Upcycling Rocha do Oeste Pear Pomace as a Sustainable Food Ingredient: Composition, Rheological Behavior and Microstructure Alone and Combined with Yeast Protein Extract
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Pear Pomace Processing
2.3. Proximal Composition Analysis of Pear Pomace
2.4. Phenolic Composition of Pear Pomace
2.5. Determination of Total Phenolic Content (TPC)
2.6. Phenolic Compounds Analysis
2.7. Antioxidant Assays
2.8. Preparation of Pear Pomace Samples for Rheological Measurements and Texture Analysis
2.9. Rheological Measurements
2.10. Texture Profile Analysis
2.11. Water Activity
2.12. Microstructure of the Pear Pomace
2.13. Statistical Analysis
3. Results and Discussion
3.1. Proximate Composition of Pear Pomace
3.2. Phenolic Compounds of Pear Pomace
3.3. Antioxidant Activity
3.4. Rheological Properties
3.4.1. Small Amplitude Oscillatory Shear Measurements (SAOS)
3.4.2. Apparent Viscosity
3.4.3. Textural Parameters
3.4.4. Microstructure of Pear Pomace Pastes
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lomba-Viana, X.; Raymundo, A.; Prista, C.; Alegria, M.J.; Sousa, I. Clean Label “Rocha” Pear (Pyrus communis L.) Snack Containing Juice By-Products and Euglena gracilis Microalgae. Front. Nutr. 2022, 9, 825999. [Google Scholar] [CrossRef]
- Pascoalino, L.A.; Reis, F.S.; Prieto, M.A.; Barreira, J.C.M.; Ferreira, I.C.F.R.; Barros, L. Valorization of Bio-Residues from the Processing of Main Portuguese Fruit Crops: From Discarded Waste to Health Promoting Compounds. Molecules 2021, 26, 2624. [Google Scholar] [CrossRef]
- Pedro, S.I.; Coelho, E.; Peres, F.; Machado, A.P.F.; Rodrigues, A.M.; Wessel, D.F.; Coimbra, M.A.; Anjos, O. Physicochemical Fingerprint of “Pera da Rocha do Oeste”. A PDO Pear Native from Portugal. Foods 2020, 9, 1209. [Google Scholar] [CrossRef]
- Bozdogan, N.; Ormanli, E.; Kumcuoglu, S.; Tavman, S. Pear pomace powder added quinoa-based gluten-free cake formulations: Effect on pasting properties, rheology, and product quality. Food Sci. Technol. 2022, 42, 1. [Google Scholar] [CrossRef]
- Rocha-Parra, A.F.; Belorio, M.; Ribotta, P.D.; Ferrero, C.; Gómez, M. Effect of the particle size of pear pomace on the quality of enriched layer and sponge cakes. Int. J. Food Sci. Technol. 2019, 54, 1265–1275. [Google Scholar] [CrossRef]
- Panzella, L.; Moccia, F.; Nasti, R.; Marzorati, S.; Verotta, L.; Napolitano, A. Bioactive Phenolic Compounds from Agri-Food Wastes: An Update on Green and Sustainable Extraction Methodologies. Front. Nutr. 2020, 7, 787351. [Google Scholar] [CrossRef]
- Salta, J.; Martins, A.; Santos, R.G.; Neng, N.R.; Nogueira, J.M.F.; Justino, J.; Rauter, A.P. Phenolic composition and antioxidant activity of Rocha pear and other pear cultivars—A comparative study. J. Funct. Foods 2010, 2, 153–157. [Google Scholar] [CrossRef]
- Hauner, H.; Bechthold, A.; Boeing, H.; Brönstrup, A.; Buyken, A.; Leschik-Bonnet, E.; Linseisen, J.; Schulze, M.; Strohm, D.; Wolfram, G. Evidence-based guideline of the German Nutrition Society: Carbohydrate intake and prevention of nutrition-related diseases. Ann. Nutr. Metab. 2012, 60 Suppl. S1, 1–58. [Google Scholar] [CrossRef]
- Gunness, P.; Gidley, M.J. Mechanisms underlying the cholesterol-lowering properties of soluble dietary fibre polysaccharides. Food Funct. 2010, 1, 149–155. [Google Scholar] [CrossRef]
- Brownlee, I.A. The physiological roles of dietary fibre. Food Hydrocoll. 2011, 25, 238–250. [Google Scholar] [CrossRef]
- Martin-Cabrejas, M.A.; Esteban, R.M.; Lopez-Andreu, F.J.; Waldron, K.; Selvendran, R.R. Dietary Fiber Content of Pear and Kiwi Pomaces. J. Agric. Food Chem. 1995, 43, 662–666. [Google Scholar] [CrossRef]
- Chang, S.; Cui, X.; Guo, M.; Tian, Y.; Xu, W.; Huang, K.; Zhang, Y. Insoluble Dietary Fiber from Pear Pomace Can Prevent High-Fat Diet-Induced Obesity in Rats Mainly by Improving the Structure of the Gut Microbiota. J. Microbiol. Biotechnol. 2017, 27, 856–867. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quirós-Sauceda, A.E.; Palafox-Carlos, H.; Sáyago-Ayerdi, S.G.; Ayala-Zavala, J.F.; Bello-Perez, L.A.; Alvarez-Parrilla, E.; De la Rosa, L.A.; González-Córdova, A.F.; González-Aguilar, G.A. Dietary fiber and phenolic compounds as functional ingredients: Interaction and possible effect after ingestion. Food Funct. 2014, 5, 1063–1072. [Google Scholar] [CrossRef] [PubMed]
- Jach, M.E.; Serefko, A.; Ziaja, M.; Kieliszek, M. Yeast Protein as an Easily Accessible Food Source. Metabolites 2022, 12, 63. [Google Scholar] [CrossRef] [PubMed]
- Lochbühler, B.; Manteau, S.; Morge, C.; Caillet, M.-M.; Charpentier, C.; Schnell, S.; Grossmann, M.; Rauhut, D. Yeast protein extracts: An alternative fining agent for red wines. Eur. Food Res. Technol. 2015, 240, 689–699. [Google Scholar] [CrossRef]
- Gaspar, L.M.; Machado, A.P.F.; Coutinho, R.; Sousa, S.; Santos, R.G.; Xavier, A.; Figueiredo, M.; Teixeira, M.d.F.; Centeno, F.; Simões, J. Development of Potential Yeast Protein Extracts for Red Wine Clarification and Stabilization. Front. Microbiol. 2019, 10, 2310. [Google Scholar] [CrossRef]
- Fernandes, J.P.; Neto, R.; Centeno, F.; de Fátima Teixeira, M.; Gomes, A.C. Unveiling the potential of novel yeast protein extracts in white wines clarification and stabilization. Front. Chem. 2015, 3, 20. [Google Scholar] [CrossRef] [Green Version]
- Francisco, T.; Pérez-Gregorio, R.; Soares, S.; Mateus, N.; Centeno, F.; de Fátima Teixeira, M.; de Freitas, V. Understanding the molecular interactions between a yeast protein extract and phenolic compounds. Food Res. Int. 2021, 143, 110261. [Google Scholar] [CrossRef]
- Gustafsson, J.; Landberg, M.; Bátori, V.; Åkesson, D.; Taherzadeh, M.J.; Zamani, A. Development of Bio-Based Films and 3D Objects from Apple Pomace. Polymers 2019, 11, 289. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.C.; Prosky, L.; Vries, J.W.D. Determination of Total, Soluble, and Insoluble Dietary Fiber in Foods—Enzymatic-Gravimetric Method, MES-TRIS Buffer: Collaborative Study. J. AOAC Int. 2020, 75, 395–416. [Google Scholar] [CrossRef]
- Li, W.; Yang, R.; Ying, D.; Yu, J.; Sanguansri, L.; Augustin, M.A. Analysis of polyphenols in apple pomace: A comparative study of different extraction and hydrolysis procedures. Ind. Crops Prod. 2020, 147, 112250. [Google Scholar] [CrossRef]
- Pérez-Ramírez, I.F.; Reynoso-Camacho, R.; Saura-Calixto, F.; Pérez-Jiménez, J. Comprehensive Characterization of Extractable and Nonextractable Phenolic Compounds by High-Performance Liquid Chromatography–Electrospray Ionization–Quadrupole Time-of-Flight of a Grape/Pomegranate Pomace Dietary Supplement. J. Agric. Food Chem. 2018, 66, 661–673. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chandrasekara, A.; Shahidi, F. Content of Insoluble Bound Phenolics in Millets and Their Contribution to Antioxidant Capacity. J. Agric. Food Chem. 2010, 58, 6706–6714. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Zhang, B.; Li, X.; Chen, P.X.; Zhang, H.; Liu, R.; Tsao, R. Bound Phenolics of Quinoa Seeds Released by Acid, Alkaline, and Enzymatic Treatments and Their Antioxidant and α-Glucosidase and Pancreatic Lipase Inhibitory Effects. J. Agric. Food Chem. 2016, 64, 1712–1719. [Google Scholar] [CrossRef]
- Fernandes, V.C.; Domingues, V.F.; de Freitas, V.; Delerue-Matos, C.; Mateus, N. Strawberries from integrated pest management and organic farming: Phenolic composition and antioxidant properties. Food Chem. 2012, 134, 1926–1931. [Google Scholar] [CrossRef] [Green Version]
- Teixeira, N.; Mateus, N.; de Freitas, V.; Oliveira, J. Wine industry by-product: Full polyphenolic characterization of grape stalks. Food Chem. 2018, 268, 110–117. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [Green Version]
- Bondet, V.; Brand-Williams, W.; Berset, C. Kinetics and Mechanisms of Antioxidant Activity using the DPPH.Free Radical Method. Lebensm.-Wiss. Technol. 1997, 30, 609–615. [Google Scholar] [CrossRef]
- Gökmen, V.; Serpen, A.; Fogliano, V. Direct measurement of the total antioxidant capacity of foods: The ‘QUENCHER’ approach. Trends Food Sci. Technol. 2009, 20, 278–288. [Google Scholar] [CrossRef]
- Serpen, A.; Capuano, E.; Fogliano, V.; Gökmen, V. A New Procedure To Measure the Antioxidant Activity of Insoluble Food Components. J. Agric. Food Chem. 2007, 55, 7676–7681. [Google Scholar] [CrossRef]
- Nunes, M.C.; Fernandes, I.; Vasco, I.; Sousa, I.; Raymundo, A. Tetraselmis chuii as a Sustainable and Healthy Ingredient to Produce Gluten-Free Bread: Impact on Structure, Colour and Bioactivity. Foods 2020, 9, 579. [Google Scholar] [CrossRef] [PubMed]
- Khemiri, S.; Nunes, M.C.; Bessa, R.J.B.; Alves, S.P.; Smaali, I.; Raymundo, A. Technological Feasibility of Couscous-Algae-Supplemented Formulae: Process Description, Nutritional Properties and In Vitro Digestibility. Foods 2021, 10, 3159. [Google Scholar] [CrossRef] [PubMed]
- Kırbaş, Z.; Kumcuoglu, S.; Tavman, S. Effects of apple, orange and carrot pomace powders on gluten-free batter rheology and cake properties. J. Food Sci. Technol. 2019, 56, 914–926. [Google Scholar] [CrossRef]
- Benítez, V.; Mollá, E.; Martín-Cabrejas, M.A.; Aguilera, Y.; López-Andréu, F.J.; Esteban, R.M. Effect of sterilisation on dietary fibre and physicochemical properties of onion by-products. Food Chem. 2011, 127, 501–507. [Google Scholar] [CrossRef] [PubMed]
- Santos, D.; Lopes da Silva, J.A.; Pintado, M. Fruit and vegetable by-products’ flours as ingredients: A review on production process, health benefits and technological functionalities. LWT 2022, 154, 112707. [Google Scholar] [CrossRef]
- Föste, M.; Verheyen, C.; Jekle, M.; Becker, T. Fibres of milling and fruit processing by-products in gluten-free bread making: A review of hydration properties, dough formation and quality-improving strategies. Food Chem. 2020, 306, 125451. [Google Scholar] [CrossRef] [PubMed]
- Shahidi, F.; Yeo, J.D. Insoluble-Bound Phenolics in Food. Molecules 2016, 21, 1216. [Google Scholar] [CrossRef]
- Saura-Calixto, F. Concept and health-related properties of nonextractable polyphenols: The missing dietary polyphenols. J Agric. Food Chem. 2012, 60, 11195–11200. [Google Scholar] [CrossRef]
- Wang, Z.; Li, S.; Ge, S.; Lin, S. Review of Distribution, Extraction Methods, and Health Benefits of Bound Phenolics in Food Plants. J. Agric. Food Chem. 2020, 68, 3330–3343. [Google Scholar] [CrossRef]
- Gabour Sad, T.; Djafaridze, I.; Kalandia, A.; Vanidze, M.; Smilkov, K.; Jacob, C. Antioxidant Properties of the Native Khechechuri Pear from Western Georgia. Science 2021, 3, 10. [Google Scholar] [CrossRef]
- Acosta-Estrada, B.A.; Gutiérrez-Uribe, J.A.; Serna-Saldívar, S.O. Bound phenolics in foods, a review. Food Chem. 2014, 152, 46–55. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Liu, Z.; Tamia, G.M.; He, X.; Sun, J.; Chen, P.X.; Lee, S.-H.; Wang, T.T.Y.; Gao, B.; Xie, Z.; et al. Soluble Free, Soluble Conjugated, and Insoluble Bound Phenolics in Tomato Seeds and Their Radical Scavenging and Antiproliferative Activities. J. Agric. Food Chem. 2022, 70, 9039–9047. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.-J.; Zhang, L.; Wang, H.; Ai, L.; Xiong, W. Insight into protein-starch ratio on the gelatinization and retrogradation characteristics of reconstituted rice flour. Int. J. Biol. Macromol. 2020, 146, 524–529. [Google Scholar] [CrossRef] [PubMed]
- Ronda, F.; Oliete, B.; Gómez, M.; Caballero, P.A.; Pando, V. Rheological study of layer cake batters made with soybean protein isolate and different starch sources. J. Food Eng. 2011, 102, 272–277. [Google Scholar] [CrossRef]
- Ruiz-Ramírez, J.; Serra, X.; Arnau, J.; Gou, P. Profiles of water content, water activity and texture in crusted dry-cured loin and in non-crusted dry-cured loin. Meat Sci. 2005, 69, 519–525. [Google Scholar] [CrossRef]
- Aguilar, J.M.; Cordobés, F.; Raymundo, A.; Guerrero, A. Thermal gelation of mixed egg yolk/kappa-carrageenan dispersions. Carbohydr. Polym. 2017, 161, 172–180. [Google Scholar] [CrossRef]
PP (Control) | PP-YPE (Mixture) | |
---|---|---|
PP (g) | 7.5 | 6.75 |
YPE (g) | - | 0.75 |
Water (g) | 15.00 | 15.00 |
% (DW) | |
---|---|
Moisture | 6.3 |
Protein | 1.8 |
Fat | 1.1 |
Ash | 1.1 |
Total Dietary Fibers (TDF) | 74.5 |
Insoluble Dietary Fibers (IDF) | 61 |
Soluble Dietary Fibers (SDF) * | 13 |
Carbohydrates ** | 15.0 |
G′ | G′′ | |||
---|---|---|---|---|
α′ | β′ | α′′ | β′′ | |
PP | 416,584 ± 33,245 a | 0.1445 ± 0.004 a | 105,220 ± 8601 a | 0.1773 ± 0.007 a |
PP-YPE | 328,949 ± 43,319 b | 0.149 ± 0.003 a | 82,491 ± 11,109 b | 0.162 ± 0.006 b |
PP—H | 428,146 ± 21,274 a | 0.148 ± 0.001 a | 107,692 ± 4453 a | 0.177 ± 0.006 a |
PP-YPE—H | 402,475 ± 26,053 a | 0.147 ± 0.006 a | 100,326 ± 6825 a | 0.167 ± 0.005 a,b |
η0 (Pa.s) | m | k (s) | R2 | |
---|---|---|---|---|
PP | 7.65 × 106 ± 2.45 × 105 a | 1.28 ± 0.01 a | 795 ± 94 a | 0.99 ± 0.002 |
PP-YPE | 5.94 × 106 ± 4.15 × 105 b | 1.29 ± 0.01 a | 647 ± 81 a | 0.98 ± 0.03 |
PP—H | 7.60 × 106 ± 5.51 × 105 a | 1.17 ± 0.02 b | 1141 ± 599 a | 0.99 ± 0.003 |
PP-YPE—H | 7.35 × 106 ± 5.21 × 105 a | 1.20 ± 0.01 b | 1195 ± 379 a | 0.97 ± 0.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernandes, A.; Simões, S.; Ferreira, I.M.P.L.V.O.; Alegria, M.J.; Mateus, N.; Raymundo, A.; de Freitas, V. Upcycling Rocha do Oeste Pear Pomace as a Sustainable Food Ingredient: Composition, Rheological Behavior and Microstructure Alone and Combined with Yeast Protein Extract. Molecules 2023, 28, 179. https://doi.org/10.3390/molecules28010179
Fernandes A, Simões S, Ferreira IMPLVO, Alegria MJ, Mateus N, Raymundo A, de Freitas V. Upcycling Rocha do Oeste Pear Pomace as a Sustainable Food Ingredient: Composition, Rheological Behavior and Microstructure Alone and Combined with Yeast Protein Extract. Molecules. 2023; 28(1):179. https://doi.org/10.3390/molecules28010179
Chicago/Turabian StyleFernandes, Ana, Sara Simões, Isabel M. P. L. V. O. Ferreira, Maria João Alegria, Nuno Mateus, Anabela Raymundo, and Victor de Freitas. 2023. "Upcycling Rocha do Oeste Pear Pomace as a Sustainable Food Ingredient: Composition, Rheological Behavior and Microstructure Alone and Combined with Yeast Protein Extract" Molecules 28, no. 1: 179. https://doi.org/10.3390/molecules28010179
APA StyleFernandes, A., Simões, S., Ferreira, I. M. P. L. V. O., Alegria, M. J., Mateus, N., Raymundo, A., & de Freitas, V. (2023). Upcycling Rocha do Oeste Pear Pomace as a Sustainable Food Ingredient: Composition, Rheological Behavior and Microstructure Alone and Combined with Yeast Protein Extract. Molecules, 28(1), 179. https://doi.org/10.3390/molecules28010179