Biomimetic Approaches to “Transparent” Photovoltaics: Current and Future Applications
Abstract
:1. Introduction
2. Key Challenges
3. Current State
3.1. Optical Performance and Aesthetics
3.2. Super-Hydrophobic Surface Structuring for Stability
4. Future Research and Applications
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hook, M.; Tang, X. Depletion of fossil fuels and anthropogenic climate change-A review. Energy Policy 2013, 52, 797–809. [Google Scholar] [CrossRef] [Green Version]
- Foster, R.A.; Ghassemi, M.; Cota, A.; CrcnetBase. Solar Energy: Renewable Energy and the Environment; CRC Press: Boca Raton, FL, USA, 2010; p. 4. [Google Scholar]
- Moriarty, P.; Honnery, D. What is the global potential for renewable energy? Renew. Sust. Energy Rev. 2012, 16, 244–252. [Google Scholar] [CrossRef]
- Chen, H.S.; Cong, T.N.; Yang, W.; Tan, C.Q.; Li, Y.L.; Ding, Y.L. Progress in electrical energy storage system: A critical review. Prog. Nat. Sci. Mater. Int. 2009, 19, 291–312. [Google Scholar] [CrossRef]
- Heinstein, P.; Ballif, C.; Perret-Aebi, L.E. Building integrated photovoltaics (BIPV): Review, potentials, barriers and myths. Green 2013, 3, 125–156. [Google Scholar] [CrossRef]
- Traverse, C.J.; Pandey, R.; Barr, M.C.; Lunt, R.R. Emergence of highly transparent photovoltaics for distributed applications. Nat. Energy 2017, 2, 849–860. [Google Scholar] [CrossRef]
- Szindler, M.; Szindler, M.; Drygala, A.; Lukaszkowicz, K.; Kaim, P.; Pietruszka, R. Dye-Sensitized Solar Cell for Building-Integrated Photovoltaic (BIPV) Applications. Materials 2021, 14, 3743. [Google Scholar] [CrossRef]
- Lee, B.J.; Lahann, L.; Li, Y.X.; Forrest, S.R. Cost estimates of production scale semitransparent organic photovoltaic modules for building integrated photovoltaics. Sustain. Energy Fuels 2020, 4, 5765–5772. [Google Scholar] [CrossRef]
- Roy, A.; Ghosh, A.; Bhandari, S.; Sundaram, S.; Mallick, T.K. Perovskite Solar Cells for BIPV Application: A Review. Buildings 2020, 10, 129. [Google Scholar] [CrossRef]
- Koh, T.M.; Wang, H.; Ng, Y.F.; Bruno, A.; Mhaisalkar, S.; Mathews, N. Halide Perovskite Solar Cells for Building Integrated Photovoltaics: Transforming Building Facades into Power Generators. Adv. Mater. 2022, 34, 2104661. [Google Scholar] [CrossRef]
- Heinrich, M.; Kutter, C.; Basler, F.; Mittag, M.; Alanis, L.E.; Eberlein, D.; Schmid, A.; Reise, C.; Kroyer, T.; Neuhaus, D.H. Potential and Challenges of Vehicle Integrated Photovoltaics for Passenger Cars. Proceedings of Presented at the 37th European PV Solar Energy Conference and Exhibition, Online, 7–11 September 2020; p. 11. [Google Scholar]
- Zheng, J.-W.; Sun, Q.; Gao, C.; Chen, J.-D.; Li, W.; Zhang, Y.-X.; Wang, Y.; Ling, X.; Ma, W.; Li, Y.; et al. Toward ultra-low reflectance semi-transparent organic photovoltaic cells with biomimetic nanostructured transparent electrode. Org. Electron. 2018, 60, 38–44. [Google Scholar] [CrossRef]
- Sun, J.; Jasieniak, J.J. Semi-transparent solar cells. J. Phys. D Appl. Phys. 2017, 50, 093001. [Google Scholar] [CrossRef]
- Lunt, R.R.; Bulovic, V. Transparent, near-infrared organic photovoltaic solar cells for window and energy-scavenging applications. Appl. Phys. Lett. 2011, 98, 61. [Google Scholar] [CrossRef]
- Lunt, R.R. Theoretical limits for visibly transparent photovoltaics. Appl. Phys. Lett. 2012, 101, 043902. [Google Scholar] [CrossRef]
- Ma, R.J.; Yan, C.Q.; Yu, J.S.; Liu, T.; Liu, H.; Li, Y.H.; Chen, J.; Luo, Z.H.; Tang, B.; Lu, X.H.; et al. High-Efficiency Ternary Organic Solar Cells with a Good Figure-of-Merit Enabled by Two Low-Cost Donor Polymers. ACS Energy Lett. 2022, 7, 2547–2556. [Google Scholar] [CrossRef]
- Cui, Y.; Xu, Y.; Yao, H.F.; Bi, P.Q.; Hong, L.; Zhang, J.Q.; Zu, Y.F.; Zhang, T.; Qin, J.Z.; Ren, J.Z.; et al. Single-Junction Organic Photovoltaic Cell with 19% Efficiency. Adv. Mater. 2021, 33, 2102420. [Google Scholar] [CrossRef]
- Zhu, L.; Zhang, M.; Xu, J.Q.; Li, C.; Yan, J.; Zhou, G.Q.; Zhong, W.K.; Hao, T.Y.; Song, J.L.; Xue, X.N.; et al. Single-junction organic solar cells with over 19% efficiency enabled by a refined double-fibril network morphology. Nat. Mater. 2022, 21, 656–663. [Google Scholar] [CrossRef]
- Xin, L.; Zhong, Z.P.; Zhu, R.H.; Yu, J.S.; Li, G. Aperiodic band-pass electrode enables record-performance transparent organic photovoltaics. Joule 2022, 6, 1918–1930. [Google Scholar] [CrossRef]
- Guan, S.T.; Li, Y.K.; Yan, K.R.; Fu, W.F.; Zuo, L.J.; Chen, H.Z. Balancing the Selective Absorption and Photon-to-Electron Conversion for Semitransparent Organic Photovoltaics with 5.0% Light-Utilization Efficiency. Adv. Mater. 2022, 34, 2205844. [Google Scholar] [CrossRef]
- Lee, J.; Cha, H.; Yao, H.F.; Hou, J.H.; Suh, Y.H.; Jeong, S.; Lee, K.; Durrant, J.R. Toward Visibly Transparent Organic Photovoltaic Cells Based on a Near-Infrared Harvesting Bulk Heterojunction Blend. ACS Appl. Mater. Inter. 2020, 12, 32764–32770. [Google Scholar] [CrossRef]
- Li, Y.X.; Guo, X.; Peng, Z.X.; Qu, B.N.; Yan, H.P.; Ade, H.; Zhang, M.J.; Forrest, S.R. Color-neutral, semitransparent organic photovoltaics for power window applications. Proc. Natl. Acad. Sci. USA 2020, 117, 21147–21154. [Google Scholar] [CrossRef]
- Xue, Q.F.; Xia, R.X.; Brabec, C.J.; Yip, H.L. Recent advances in semi-transparent polymer and perovskite solar cells for power generating window applications. Energy Environ. Sci. 2018, 11, 1688–1709. [Google Scholar] [CrossRef]
- Yu, S.; Guo, Z.G.; Liu, W.M. Biomimetic transparent and superhydrophobic coatings: From nature and beyond nature. Chem. Commun. 2015, 51, 1775–1794. [Google Scholar] [CrossRef] [PubMed]
- Wilts, B.D.; Vignolini, S. Living light: Optics, ecology and design principles of natural photonic structures. Interface Focus 2019, 9, 20180071. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.L.; Liang, Y.C.; Cheng, S.; Li, B.; Li, A.; Du, G.; Hu, W. Bio-inspired nanostructures for enhanced light management. J. Vac. Sci. Technol. B 2017, 35, 06GJ02. [Google Scholar] [CrossRef]
- Zhao, Y.J.; Xie, Z.Y.; Gu, H.C.; Zhu, C.; Gu, Z.Z. Bio-inspired variable structural color materials. Chem. Soc. Rev. 2012, 41, 3297–3317. [Google Scholar] [CrossRef] [PubMed]
- Alkema, J.; Seager, S.L. The Chemical Pigments of Plants. J. Chem. Educ. 1982, 59, 183–186. [Google Scholar] [CrossRef]
- Dove, S.G.; Hoegh-Guldberg, O.; Ranganathan, S. Major colour patterns of reef-building corals are due to a family of GFP-like proteins. Coral Reefs 2001, 19, 197–204. [Google Scholar] [CrossRef]
- Li, D.H.W.; Lam, T.N.T.; Chan, W.W.H.; Mak, A.H.L. Energy and cost analysis of semi-transparent photovoltaic in office buildings. Appl. Energy 2009, 86, 722–729. [Google Scholar] [CrossRef]
- Wang, S.; Chen, J.D.; Li, L.; Zuo, L.J.; Qu, T.Y.; Ren, H.; Li, Y.Q.; Jen, A.K.Y.; Tang, J.X. Narrow Bandpass and Efficient Semitransparent Organic Solar Cells Based on Bioinspired Spectrally Selective Electrodes. ACS Nano 2020, 14, 5998–6006. [Google Scholar] [CrossRef]
- Wilson, S.J.; Hutley, M.C. The Optical-Properties of Moth Eye Antireflection Surfaces. Opt. Acta 1982, 29, 993–1009. [Google Scholar] [CrossRef]
- Stavenga, D.G.; Foletti, S.; Palasantzas, G.; Arikawa, K. Light on the moth-eye corneal nipple array of butterflies. Proc. Royal Soc. B 2006, 273, 661–667. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, K.C.; Yu, Q.; Erb, U. Mesostructure of Ordered Corneal Nano-nipple Arrays: The Role of 5-7 Coordination Defects. Sci. Rep. 2016, 6, 28342. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.Y.; Shu, L.; Zhang, Q.P.; Zhu, Y.D.; Poddar, S.; Wang, C.; He, Z.B.; Fan, Z.Y. Moth eye-inspired highly efficient, robust, and neutral-colored semitransparent perovskite solar cells for building-integrated photovoltaics. EcoMat 2021, 3, e12117. [Google Scholar] [CrossRef]
- Khalifeeh, R.; Alrashidi, H.; Sellami, N.; Mallick, T.; Issa, W. State-of-the-Art Review on the Energy Performance of Semi-Transparent Building Integrated Photovoltaic across a Range of Different Climatic and Environmental Conditions. Energies 2021, 14, 3412. [Google Scholar] [CrossRef]
- Meng, L.; You, J.B.; Yang, Y. Addressing the stability issue of perovskite solar cells for commercial applications. Nat. Commun. 2018, 9, 5265. [Google Scholar] [CrossRef] [Green Version]
- Sarkin, A.S.; Ekren, N.; Saglam, S. A review of anti-reflection and self-cleaning coatings on photovoltaic panels. Sol. Energy 2020, 199, 63–73. [Google Scholar] [CrossRef]
- Guo, Z.G.; Liu, W.M.; Su, B.L. Superhydrophobic surfaces: From natural to biomimetic to functional. J. Colloid Interface Sci. 2011, 353, 335–355. [Google Scholar] [CrossRef]
- Law, K.Y. Definitions for Hydrophilicity, Hydrophobicity, and Superhydrophobicity: Getting the Basics Right. J. Phys. Chem. Lett. 2014, 5, 686–688. [Google Scholar] [CrossRef]
- Nakajima, A.; Hashimoto, K.; Watanabe, T.; Takai, K.; Yamauchi, G.; Fujishima, A. Transparent superhydrophobic thin films with self-cleaning properties. Langmuir 2000, 16, 7044–7047. [Google Scholar] [CrossRef]
- Bravo, J.; Zhai, L.; Wu, Z.Z.; Cohen, R.E.; Rubner, M.F. Transparent superhydrophobic films based on silica nanoparticles. Langmuir 2007, 23, 7293–7298. [Google Scholar] [CrossRef]
- Neinhuis, C.; Barthlott, W. Characterization and distribution of water-repellent, self-cleaning plant surfaces. Ann. Bot. 1997, 79, 667–677. [Google Scholar] [CrossRef] [Green Version]
- Quere, D.; Reyssat, M. Non-adhesive lotus and other hydrophobic materials. Philos. Trans. Royal Soc. A 2008, 366, 1539–1556. [Google Scholar] [CrossRef] [PubMed]
- Koch, K.; Bhushan, B.; Barthlott, W. Multifunctional surface structures of plants: An inspiration for biomimetics. Prog. Mater. Sci. 2009, 54, 137–178. [Google Scholar] [CrossRef]
- Wagner, T.; Neinhuis, C.; Barthlott, W. Wettability and contaminability of insect wings as a function of their surface sculptures. Acta Zool. 1996, 77, 213–225. [Google Scholar] [CrossRef]
- Watson, G.S.; Watson, J.A. Natural nano-structures on insects-possible functions of ordered arrays characterized by atomic force microscopy. Appl. Surf. Sci. 2004, 235, 139–144. [Google Scholar] [CrossRef]
- Hasan, J.; Webb, H.K.; Truong, V.K.; Watson, G.S.; Watson, J.A.; Tobin, M.J.; Gervinskas, G.; Juodkazis, S.; Wang, J.Y.; Crawford, R.J.; et al. Spatial Variations and Temporal Metastability of the Self-Cleaning and Superhydrophobic Properties of Damselfly Wings. Langmuir 2012, 28, 17404–17409. [Google Scholar] [CrossRef]
- Watson, G.S.; Green, D.W.; Cribb, B.W.; Brown, C.L.; Meritt, C.R.; Tobin, M.J.; Vongsvivut, J.; Sun, M.X.; Liang, A.P.; Watson, J.A. Insect Analogue to the Lotus Leaf: A Planthopper Wing Membrane Incorporating a Low-Adhesion, Nonwetting, Superhydrophobic, Bactericidal, and Biocompatible Surface. ACS Appl. Mater. Inter. 2017, 9, 24381–24392. [Google Scholar] [CrossRef]
- Gao, X.; Yan, X.; Yao, X.; Xu, L.; Zhang, K.; Zhang, J.; Yang, B.; Jiang, L. The Dry-Style Antifogging Properties of Mosquito Compound Eyes and Artificial Analogues Prepared by Soft Lithography. Adv. Mater. 2007, 19, 2213–2217. [Google Scholar] [CrossRef]
- Ragesh, P.; Ganesh, V.A.; Naira, S.V.; Nair, A.S. A review on ‘self-cleaning and multifunctional materials’. J. Mater. Chem. A 2014, 2, 14773–14797. [Google Scholar] [CrossRef]
- Sun, J.Y.; Wang, X.B.; Wu, J.H.; Jiang, C.; Shen, J.J.; Cooper, M.A.; Zheng, X.T.; Liu, Y.; Yang, Z.G.; Wu, D.M. Biomimetic Moth-eye Nanofabrication: Enhanced Antireflection with Superior Self-cleaning Characteristic. Sci. Rep. 2018, 8, 5438. [Google Scholar] [CrossRef]
- Ju, S.; Choi, J.Y.; Chae, D.; Lim, H.; Kang, H.; Lee, H. Fabrication of high-transmittance and low-reflectance meter-scale moth-eye film via roll-to-roll printing. Nanotechnology 2020, 31, 505301. [Google Scholar] [CrossRef] [PubMed]
- Omenetto, F.G.; KapLan, D.L. A new route for silk. Nat. Photon. 2008, 2, 641–643. [Google Scholar] [CrossRef]
- Vollrath, F.; Knight, D.P. Liquid crystalline spinning of spider silk. Nature 2001, 410, 541–548. [Google Scholar] [CrossRef] [PubMed]
- Hu, F.; Lin, N.B.; Liu, X.Y. Interplay between Light and Functionalized Silk Fibroin and Applications. iScience 2020, 23, 101035. [Google Scholar] [CrossRef]
- Vepari, C.; Kaplan, D.L. Silk as a biomaterial. Prog. Polym. Sci. 2007, 32, 991–1007. [Google Scholar] [CrossRef]
- Wang, Y.; Guo, J.; Zhou, L.; Ye, C.; Omenetto, F.G.; Kaplan, D.L.; Ling, S.J. Design, Fabrication, and Function of Silk-Based Nanomaterials. Adv. Funct. Mater. 2018, 28, 1805305. [Google Scholar] [CrossRef]
- Liu, Y.Q.; Xie, Y.M.; Liu, Y.; Song, T.; Zhang, K.Q.; Liao, L.S.; Sun, B.Q. Flexible organic light emitting diodes fabricated on biocompatible silk fibroin substrate. Semicond. Sci. Technol. 2015, 30, 104004. [Google Scholar] [CrossRef]
- Liu, Y.Q.; Qi, N.; Song, T.; Jia, M.L.; Xia, Z.H.; Yuan, Z.C.; Yuan, W.; Zhang, K.Q.; Sun, B.Q. Highly Flexible and Lightweight Organic Solar Cells on Biocompatible Silk Fibroin. ACS Appl. Mater. Inter. 2014, 6, 20670–20675. [Google Scholar] [CrossRef]
- Hong, M.S.; Choi, G.M.; Kim, J.; Jang, J.; Choi, B.; Kim, J.K.; Jeong, S.; Leem, S.; Kwon, H.Y.; Hwang, H.B.; et al. Biomimetic Chitin-Silk Hybrids: An Optically Transparent Structural Platform for Wearable Devices and Advanced Electronics. Adv. Funct. Mater. 2018, 28, 1705480. [Google Scholar] [CrossRef]
- Lee, O.J.; Sultan, M.T.; Hong, H.S.; Lee, Y.J.; Lee, J.S.; Lee, H.N.; Kim, S.H.; Park, C.H. Recent Advances in Fluorescent Silk Fibroin. Front. Mater. 2020, 7, 50. [Google Scholar] [CrossRef]
- Tansil, N.C.; Li, Y.; Teng, C.P.; Zhang, S.Y.; Win, K.Y.; Chen, X.; Liu, X.Y.; Han, M.Y. Intrinsically Colored and Luminescent Silk. Adv. Mater. 2011, 23, 1463–1466. [Google Scholar] [CrossRef] [PubMed]
- Cavallini, S.; Toffanin, S.; Chieco, C.; Sagnella, A.; Formaggio, F.; Pistone, A.; Posati, T.; Natali, M.; Caprini, M.; Benfenati, V.; et al. Naturally functionalized silk as useful material for photonic applications. Compos. B Eng. 2015, 71, 152–158. [Google Scholar] [CrossRef]
- Ma, X.; Ahadian, S.; Liu, S.; Zhang, J.W.; Liu, S.N.; Cao, T.; Lin, W.B.; Wu, D.; de Barros, N.R.; Zare, M.R.; et al. Smart Contact Lenses for Biosensing Applications. Adv. Intell. Syst. 2021, 3, 2000263. [Google Scholar] [CrossRef]
- Mirzajani, H.; Mirlou, F.; Istif, E.; Singh, R.; Beker, L. Powering smart contact lenses for continuous health monitoring: Recent advancements and future challenges. Biosens. Bioelectron. 2022, 197, 113761. [Google Scholar] [CrossRef] [PubMed]
- Tsai, M.A.; Han, H.W.; Tsai, Y.L.; Tseng, P.C.; Yu, P.C.; Kuo, H.C.; Shen, C.H.; Shieh, J.M.; Lin, S.H. Embedded biomimetic nanostructures for enhanced optical absorption in thin-film solar cells. Opt. Express 2011, 19, A757–A762. [Google Scholar] [CrossRef] [PubMed]
- Robbiano, V.; Paterno, G.M.; Cotella, G.F.; Fiore, T.; Dianetti, M.; Scopelliti, M.; Brunetti, F.; Pignataro, B.; Cacialli, F. Polystyrene nanoparticle-templated hollow titania nanosphere monolayers as ordered scaffolds. J. Mater. Chem. C 2018, 6, 2502–2508. [Google Scholar] [CrossRef] [Green Version]
- Chen, B.M.; Fu, H.Y.; Ying, S.P.; Hsu, T.W. Performance of Luminescent Solar Concentrators Integrated with Negative Replica Layers of Leaf Surface Microstructures. Materials 2022, 15, 2353. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pompilio, M.; Ierides, I.; Cacialli, F. Biomimetic Approaches to “Transparent” Photovoltaics: Current and Future Applications. Molecules 2023, 28, 180. https://doi.org/10.3390/molecules28010180
Pompilio M, Ierides I, Cacialli F. Biomimetic Approaches to “Transparent” Photovoltaics: Current and Future Applications. Molecules. 2023; 28(1):180. https://doi.org/10.3390/molecules28010180
Chicago/Turabian StylePompilio, Michele, Ioannis Ierides, and Franco Cacialli. 2023. "Biomimetic Approaches to “Transparent” Photovoltaics: Current and Future Applications" Molecules 28, no. 1: 180. https://doi.org/10.3390/molecules28010180
APA StylePompilio, M., Ierides, I., & Cacialli, F. (2023). Biomimetic Approaches to “Transparent” Photovoltaics: Current and Future Applications. Molecules, 28(1), 180. https://doi.org/10.3390/molecules28010180