295. [Google Scholar] [CrossRef] [PubMed]
- Huang, R.; Phan, H.; Herng, T.S.; Hu, P.; Zeng, W.; Dong, S.Q.; Das, S.; Shen, Y.; Ding, J.; Casanova, D.; et al. Higher Order π-Conjugated Polycyclic Hydrocarbons with Open-Shell Singlet Ground State: Nonazethrene versus Nonacene. J. Am. Chem. Soc. 2016, 138, 10323–10330. [Google Scholar] [CrossRef] [PubMed]
- Zeng, W.; Gopalakrishna, T.Y.; Phan, H.; Tanaka, T.; Herng, T.S.; Ding, J.; Osuka, A.; Wu, J. Superoctazethrene: An Open-Shell Graphene-like Molecule Possessing Large Diradical Character but Still with Reasonable Stability. J. Am. Chem. Soc. 2018, 140, 14054–14058. [Google Scholar] [CrossRef] [PubMed]
- Ni, Y.; Gopalakrishna, T.Y.; Phan, H.; Herng, T.S.; Wu, S.; Han, Y.; Ding, J.; Wu, J. A Peri-tetracene Diradicaloid: Synthesis and Properties. Angew. Chem.-Int. Ed. 2018, 57, 9697–9701. [Google Scholar] [CrossRef] [PubMed]
- Majewski, M.A.; Chmielewski, P.J.; Chien, A.; Hong, Y.; Lis, T.; Witwicki, M.; Kim, D.; Zimmerman, P.M.; Stępień, M. 5,10-Dimesityldiindeno[1,2-a:2′,1′-i]phenanthrene: A stable biradicaloid derived from Chichibabin’s hydrocarbon. Chem. Sci. 2019, 10, 3413–3420. [Google Scholar] [CrossRef] [Green Version]
- Sun, Z.; Wu, J. Open-shell polycyclic aromatic hydrocarbons. J. Mater. Chem. 2012, 22, 4151. [Google Scholar] [CrossRef]
- Sun, Z.; Ye, Q.; Chi, C.; Wu, J. Low band gap polycyclic hydrocarbons: From closed-shell near infrared dyes and semiconductors to open-shell radicals. Chem. Soc. Rev. 2012, 41, 7857. [Google Scholar] [CrossRef]
- Gopalakrishna, T.Y.; Zeng, W.; Lu, X.; Wu, J. From open-shell singlet diradicaloids to polyradicaloids. Chem. Commun. 2018, 54, 2186–2199. [Google Scholar] [CrossRef]
- Ponce Ortiz, R.; Casado, J.; Rodriguez Gonzalez, S.; Hernández, V.; Lopez Navarrete, J.T.; Viruela, P.M.; Ortí, E.; Takimiya, K.; Otsubo, T. Quinoidal Oligothiophenes: Towards Biradical Ground-State Species. Chem. Eur. J. 2010, 16, 470–484. [Google Scholar] [CrossRef]
- Nakano, M. Electronic Structure of Open-Shell Singlet Molecules: Diradical Character Viewpoint. Top. Curr. Chem. 2017, 375, 47. [Google Scholar] [CrossRef]
- Nakano, M. Open-Shell-Character-Based Molecular Design Principles: Applications to Nonlinear Optics and Singlet Fission. Chem. Rec. 2017, 17, 27–62. [Google Scholar] [CrossRef] [PubMed]
- Nakano, M.; Champagne, B. Theoretical Design of Open-Shell Singlet Molecular Systems for Nonlinear Optics. J. Phys. Chem. Lett. 2015, 6, 3236–3256. [Google Scholar] [CrossRef] [Green Version]
- Wen, J.; Havlas, Z.; Michl, J. Captodatively Stabilized Biradicaloids as Chromophores for Singlet Fission. J. Am. Chem. Soc. 2015, 137, 165–172. [Google Scholar] [CrossRef]
- Canola, S.; Casado, J.; Negri, F. The double exciton state of conjugated chromophores with strong diradical character: Insights from TDDFT calculations. Phys. Chem. Chem. Phys. 2018, 20, 24227–24238. [Google Scholar] [CrossRef]
- Negri, F.; Canola, S.; Dai, Y. Spectroscopy of Open-Shell Singlet Ground-State Diradicaloids: A Computational Perspective. In Diradicaloids; Wu, J., Ed.; Jenny Stanford Publishing: New York, NY, USA, 2022; pp. 145–179. [Google Scholar]
- Di Motta, S.; Negri, F.; Fazzi, D.; Castiglioni, C.; Canesi, E.V. Biradicaloid and Polyenic Character of Quinoidal Oligothiophenes Revealed by the Presence of a Low-Lying Double-Exciton State. J. Phys. Chem. Lett. 2010, 1, 3334–3339. [Google Scholar] [CrossRef]
- Kubo, T.; Shimizu, A.; Sakamoto, M.; Uruichi, M.; Yakushi, K.; Nakano, M.; Shiomi, D.; Sato, K.; Takui, T.; Morita, Y.; et al. Synthesis, Intermolecular Interaction, and Semiconductive Behavior of a Delocalized Singlet Biradical Hydrocarbon. Angew. Chem. Int. Ed. 2005, 44, 6564–6568. [Google Scholar] [CrossRef]
- Mori, S.; Moles Quintero, S.; Tabaka, N.; Kishi, R.; González Núñez, R.; Harbuzaru, A.; Ponce Ortiz, R.; Marín-Beloqui, J.; Suzuki, S.; Kitamura, C.; et al. Medium Diradical Character, Small Hole and Electron Reorganization Energies and Ambipolar Transistors in Difluorenoheteroles. Angew. Chem. Int. Ed. Engl. 2022, 61, e202206680. [Google Scholar] [CrossRef] [PubMed]
- Hwang, H.; Khim, D.; Yun, J.-M.; Jung, E.; Jang, S.-Y.; Jang, Y.H.; Noh, Y.-Y.; Kim, D.-Y. Quinoidal Molecules as a New Class of Ambipolar Semiconductor Originating from Amphoteric Redox Behavior. Adv. Funct. Mater. 2015, 25, 1146–1156. [Google Scholar] [CrossRef]
- Ponce Ortiz, R.; Casado, J.; Hernández, V.; López Navarrete, J.T.; Ortí, E.; Viruela, P.M.; Milián, B.; Hotta, S.; Zotti, G.; Zecchin, S.; et al. Magnetic Properties of Quinoidal Oligothiophenes: More Than Good Candidates for Ambipolar Organic Semiconductors? Adv. Funct. Mater. 2006, 16, 531–536. [Google Scholar] [CrossRef]
- Takahashi, T.; Matsuoka, K.; Takimiya, K.; Otsubo, T.; Aso, Y. Extensive Quinoidal Oligothiophenes with Dicyanomethylene Groups at Terminal Positions as Highly Amphoteric Redox Molecules. J. Am. Chem. Soc. 2005, 127, 8928–8929. [Google Scholar] [CrossRef]
- Lin, Z.; Chen, L.; Xu, Q.; Shao, G.; Zeng, Z.; Wu, D.; Xia, J. Tuning Biradical Character to Enable High and Balanced Ambipolar Charge Transport in a Quinoidal π-System. Org. Lett. 2020, 22, 2553–2558. [Google Scholar] [CrossRef] [PubMed]
- Pappenfus, T.M.; Chesterfield, R.J.; Frisbie, C.D.; Mann, K.R.; Casado, J.; Raff, J.D.; Miller, L.L. A pi-stacking terthiophene-based quinodimethane is an n-channel conductor in a thin film transistor. J. Am. Chem. Soc. 2002, 124, 4184–4185. [Google Scholar] [CrossRef] [PubMed]
- Kunugi, Y.; Takimiya, K.; Toyoshima, Y.; Yamashita, K.; Aso, Y.; Otsubo, T. Vapour deposited films of quinoidal biselenophene and bithiophene derivatives as active layers of n-channel organic field-effect transistors. J. Mater. Chem. 2004, 14, 1367. [Google Scholar] [CrossRef]
- Jousselin-Oba, T.; Mamada, M.; Okazawa, A.; Marrot, J.; Ishida, T.; Adachi, C.; Yassar, A.; Frigoli, M. Modulating the ground state, stability and charge transport in OFETs of biradicaloid hexahydro-diindenopyrene derivatives and a proposed method to estimate the biradical character. Chem. Sci. 2020, 11, 12194–12205. [Google Scholar] [CrossRef]
- Jousselin-Oba, T.; Mamada, M.; Wright, K.; Marrot, J.; Adachi, C.; Yassar, A.; Frigoli, M. Synthesis, crystal structure, tropicity and charge transport properties of diindenothienothiophene derivatives. J. Mater. Chem. C 2022, 10, 7717–7725. [Google Scholar] [CrossRef]
- Zong, C.; Zhu, X.; Xu, Z.; Zhang, L.; Xu, J.; Guo, J.; Xiang, Q.; Zeng, Z.; Hu, W.; Wu, J.; et al. Isomeric Dibenzoheptazethrenes for Air-Stable Organic Field-Effect Transistors. Angew. Chem. 2021, 133, 16366–16372. [Google Scholar] [CrossRef]
- Sbargoud, K.; Mamada, M.; Marrot, J.; Tokito, S.; Yassar, A.; Frigoli, M. Diindeno[1,2-b:2′,1′-n]perylene: A closed shell related Chichibabin’s hydrocarbon, the synthesis, molecular packing, electronic and charge transport properties. Chem. Sci. 2015, 6, 3402–3409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mok, Y.; Kim, Y.; Moon, Y.; Park, J.-J.; Choi, Y.; Kim, D.-Y. Quinoidal Small Molecule Containing Ring-Extended Termini for Organic Field-Effect Transistors. ACS Omega 2021, 6, 27305–27314. [Google Scholar] [CrossRef] [PubMed]
- Handa, S.; Miyazaki, E.; Takimiya, K.; Kunugi, Y. Solution-Processible n-Channel Organic Field-Effect Transistors Based on Dicyanomethylene-Substituted Terthienoquinoid Derivative. J. Am. Chem. Soc. 2007, 129, 11684–11685. [Google Scholar] [CrossRef]
- Yamamoto, K.; Kato, S.; Zajaczkowska, H.; Marszalek, T.; Blom, P.W.M.; Ie, Y. Effects of fluorine substitution in quinoidal oligothiophenes for use as organic semiconductors. J. Mater. Chem. C 2020, 8, 3580–3588. [Google Scholar] [CrossRef]
- Zong, C.; Yang, S.; Sun, Y.; Zhang, L.; Hu, J.; Hu, W.; Li, R.; Sun, Z. Isomeric dibenzooctazethrene diradicals for high-performance air-stable organic field-effect transistors. Chem. Sci. 2022, 13, 11442–11447. [Google Scholar] [CrossRef] [PubMed]
- Valdivia, A.C.; Dai, Y.; Rambaldi, F.; Barker, J.E.; Dressler, J.J.; Zhou, Z.; Zhu, Y.; Wei, Z.; Petrukhina, M.A.; Haley, M.M.; et al. Orbital Nature of Carboionic Monoradicals Made from Diradicals. Chem. Eur. J. 2023, 29, e202300388. [Google Scholar] [CrossRef]
- Kanagasekaran, T.; Shimotani, H.; Ikeda, S.; Shang, H.; Kumashiro, R.; Tanigaki, K. Equivalent ambipolar carrier injection of electrons and holes with Au electrodes in air-stable field effect transistors. Appl. Phys. Lett. 2015, 107, 043304. [Google Scholar] [CrossRef] [Green Version]
- Kraus, M.; Richler, S.; Opitz, A.; Brütting, W.; Haas, S.; Hasegawa, T.; Hinderhofer, A.; Schreiber, F. High-mobility copper-phthalocyanine field-effect transistors with tetratetracontane passivation layer and organic metal contacts. J. Appl. Phys. 2010, 107, 094503. [Google Scholar] [CrossRef] [Green Version]
- Wazzan, N.; Irfan, A. Exploring the optoelectronic and charge transport properties of Pechmann dyes as efficient OLED materials. Optik 2019, 197, 163200. [Google Scholar] [CrossRef]
- Dereka, B.; Svechkarev, D.; Rosspeintner, A.; Aster, A.; Lunzer, M.; Liska, R.; Mohs, A.M.; Vauthey, E. Solvent tuning of photochemistry upon excited-state symmetry breaking. Nat. Commun. 2020, 11, 1925. [Google Scholar] [CrossRef] [Green Version]
- Swick, S.M.; Zhu, W.; Matta, M.; Aldrich, T.J.; Harbuzaru, A.; Navarrete, J.T.L.; Ortiz, R.P.; Kohlstedt, K.L.; Schatz, G.C.; Facchetti, A.; et al. Closely packed, low reorganization energy π-extended postfullerene acceptors for efficient polymer solar cells. Proc. Natl. Acad. Sci. USA 2018, 115, E8341–E8348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gogoi, G.; Bhattacharya, L.; Rahman, S.; Sen Sarma, N.; Sahu, S.; Rajbongshi, B.K.; Sharma, S. New donor-acceptor-donor type of organic semiconductors based on the regioisomers of diketopyrrolopyrroles: A DFT study. Mater. Today Commun. 2020, 25, 101364. [Google Scholar] [CrossRef]
- Hutchison, G.R.; Ratner, M.A.; Marks, T.J. Hopping transport in conductive heterocyclic oligomers: Reorganization energies and substituent effects. J. Am. Chem. Soc. 2005, 127, 2339–2350. [Google Scholar] [CrossRef]
- Brédas, J.-L.; Beljonne, D.; Coropceanu, V.; Cornil, J. Charge-Transfer and Energy-Transfer Processes in π-Conjugated Oligomers and Polymers: A Molecular Picture. Chem. Rev. 2004, 104, 4971–5004. [Google Scholar] [CrossRef]
- Barbara, P.F.; Meyer, T.J.; Ratner, M.A. Contemporary Issues in Electron Transfer Research. J. Phys. Chem. 1996, 100, 13148–13168. [Google Scholar] [CrossRef]
- Gruhn, N.E.; da Silva Filho, D.A.; Bill, T.G.; Malagoli, M.; Coropceanu, V.; Kahn, A.; Brédas, J.-L. The vibrational reorganization energy in pentacene: Molecular influences on charge transport. J. Am. Chem. Soc. 2002, 124, 7918–7919. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.-C.; Li, E.Y.; Chou, P.-T. Reducing the internal reorganization energy via symmetry controlled π-electron delocalization. Chem. Sci. 2022, 13, 7181–7189. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, Y.; Miyazaki, E.; Takimiya, K. ((Alkyloxy)carbonyl)cyanomethylene-Substituted Thienoquinoidal Compounds: A New Class of Soluble n-Channel Organic Semiconductors for Air-Stable Organic Field-Effect Transistors. J. Am. Chem. Soc. 2010, 132, 10453–10466. [Google Scholar] [CrossRef] [PubMed]
- Canola, S.; Dai, Y.; Negri, F. The Low Lying Double-Exciton State of Conjugated Diradicals: Assessment of TDUDFT and Spin-Flip TDDFT Predictions. Computation 2019, 7, 68. [Google Scholar] [CrossRef] [Green Version]
- González-Cano, R.C.; Di Motta, S.; Zhu, X.; López Navarrete, J.T.; Tsuji, H.; Nakamura, E.; Negri, F.; Casado, J. Carbon-Bridged Phenylene-Vinylenes: On the Common Diradicaloid Origin of Their Photonic and Chemical Properties. J. Phys. Chem. C 2017, 121, 23141–23148. [Google Scholar] [CrossRef]
- Dai, Y.; Bonometti, L.; Zafra, J.L.; Takimiya, K.; Casado, J.; Negri, F. Raman Activities of Cyano-Ester Quinoidal Oligothiophenes Reveal Their Diradical Character and the Proximity of the Low-Lying Double Exciton State. Chemistry 2022, 4, 329–344. [Google Scholar] [CrossRef]
- Marcus, R.A. On the Theory of Oxidation-Reduction Reactions Involving Electron Transfer. II. Applications to Data on the Rates of Isotopic Exchange Reactions. J. Chem. Phys. 1957, 26, 867–871. [Google Scholar] [CrossRef]
- McMahon, D.P.; Troisi, A. Evaluation of the External Reorganization Energy of Polyacenes. J. Phys. Chem. Lett. 2010, 1, 941–946. [Google Scholar] [CrossRef]
- Norton, J.E.; Brédas, J.-L. Polarization Energies in Oligoacene Semiconductor Crystals. J. Am. Chem. Soc. 2008, 130, 12377–12384. [Google Scholar] [CrossRef] [PubMed]
- Troisi, A. Charge transport in high mobility molecular semiconductors: Classical models and new theories. Chem. Soc. Rev. 2011, 40, 2347. [Google Scholar] [CrossRef] [PubMed]
- Oberhofer, H.; Reuter, K.; Blumberger, J. Charge Transport in Molecular Materials: An Assessment of Computational Methods. Chem. Rev. 2017, 117, 10319–10357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheung, D.L.; Troisi, A. Modelling charge transport in organic semiconductors: From quantum dynamics to soft matter. Phys. Chem. Chem. Phys. 2008, 10, 5941–5952. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giannini, S.; Carof, A.; Ellis, M.; Yang, H.; Ziogos, O.G.; Ghosh, S.; Blumberger, J. Quantum localization and delocalization of charge carriers in organic semiconducting crystals. Nat. Commun. 2019, 10, 3843. [Google Scholar] [CrossRef] [Green Version]
- Ben Amor, N.; Noûs, C.; Trinquier, G.; Malrieu, J.P. Spin polarization as an electronic cooperative effect. J. Chem. Phys. 2020, 153, 044118. [Google Scholar] [CrossRef] [PubMed]
- Nelsen, S.F.; Blackstock, S.C.; Kim, Y. Estimation of inner shell Marcus terms for amino nitrogen compounds by molecular orbital calculations. J. Am. Chem. Soc. 1987, 109, 677–682. [Google Scholar] [CrossRef]
- Yamaguchi, K. The electronic structures of biradicals in the unrestricted Hartree-Fock approximation. Chem. Phys. Lett. 1975, 33, 330–335. [Google Scholar] [CrossRef]
- Yamaguchi, K.; Jensen, F.; Dorigo, A.; Houk, K.N. A spin correction procedure for unrestricted Hartree-Fock and Møller-Plesset wavefunctions for singlet diradicals and polyradicals. Chem. Phys. Lett. 1988, 149, 537–542. [Google Scholar] [CrossRef]
- Ferré, N.; Guihéry, N.; Malrieu, J.P. Spin decontamination of broken-symmetry density functional theory calculations: Deeper insight and new formulations. Phys. Chem. Chem. Phys. 2015, 17, 14375–14382. [Google Scholar] [CrossRef]
- Chase, D.T.; Rose, B.D.; McClintock, S.P.; Zakharov, L.N.; Haley, M.M. Indeno[1,2-b]fluorenes: Fully conjugated antiaromatic analogues of acenes. Angew. Chem.-Int. Ed. 2011, 50, 1127–1130. [Google Scholar] [CrossRef] [PubMed]
- Hacker, A.S.; Pavano, M.; Wood, J.E.; Hashimoto, H.; D’Ambrosio, K.M.; Frederickson, C.K.; Zafra, J.L.; Gómez-García, C.J.; Postils, V.; Ringer McDonald, A.; et al. Fluoreno[2,1-a]fluorene: An ortho-naphthoquinodimethane-based system with partial diradical character. Chem. Commun. 2019, 55, 14186–14189. [Google Scholar] [CrossRef] [PubMed]
- Dressler, J.J.; Cárdenas Valdivia, A.; Kishi, R.; Rudebusch, G.E.; Ventura, A.M.; Chastain, B.E.; Gómez-García, C.J.; Zakharov, L.N.; Nakano, M.; Casado, J.; et al. Diindenoanthracene Diradicaloids Enable Rational, Incremental Tuning of Their Singlet-Triplet Energy Gaps. Chem 2020, 6, 1353–1368. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16; Gaussian, Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Nakano, M.; Minami, T.; Fukui, H.; Yoneda, K.; Shigeta, Y.; Kishi, R.; Champagne, B.; Botek, E. Approximate spin-projected spin-unrestricted density functional theory method: Application to the diradical character dependences of the (hyper)polarizabilities in p-quinodimethane models. Chem. Phys. Lett. 2010, 501, 140–145. [Google Scholar] [CrossRef]
- Coropceanu, V.; Cornil, J.; da Silva Filho, D.A.; Olivier, Y.; Silbey, R.; Brédas, J.-L. Charge Transport in Organic Semiconductors. Chem. Rev. 2007, 107, 926–952. [Google Scholar] [CrossRef] [PubMed]
- Canola, S.; Pecoraro, C.; Negri, F. Dimer and cluster approach for the evaluation of electronic couplings governing charge transport: Application to two pentacene polymorphs. Chem. Phys. 2016, 478, 130–138. [Google Scholar] [CrossRef]
- Troisi, A.; Orlandi, G. The hole transfer in DNA: Calculation of electron coupling between close bases. Chem. Phys. Lett. 2001, 344, 509–518. [Google Scholar] [CrossRef]
- Senthilkumar, K.; Grozema, F.C.; Bickelhaupt, F.M.; Siebbeles, L.D.A. Charge transport in columnar stacked triphenylenes: Effects of conformational fluctuations on charge transfer integrals and site energies. J. Chem. Phys. 2003, 119, 9809–9817. [Google Scholar] [CrossRef] [Green Version]
- Norton, J.E.; Brédas, J.-L. Theoretical characterization of titanyl phthalocyanine as a p-type organic semiconductor: Short intermolecular π-π interactions yield large electronic couplings and hole transport bandwidths. J. Chem. Phys. 2008, 128, 034701. [Google Scholar] [CrossRef] [Green Version]
- Baumeier, B.; Kirkpatrick, J.; Andrienko, D. Density-functional based determination of intermolecular charge transfer properties for large-scale morphologies. Phys. Chem. Chem. Phys. 2010, 12, 11103. [Google Scholar] [CrossRef]
- Valeev, E.F.; Coropceanu, V.; da Silva Filho, D.; Salman, S.; Brédas, J.-L. Effect of electronic polarization on charge-transport parameters in molecular organic semiconductors. J. Am. Chem. Soc. 2006, 128, 9882–9886. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dai, Y.; Zerbini, A.; Casado, J.; Negri, F. Ambipolar Charge Transport in Organic Semiconductors: How Intramolecular Reorganization Energy Is Controlled by Diradical Character. Molecules 2023, 28, 4642. https://doi.org/10.3390/molecules28124642
Dai Y, Zerbini A, Casado J, Negri F. Ambipolar Charge Transport in Organic Semiconductors: How Intramolecular Reorganization Energy Is Controlled by Diradical Character. Molecules. 2023; 28(12):4642. https://doi.org/10.3390/molecules28124642
Chicago/Turabian StyleDai, Yasi, Andrea Zerbini, Juan Casado, and Fabrizia Negri. 2023. "Ambipolar Charge Transport in Organic Semiconductors: How Intramolecular Reorganization Energy Is Controlled by Diradical Character" Molecules 28, no. 12: 4642. https://doi.org/10.3390/molecules28124642
APA StyleDai, Y., Zerbini, A., Casado, J., & Negri, F. (2023). Ambipolar Charge Transport in Organic Semiconductors: How Intramolecular Reorganization Energy Is Controlled by Diradical Character. Molecules, 28(12), 4642. https://doi.org/10.3390/molecules28124642