Food Ingredients Derived from Lemongrass Byproduct Hydrodistillation: Essential Oil, Hydrolate, and Decoction
Abstract
:1. Introduction
2. Results
2.1. Characterization of Lemongrass Byproducts: Essential Oil and Hydrolate
Peak Number | Compound | RIlit h | RIcal g | EO a (mg/g) | Hydrolate EO a (mg/g) | Water Solubility (mg/L at 37 °C) b | logP | Reliability of ID p |
---|---|---|---|---|---|---|---|---|
1 | Linalool | 1507 i | 1535 | 5.03 ± 2.27 * | 2.34 ± 1.78 * | 480 | 2.97 c | A, B |
2 | 2-Undecanone | 1579 j | 1574 | 3.90 ± 0.50 * | 1.54 ± 1.26 * | 12 | 4.25 b | B |
3 | Neral | 1656 i | 1650 | 212.17 ± 55.66 * | 135.00 ± 52.79 * | 400 | 3.45 d | B |
4 | Geranial | 1742 k | 1704 | 309.21 ± 58.95 * | 213.79 ± 55.57 * | 400 | 3.45 d | B |
5 | Geranyl acetate | 1719 i | 1732 | 5.09 ± 0.83 * | 3.60 ± 1.33 * | 190 | 4.48 d | B |
6 | Citronellol | 1762 k | 1750 | 3.57 ± 0.42 * | 3.85 ± 0.17 * | 350 | 3.91 c | B |
7 | Nerol | 1836 k | 1779 | 4.48 ± 0.16 * | 4.17 ± 0.25 * | 1370 | 3.47 e | B |
8 | Geraniol | 1840 k | 1830 | 31.57 ± 5.95 * | 69.50 ± 16.97 * | 1370 | 3.56 f | B |
9 | Caryophyllene oxide | 1999 k | 1999 | 2.54 ± 0.01 * | 5.57 ± 1.27 * | 7 | 3.49 b | B |
10 | Perillyl alcohol | 1972 i | 2022 | - | 1.07 ± 0.43 | 1900 | 2.50 b | B |
11 | Octanoic acid | 2164 l | 2129 | - | 3.13 ± 1.31 | 910 | 2.92 b | B |
12 | Dihydroactinidiolide | 2294 m | 2210 | - | 1.35 ± 0.58 | 610 | 3.28 b | B |
13 | Neric acid | 2331 k | 2335 | 7.14 ± 3.51 * | 28.71 ± 12.19 * | 1220 | 2.72 b | B |
14 | Geranic acid | 2356 n | 2377 | 36.18 ± 17.34 * | 115.20 ± 43.52 * | 1220 | 2.72 b | A, B |
15 | Palmitic acid | 2866 o | 2814 | 4.89 ± 0.73 * | 5.38 ± 1.88 * | 0.41 | 6.26 b | A, B |
Total | 62.58 ± 10.38 | 59.42 ± 4.23 | ||||||
Yield (% w/w) | 0.21 | 0.21 |
2.2. C. citratus Byproducts: EO Antimicrobial Activity
2.3. Characterization of Lemongrass Byproducts: NonDistilled Aqueous Phase
2.4. Hydrolate as an Ingredient for Beverage Development
3. Discussion
4. Materials and Methods
4.1. Collection of Plant Material of Cymbopogon citratus
4.2. Extraction of Essential Oils (EOs) and Polymeric Material
4.3. Matcha Tea Preparation
4.4. Determination of Essential Oils Composition
4.5. Sugar Analysis
4.6. Antimicrobial Activity of EOs
4.7. Total Phenolic Compounds
4.8. ABTS•+ Radical Cation Decolorization Assay
4.9. Microbial Analyses of Matcha Tea Beverages
4.10. Statistical Analyses
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Avoseh, O.; Oyedeji, O.; Rungqu, P.; Nkeh-Chungag, B.; Oyedeji, A. Cymbopogon species; Ethnopharmacology, phytochemistry and the pharmacological importance. Molecules 2015, 20, 7438–7453. [Google Scholar] [CrossRef] [PubMed]
- Piasecki, B.; Biernasiuk, A.; Skiba, A.; Skalicka-wo, K. Composition, Anti-MRSA activity and toxicity of essential oils from Cymbopogon species. Molecules 2021, 26, 7542. [Google Scholar] [CrossRef] [PubMed]
- Ajayi, E.O.; Sadimenko, A.P.; Afolayan, A.J. GC-MS evaluation of Cymbopogon citratus (DC) Stapf oil obtained using modified hydrodistillation and microwave extraction methods. Food Chem. 2016, 209, 262–266. [Google Scholar] [CrossRef] [PubMed]
- Peichel, C.; Nair, D.V.T.; Dewi, G.; Donoghue, A.M.; Reed, K.M.; Kollanoor Johny, A. Effect of Lemongrass (Cymbopogon citratus) Essential Oil on the Survival of Multidrug-Resistant Salmonella enterica serovar Heidelberg in Contaminated Poultry Drinking Water. J. Appl. Poult. Res. 2019, 28, 1121–1130. [Google Scholar] [CrossRef]
- De Groot, A.; Schmidt, E. Essential Oils, Part V: Peppermint Oil, Lavender Oil, and Lemongrass Oil. Dermatitis 2016, 27, 325–332. [Google Scholar] [CrossRef] [PubMed]
- Kieling, D.D.; Barbosa-Cánovas, G.V.; Prudencio, S.H. Effects of high pressure processing on the physicochemical and microbiological parameters, bioactive compounds, and antioxidant activity of a lemongrass-lime mixed beverage. J. Food Sci. Technol. 2019, 56, 409–419. [Google Scholar] [CrossRef]
- Verma, T.; Sinha, M.; Bansal, N.; Yadav, S.R.; Shah, K.; Chauhan, N.S. Plants Used as Antihypertensive. Nat. Prod. Bioprospect. 2020, 11, 155–184. [Google Scholar] [CrossRef]
- Sousa, R.; Figueirinha, A.; Batista, M.T.; Pina, M.E. Formulation effects in the antioxidant activity of extract from the leaves of cymbopogon citratus (Dc) stapf. Molecules 2021, 26, 4518. [Google Scholar] [CrossRef]
- Sharma, A.; Sharma, N.K.; Srivastava, A.; Kataria, A.; Dubey, S.; Sharma, S.; Kundu, B. Clove and lemongrass oil based non-ionic nanoemulsion for suppressing the growth of plant pathogenic Fusarium oxysporum f.sp. lycopersici. Ind. Crops Prod. 2018, 123, 353–362. [Google Scholar] [CrossRef]
- Ekpenyong, C.E.; Akpan, E.E. Use of Cymbopogon citratus essential oil in food preservation: Recent advances and future perspectives. Crit. Rev. Food Sci. Nutr. 2017, 57, 2541–2559. [Google Scholar] [CrossRef]
- Hu, W.; Li, C.; Dai, J.; Cui, H.; Lin, L. Antibacterial activity and mechanism of Litsea cubeba essential oil against methicillin-resistant Staphylococcus aureus (MRSA). Ind. Crops Prod. 2019, 130, 34–41. [Google Scholar] [CrossRef]
- Long, N.; Tang, H.; Sun, F.; Lin, L.; Dai, M. Effect and mechanism of citral against methicillin-resistant Staphylococcus aureus in vivo. J. Sci. Food Agric. 2019, 99, 4423–4429. [Google Scholar] [CrossRef] [PubMed]
- Masuda, T.; Odaka, Y.; Ogawa, N.; Nakamoto, K.; Kuninaga, H. Identification of geranic acid, a tyrosinase inhibitor in lemongrass (Cymbopogon citratus). J. Agric. Food Chem. 2008, 56, 597–601. [Google Scholar] [CrossRef]
- Venzon, L.; Mariano, L.N.B.; Somensi, L.B.; Boeing, T.; de Souza, P.; Wagner, T.M.; de Andrade, S.F.; Nesello, L.A.N.; da Silva, L.M. Essential oil of Cymbopogon citratus (lemongrass) and geraniol, but not citral, promote gastric healing activity in mice. Biomed. Pharmacother. 2018, 98, 118–124. [Google Scholar] [CrossRef]
- Boukhatem, M.N.; Ferhat, M.A.; Rajabi, M.; Mousa, S.A. Solvent-free microwave extraction: An eco-friendly and rapid process for green isolation of essential oil from lemongrass. Nat. Prod. Res. 2020, 36, 664–667. [Google Scholar] [CrossRef] [PubMed]
- Haque, A.N.M.A.; Remadevi, R.; Naebe, M. Lemongrass (Cymbopogon): A review on its structure, properties, applications and recent developments. Cellulose 2018, 25, 5455–5477. [Google Scholar] [CrossRef]
- Goes, T.C.; Ursulino, F.R.C.; Almeida-Souza, T.H.; Alves, P.B.; Teixeira-Silva, F. Effect of lemongrass aroma on experimental anxiety in humans. J. Altern. Complement. Med. 2015, 21, 766–773. [Google Scholar] [CrossRef]
- Rehman, J.U.; Ali, A.; Khan, I.A. Plant based products: Use and development as repellents against mosquitoes: A review. Fitoterapia 2014, 95, 65–74. [Google Scholar] [CrossRef]
- Gavahian, M.; Chu, Y.H.; Lorenzo, J.M.; Mousavi Khaneghah, A.; Barba, F.J. Essential oils as natural preservatives for bakery products: Understanding the mechanisms of action, recent findings, and applications. Crit. Rev. Food Sci. Nutr. 2020, 60, 310–321. [Google Scholar] [CrossRef]
- Al-Tayyar, N.A.; Youssef, A.M.; Al-Hindi, R.R. Edible coatings and antimicrobial nanoemulsions for enhancing shelf life and reducing foodborne pathogens of fruits and vegetables: A review. Sustain. Mater. Technol. 2020, 26, e00215. [Google Scholar] [CrossRef]
- De Oliveira, T.L.C.; de Soares, R.A.; Piccoli, R.H. A Weibull model to describe antimicrobial kinetics of oregano and lemongrass essential oils against Salmonella Enteritidis in ground beef during refrigerated storage. Meat Sci. 2013, 93, 645–651. [Google Scholar] [CrossRef] [PubMed]
- Salvia-Trujillo, L.; Rojas-Graü, M.A.; Soliva-Fortuny, R.; Martín-Belloso, O. Use of antimicrobial nanoemulsions as edible coatings: Impact on safety and quality attributes of fresh-cut fuji apples. Postharvest Biol. Technol. 2015, 105, 8–16. [Google Scholar] [CrossRef]
- Tongnuanchan, P.; Benjakul, S. Essential Oils: Extraction, Bioactivities, and Their Uses for Food Preservation. J. Food Sci. 2014, 79, 1231–1249. [Google Scholar] [CrossRef]
- Bao, X.L.; Yuan, H.H.; Wang, C.Z.; Fan, W.; Lan, M.B. Polysaccharides from Cymbopogon citratus with antitumor and immunomodulatory activity. Pharm. Biol. 2015, 53, 117–124. [Google Scholar] [CrossRef] [PubMed]
- Tavares, F.; Costa, G.; Francisco, V.; Liberal, J.; Figueirinha, A.; Lopes, M.C.; Cruz, M.T.; Batista, M.T. Cymbopogon citratus industrial waste as a potential source of bioactive compounds. J. Sci. Food Agric. 2015, 95, 2652–2659. [Google Scholar] [CrossRef] [PubMed]
- Wishart, D.S.; Feunang, Y.D.; Marcu, A.; Guo, A.C.; Liang, K.; Vázquez-Fresno, R.; Sajed, T.; Johnson, D.; Li, C.; Karu, N.; et al. HMDB 4.0: The human metabolome database for 2018. Nucleic Acids Res. 2018, 46, D608–D617. [Google Scholar] [CrossRef]
- Ohtsubo, S.; Fujita, T.; Matsushita, A.; Kumamoto, E. Inhibition of the compound action potentials of frog sciatic nerves by aroma oil compounds having various chemical structures. Pharmacol. Res. Perspect. 2015, 3, e00127. [Google Scholar] [CrossRef]
- Taherpour, A.; Maroofi, H.; Rafie, Z.; Larijani, K. Chemical composition analysis of the essential oil of Melissa officinalis L. from Kurdistan, Iran by HS/SPME method and calculation of the biophysicochemical coefficients of the components. Nat. Prod. Res. 2012, 26, 152–160. [Google Scholar] [CrossRef]
- Genovese, A.; Gambuti, A.; Lamorte, S.A.; Moio, L. An extract procedure for studying the free and glycosilated aroma compounds in grapes. Food Chem. 2013, 136, 822–834. [Google Scholar] [CrossRef]
- Griffin, S.; Wyllie, S.G.; Markham, J. Determination of octanol-water partition coefficient for terpenoids using reversed-phase high-performance liquid chromatography. J. Chromatogr. A 1999, 864, 221–228. [Google Scholar] [CrossRef]
- Cheong, M.W.; Zhu, D.; Sng, J.; Liu, S.Q.; Zhou, W.; Curran, P.; Yu, B. Characterisation of calamansi (Citrus microcarpa). Part II: Volatiles, physicochemical properties and non-volatiles in the juice. Food Chem. 2012, 134, 696–703. [Google Scholar] [CrossRef] [PubMed]
- Romero-Frías, A.; Simões-Bento, J.M.; Osorio, C. Chemical signaling between guava (Psidium guajava L., Myrtaceae) and the guava weevil (Conotrachelus psidii Marshall). Revista Facultad Ciencias Básicas 2015, 11, 102–113. [Google Scholar] [CrossRef] [Green Version]
- Cheong, M.W.; Loke, X.Q.; Liu, S.Q.; Pramudya, K.; Curran, P.; Yu, B. Characterization of volatile compounds and aroma profiles of malaysian pomelo (citrus grandis (l.) osbeck) blossom and peel. J. Essent. Oil Res. 2011, 23, 34–44. [Google Scholar] [CrossRef]
- Mebazaa, R.; Rega, B.; Camel, V. Analysis of human male armpit sweat after fenugreek ingestion: Characterisation of odour active compounds by gas chromatography coupled to mass spectrometry and olfactometry. Food Chem. 2011, 128, 227–235. [Google Scholar] [CrossRef] [PubMed]
- Mebazaa, R.; Mahmoudi, A.; Fouchet, M.; Dos Santos, M.; Kamissoko, F.; Nafti, A.; Cheikh, R.B.; Rega, B.; Camel, V. Characterisation of volatile compounds in Tunisian fenugreek seeds. Food Chem. 2009, 115, 1326–1336. [Google Scholar] [CrossRef]
- Ottavioli, J.; Bighelli, A.; Casanova, J.; Bang, B.T.; Van Y, P. GC (Retention Indices), GC-MS, and 13C NMR of two citral-rich Cymbopogon leaf oils: C. Flexuosus and C. tortilis. Spectrosc. Lett. 2009, 42, 506–512. [Google Scholar] [CrossRef]
- Lopes, G.R.; Passos, C.P.; Petronilho, S.; Rodrigues, C.; Teixeira, J.A.; Coimbra, M.A. Carbohydrates as targeting compounds to produce infusions resembling espresso coffee brews using quality by design approach. Food Chem. 2021, 344, 128613. [Google Scholar] [CrossRef]
- Righi, N.; Boumerfeg, S.; Deghima, A.; Fernandes, P.A.R.; Coelho, E.; Baali, F.; Cardoso, S.M.; Coimbra, M.A.; Baghiani, A. Phenolic profile, safety assessment, and anti-inflammatory activity of Salvia verbenaca L. J. Ethnopharmacol. 2021, 272, 113940. [Google Scholar] [CrossRef]
- Mathialagan, R.; Nour, A.H.; Sulaiman, Z.A.; Nour, A.H.; Raj S., T. A comparative study of lemongrass (Cymbopogon Citratus) essential oil extracted by microwave-assisted hydrodistillation (MAHD) and conventional hydrodistillation (HD) method. Int. J. Chem. Eng. Appl. 2014, 5, 104–108. [Google Scholar] [CrossRef] [Green Version]
- Krzyśko-łupicka, T.; Sokół, S.; Sporek, M.; Piekarska-Stachowiak, A.; Walkowiak-Lubczyk, W.; Sudoł, A. Effectiveness of the influence of selected essential oils on the growth of parasitic fusarium isolated from wheat kernels from central europe. Molecules 2021, 26, 6488. [Google Scholar] [CrossRef]
- Mirjana, S.; Nada, B. Chemical composition and antimicrobial variability of satureja montana L. essential oils produced during ontogenesis. J. Essent. Oil Res. 2004, 16, 387–391. [Google Scholar] [CrossRef]
- Djenane, D.; Yangüela, J.; Montañés, L.; Djerbal, M.; Roncalés, P. Antimicrobial activity of Pistacia lentiscus and Satureja montana essential oils against Listeria monocytogenes CECT 935 using laboratory media: Efficacy and synergistic potential in minced beef. Food Control 2011, 22, 1046–1053. [Google Scholar] [CrossRef]
- Kieling, D.D.; Prudencio, S.H. Blends of lemongrass derivatives and lime for the preparation of mixed beverages: Antioxidant, physicochemical, and sensory properties. J. Sci. Food Agric. 2019, 99, 1302–1310. [Google Scholar] [CrossRef] [PubMed]
- Mirzaei-Najafgholi, H.; Tarighi, S.; Golmohammadi, M.; Taheri, P. The effect of citrus essential oils and their constituents on growth of Xanthomonas citri subsp. citri. Molecules 2017, 22, 591. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, H.; Barros, A.S.; Delgadillo, I.; Coimbra, M.A.; Santos, C. Effects of fungus inoculation and salt stress on physiology and biochemistry of in vitro grapevines: Emphasis on sugar composition changes by FT-IR analyses. Environ. Exp. Bot. 2009, 65, 1–10. [Google Scholar] [CrossRef]
- Reis, S.F.; Coelho, E.; Evtuguin, D.V.; Coimbra, M.A.; Lopes, P.; Cabral, M.; Mateus, N.; Freitas, V. Migration of Tannins and Pectic Polysaccharides from natural cork stoppers to the hydroalcoholic solution. J. Agric. Food Chem. 2020, 68, 14230–14242. [Google Scholar] [CrossRef]
- Fernandes, P.A.R.; Le Bourvellec, C.; Renard, C.M.G.C.; Nunes, F.M.; Bastos, R.; Coelho, E.; Wessel, D.F.; Coimbra, M.A.; Cardoso, S.M. Revisiting the chemistry of apple pomace polyphenols. Food Chem. 2019, 294, 9–18. [Google Scholar] [CrossRef]
- Costa, G.; Grangeia, H.; Figueirinha, A.; Figueiredo, I.V.; Batista, M.T. Influence of harvest date and material quality on polyphenolic content and antioxidant activity of Cymbopogon citratus infusion. Ind. Crops Prod. 2016, 83, 738–745. [Google Scholar] [CrossRef]
- Saraiva, M.; Correia, C.B.; Cunha, I.C.; Maia, C.; Bonito, C.C.; Furtado, R.; Calhau, M.A. Interpretação de Resultados de Ensaios Microbiológicos em Alimentos Prontos para Consumo e em Superfícies do Ambiente de Preparação e Distribuição Alimentar: Valores-Guia; Instituto Nacional de Saúde Doutor Ricardo Jorge: Lisboa, Portugal, 2019; ISBN 9789898794529. [Google Scholar]
- Gaonkar, R.; Singh, J.; Chauhan, A.; Avti, P.K.; Hegde, G. Geraniol and Citral as potential therapeutic agents targeting the HSP90 activity: An in silico and experimental approach. Phytochemistry 2022, 195, 113058. [Google Scholar] [CrossRef]
- Smith, R.L.; Waddell, W.J.; Cohen, S.M.; Feron, V.J.; Marnett, L.J.; Portoghese, P.S.; Rietjens, I.M.C.M.; Adams, T.B.; Gavin, C.L.; Mcgowen, M.M.; et al. Gras flavoring substances 24. Food Technol. 2009, 63, 46–62. [Google Scholar]
- Coimbra, M.A.; Waldron, K.W.; Selvendran, R.R. Isolation and characterisation of cell wall polymers from olive pulp (Olea europaea L.). Carbohydr. Res. 1994, 252, 245–262. [Google Scholar] [CrossRef]
- Santos, J.D.C.; Coelho, E.; Silva, R.; Passos, C.P.; Teixeira, P.; Henriques, I.; Coimbra, M.A. Chemical composition and antimicrobial activity of Satureja montana byproducts essential oils. Ind. Crops Prod. 2019, 137, 541–548. [Google Scholar] [CrossRef]
- Coelho, E.; Pinto, M.; Bastos, R.; Cruz, M.; Nunes, C.; Rocha, S.M.; Coimbra, M.A. Concentrate apple juice industry: Aroma and pomace valuation as food ingredients. Appl. Sci. 2021, 11, 2443. [Google Scholar] [CrossRef]
- Bastos, R.; Coelho, E.; Coimbra, M.A. Modifications of Saccharomyces pastorianus cell wall polysaccharides with brewing process. Carbohydr. Polym. 2015, 124, 322–330. [Google Scholar] [CrossRef] [Green Version]
- Nobre, C.; Sousa, S.C.; Silva, S.P.; Pinheiro, A.C.; Coelho, E.; Vicente, A.A.; Gomes, A.M.P.; Coimbra, M.A.; Teixeira, J.A.; Rodrigues, L.R. In vitro digestibility and fermentability of fructo-oligosaccharides produced by Aspergillus ibericus. J. Funct. Foods 2018, 46, 278–287. [Google Scholar] [CrossRef] [Green Version]
- Araújo, S.; Henriques, I.S.; Leandro, S.M.; Alves, A.; Pereira, A.; Correia, A. Gulls identified as major source of fecal pollution in coastal waters: A microbial source tracking study. Sci. Total Environ. 2014, 470–471, 84–91. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
Bacterial Strains | Inhibition Zone | MIC | |||||
---|---|---|---|---|---|---|---|
C. citratus EO a | CIP b | Gen c | Sterile Water | C. citratus Byproducts EO (μg/mL) | Citral Standard (μg/mL) | C. citratus Byproducts EO (μg citral/mL) | |
E. coli ATCC 25922 | 3 ± 5 * (0.91 mg/0.33 mg) | 33 ± 1 # | 22 ± 0 $ | ND | 617 ± 31.2 * | 1070 # | 322 ± 19.9 * |
S. enterica sv Anatum SF2 | 0 * (0.91 mg/0.33 mg) | 31 ± 1 # | 18 ± 2 $ | ND | 1550 ± 20.4 * | >2035 # | 808 ± 13.0 $ |
S. aureus ATCC 6538 | 13 ± 2 * (0.91 mg/0.33 mg) | 26 ± 2 # | 20 ± 0 $ | ND | 250 * | 105 # | 130 $ |
Samples | Yield (%) | Total Carbohydrates (mg/g) | Carbohydrates (%Molar) | Total Phenolics a (mg GAE/g) | TEAC a (mM Trolox eq./g) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Rha | Ara | Xyl | Man | Fru | Gal | Glc | UA | |||||
Free sugar | 14.8 * | 97 | 9 | 6 | 0 | 0 | 16 | 9 | 52 | - | 20.7 ± 2.9 | 1.4 |
Total sugar | 407 | 2 | 1 | tr | 3 | - | 3 | 63 | 27 | |||
HMWM | 1.4 * | 224 | 5 | 9 | 4 | 1 | - | 7 | 66 | 8 | 246.3 ± 18.4 | 4.4 |
WIM | 31.7 | 259 | 2 | 8 | 3 | 1 | - | 7 | 45 | 34 | - | - |
Et50 | 9.2 | 346 | 3 | 6 | 2 | 1 | - | 9 | 47 | 32 | 127.7 ± 3.0 | 3.9 |
Et70 | 7.9 | 313 | 5 | 18 | 14 | 2 | - | 17 | 26 | 18 | 210.4 ± 10.0 | 4.6 |
EtSn | 38.3 | 289 | 6 | 5 | 3 | 1 | - | 3 | 76 | 7 | 460.1 ± 49.4 | 5.6 |
% Hydrolate | Consumer Evaluation | Citral (ppm) | pH | Total Mesophiles (CFU/mL) | Moulds and Yeasts (CFU/mL) |
---|---|---|---|---|---|
0 | − | 0 | 5.99 | 0 | >103 |
20 | + | 31 | 5.82 | 26 | 0 |
30 | ++ | 47 | nd | nd | nd |
35 | +++ | 54 | 5.92 | 20 | 0 |
40 | + | 62 | nd | nd | nd |
45 | − | 70 | nd | nd | nd |
50 | − | 78 | 6.20 | 0 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodrigues, L.; Coelho, E.; Madeira, R.; Teixeira, P.; Henriques, I.; Coimbra, M.A. Food Ingredients Derived from Lemongrass Byproduct Hydrodistillation: Essential Oil, Hydrolate, and Decoction. Molecules 2022, 27, 2493. https://doi.org/10.3390/molecules27082493
Rodrigues L, Coelho E, Madeira R, Teixeira P, Henriques I, Coimbra MA. Food Ingredients Derived from Lemongrass Byproduct Hydrodistillation: Essential Oil, Hydrolate, and Decoction. Molecules. 2022; 27(8):2493. https://doi.org/10.3390/molecules27082493
Chicago/Turabian StyleRodrigues, Luís, Elisabete Coelho, Renata Madeira, Pedro Teixeira, Isabel Henriques, and Manuel A. Coimbra. 2022. "Food Ingredients Derived from Lemongrass Byproduct Hydrodistillation: Essential Oil, Hydrolate, and Decoction" Molecules 27, no. 8: 2493. https://doi.org/10.3390/molecules27082493
APA StyleRodrigues, L., Coelho, E., Madeira, R., Teixeira, P., Henriques, I., & Coimbra, M. A. (2022). Food Ingredients Derived from Lemongrass Byproduct Hydrodistillation: Essential Oil, Hydrolate, and Decoction. Molecules, 27(8), 2493. https://doi.org/10.3390/molecules27082493