Phenolic Contents, Organic Acids, and the Antioxidant and Bio Activity of Wild Medicinal Berberis Plants- as Sustainable Sources of Functional Food
Abstract
:1. Introduction
2. Results
2.1. Organic Acid Contents of B. vulgaris Fruits
2.2. Phenolic Content and Antioxidant Activity
2.3. Physiochemical Properties
2.4. Mineral Contents
2.5. Antimicrobial Activity
3. Discussion
4. Materials and Methods
4.1. Berberis vulgaris Fruits Collection
4.2. Organic Acid Determination
4.3. Phenolic Compounds Determination
4.4. Physicochemical Analysis
4.5. Mineral Analysis
4.6. Antioxidant Evaluation
4.7. Antimicrobial Evaluation
4.8. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Mozaffarian, V.A. Dictionary of Iranian Plant Names; Farhang Moaser: Tehran, Iran, 2007. [Google Scholar]
- Gedikli, F. Investigation of Wallnut (Juglans regia), Black Mulberry (Morus nigra), Barberry (Berberis crataegina), Madder (Rubia tinctorum) and Alder (Alnus glutonisa) as a Protein Dye in Polyacrylamide Gel Electrophoresis. Master’s Thesis, Gaziosmanpas¸a University, Tokat, Turkey, 2006. [Google Scholar]
- Harden, G.J. (Ed.) Flora of New South Wales; NSW University Press: Kensington, Australia, 2000; Volume 1. [Google Scholar]
- Arayne, M.S.; Sultana, N.; Bahadur, S.S. The berberis story: Berberis vulgaris in therapeutics. Pak. J. Pharmacol. Sci. 2007, 20, 83–92. [Google Scholar]
- Rahimi-Madiseh, M.; Lorigoini, Z.; Zamani-Gharaghoshi, H.; Rafieian-Kopaei, M. Berberis vulgaris: Specifications and traditional uses. Iran J. Basic Med. Sci. 2017, 20, 569. [Google Scholar] [PubMed]
- Ardestani, S.B.; Sahari, M.A.; Barzegar, M.; Abbasi, S. Some physicochemical properties of Iranian native barberry fruits (abi and poloei): Berberis integerrima and Berberis vulgaris. J. Food Pharm. Sci. 2013, 1, 3. [Google Scholar]
- Rahimi-Madiseh, M.; Gholami-Arjenaki, M.; Bahmani, M.; Mardani, G.; Farzan, M.; Rafieian-Kopaei, M. Evaluation of minerals, phenolics and anti-radical activity of three species of Iranian berberis fruit. Pharma Chem. 2016, 8, 191–197. [Google Scholar]
- Rezaei, M.; Ebadi, A.; Reim, S.; Fatahi, R.; Balandary, A.; Farrokhi, N. Molecular analysis of Iranian seedless barberries via SSR. Sci. Hortic. 2011, 129, 702–709. [Google Scholar] [CrossRef]
- Yin, J.; Hu, R.; Chen, M.; Tang, J.; Li, F.; Yang, Y. Effects of berberine on glucose metabolism in vitro. Metabolism 2002, 51, 1439–1443. [Google Scholar] [CrossRef] [PubMed]
- Farhady Chitgar, M.; Varidy, M.J.; Varidy, M. Evaluation of Some Physicochemical Properties of Berberis crtagina; Book of the National Conference of Natural Products and Herbs: Bojnord, Iran, 2012. [Google Scholar]
- Imenshahidi, M.; Hosseinzadeh, H. Berberis vulgaris and berberine: An update review. Phytother. Res. 2016, 30, 1745–1764. [Google Scholar] [CrossRef]
- Fatehi, M.; Saleh, T.M.; Fatehi-Hassanabad, Z.; Farrokhfal, K.; Jafarzadeh, M.; Davodi, S. A pharmacological study on Berberis vulgaris fruit extract. J. Ethnopharmacol. 2005, 102, 46–52. [Google Scholar] [CrossRef]
- Fatehi-Hassanabad, Z.; Jafarzadeh, M.; Tarhini, A.; Fatehi, M. The antihypertensive and vasodilator effects of aqueous extract from Berberis vulgaris fruit on hypertensive rats. Phytoth. Res. 2005, 19, 222–225. [Google Scholar] [CrossRef]
- Toroglu, S.; Çenet, M. The methods used to determine antimicrobial activity of the plants and their application area. KSIU J. Eng. Sci. 2006, 9, 12–20. [Google Scholar]
- Imanshahidi, M.; Hosseinzadeh, H. Pharmacological and therapeutic effects of Berberis vulgaris and its active constituent, berberine. Phytoth. Res. 2008, 22, 999–1012. [Google Scholar] [CrossRef] [PubMed]
- Kamiloglu, O.; Ercisli, S.; Engül, M.; Toplu, C.; Serce, S. Total phenolics and antioxidant activity of jujube (Zizyphus jujube Mill.) genotypes selected from Turkey. Afr. J. Biotechnol. 2009, 8, 303–307. [Google Scholar]
- Christenhusz, M.J.M.; Byng, J.W. The number of known plants species in the world and its annual increase. Phytotaxa 2016, 261, 201–217. [Google Scholar] [CrossRef] [Green Version]
- Sabhapondit, S.; Karak, T.; Bhuyan, L.P.; Goswami, B.C.; Hazarika, M. Diversity of catechin in northeast Indian tea cultivars. Sci. World J. 2012, 2012, 485193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sweis, I.E.; Cressey, B.C. Potential role of the common food additive manufactured citric acid in eliciting significant inflammatory reactions contributing to serious disease states: A series of four case reports. Toxicol. Rep. 2018, 5, 808–812. [Google Scholar] [CrossRef]
- Gurtler, J.B.; Mai, T.L. PRESERVATIVES|Traditional preservatives—Organic acids. In Encyclopedia of Food Microbiology, 2nd ed.; Academic Press: London, UK, 2014; pp. 119–130. [Google Scholar]
- Panda, S.K.; Mishra, S.S.; Kayitesi, E.; Ray, R.C. Microbial-processing of fruit and vegetable wastes for production of vital enzymes and organic acids: Biotechnology and scopes. Env. Res. 2016, 146, 161–172. [Google Scholar] [CrossRef] [PubMed]
- Gündogdu, M.; Muradoglu, F.; Gazioglu, R.I.; Yilmaz, H. Determination of fruit chemical properties of Morus nigra L. Morus alba L. and Morus rubra L. by HPLC. Sci. Hortic. 2011, 132, 37–41. [Google Scholar]
- Poyrazoglu, E.; Gokmen, V.; Artik, N. Organic Acids and Phenolic Compounds in pomegranates (Punica granatum L.) grown in Turkey. J. Food Comp. Ana. 2002, 15, 567–575. [Google Scholar] [CrossRef]
- Das, A.B.; Goud, V.V.; Chandan, D. Phenolic Compounds as Functional Ingredients in Beverages. In Value-Added Ingredients and Enrichments of Beverages; Academic Press: Cambridge, MA, USA, 2019; pp. 285–323. [Google Scholar]
- Isemura, M. Catechin in human health and disease. Molecules 2019, 24, 528. [Google Scholar] [CrossRef] [Green Version]
- Cho, S.Y.; Park, P.J.; Shin, H.J.; Kim, Y.K.; Shin, D.W.; Shin, E.S. (-)-Catechin suppresses expression of Kruppel-like factor 7 and increases expression and secretion of adiponectin protein in 3T3-L1 cells. Am. J. Physiol. Endocrinol. Metab. 2007, 292, E1166–E1172. [Google Scholar] [CrossRef] [Green Version]
- Hirasawa, M.; Takada, K. Multiple effects of green tea catechin on the antifungal activity of antimycotics against Candida albicans. J. Antimicrob. Chemother. 2004, 53, 225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katalinić, V.; Milos, M.; Modun, D.; Musić, I.; Boban, M. Antioxidant effectiveness of selected wines in comparison with (+)-catechin. Food Chem. 2004, 86, 593–600. [Google Scholar] [CrossRef]
- Zuo, J.; Wei, T.; Yibin, X. Chapter 68-Anti-Hepatitis B Virus Activity of Chlorogenic Acid and Its Related Compounds, Coffee in Health and Disease Prevention; Academic Press: Cambridge, MA, USA, 2015; pp. 607–613. [Google Scholar]
- Lu, Z.; Nie, G.; Belton, P.S.; Tang, H.; Zhao, B. Structure-activity relationship analysis of antioxidant ability and neuroprotective effect of gallic acid derivatives. Neurochem. Int. 2006, 48, 263–274. [Google Scholar] [CrossRef]
- Embuscado, M.E. Spices and herbs: Natural sources of antioxidants-a mini review. J. Funct. Foods 2015, 18, 811–819. [Google Scholar] [CrossRef]
- Sadasivam, K.; Kumaresan, R. Antioxidant behavior of mearnsetin and myricetin flavonoid compounds–a DFT study. Spectro. Acta A Mol. Biomol. Spectrosc. 2011, 79, 282–293. [Google Scholar] [CrossRef] [PubMed]
- Lo, C.; Lai, T.Y.; Yang, J.S. Gallic acid inhibits the migration and invasion of A375.S2 human melanoma cells through the inhibition of matrix metalloproteinase-2 and Ras. Melanoma. Res. 2011, 21, 267–273. [Google Scholar] [CrossRef]
- BenSaad, L.A.; Kim, K.H.; Quah, C.C.; Kim, W.R.; Shahimi, M. Anti-inflammatory potential of ellagic acid, gallic acid and punicalagin A&B isolated from Punica granatum. BMC Compl. Altern. Med. 2017, 17, 47. [Google Scholar]
- Yildiz, H.; Ercisli, S.; Sengul, M. Some physicochemical characteristics, bioactive content and antioxidant characteristics of non-sprayed barberry (Berberis vulgaris L.) fruits from Turkey. Erwerbs-Obstbau 2014, 56, 123–129. [Google Scholar] [CrossRef]
- Ersoy, N.; Kupe, M.; Sagbas, H.I.; Ercisli, S. Physicochemical diversity among barberry (Berberis vulgaris L.) fruits from eastern Anatolia. Not. Bot. Horti Agrobot. Cluj-Napoca 2018, 46, 336–342. [Google Scholar] [CrossRef] [Green Version]
- Motalleb, G.; Hanachi, P.S.; Kua, H.; Othman, F.; Asmah, R. Evaluation of phenolic content and total antioxidant activity in Berberis vulgaris fruit extract. J. Biol. Sci. 2005, 5, 648–653. [Google Scholar]
- Anand, A.Z.; Badole, S.L.; Pankaj, S.S.; Mahabaleshwar, V.; Subhash, L.B. Chapter 21-Antioxidant Role of Catechin in Health and Disease. In Polyphenols in Human Health and Disease; Academic Press: Cambridge, MA, USA, 2014; pp. 267–271. [Google Scholar]
- Chiang, H.M.; Chen, C.W.; Chen, C.C.; Wang, H.W.; Jhang, J.H.; Huang, Y.H.; Wen, K.C. Role of Coffea arabica Extract and Related Compounds in Preventing Photoaging and Photodamage of the Skin. In Coffee in Health and Disease Prevention; Academic Press: Cambridge, MA, USA, 2015; pp. 523–530. [Google Scholar] [CrossRef]
- Kim, D.H.; Jeong, D.; Song, K.Y.; Seo, K.H. Comparison of traditional and backslopping methods for kefir fermentation based on physicochemical and microbiological characteristics. Food Sci. Technol. 2018, 97, 503–507. [Google Scholar] [CrossRef]
- Demir, H. Chemical composition of some wild (Polygonum cognatum, Tragopoxgom reticulatus and Berberis vulgaris) plants collected from Erzurum. Bahçe 2006, 35, 55–60. [Google Scholar]
- Karabulut, A. Biochemical Characterization of Berberis vulgaris L. and Berberis crataegina DC. Wild Fruits Exist Naturally in Bayburt City. Master’s Thesis Thesis, Bayburt University, Bayburt, Turkey, 2018. [Google Scholar]
- Akbulut, M.; Çalisir, S.; Marakoglu, T.; Çoklar, H. Some physicomechanical and nutritional properties of barberry (Berberis vulgaris L.) fruits. J. Food Proc. Eng. 2009, 32, 497–511. [Google Scholar] [CrossRef]
- Arakawa, H.; Maeda, M.; Okubo, S.; Shimamura, T. Role of hydrogen peroxide in bactericidal action of catechin. Biol. Pharm. Bull. 2004, 27, 277–281. [Google Scholar] [CrossRef] [Green Version]
- Lou, Z.; Wang, H.; Zhu, S.; Ma, C.; Wang, Z. Antibacterial activity and mechanism of action of chlorogenic acid. J. Food Sci. 2011, 76, M398–M403. [Google Scholar] [CrossRef]
- Almoudi, M.M.; Hussein, A.S.; Hassan, M.I.A.; Zain, N.M. A systematic review on antibacterial activity of zinc against Streptococcus mutans. Saudi Dental J. 2018, 30, 283–291. [Google Scholar] [CrossRef]
- Li, Y.; Liu, G.; Zhai, Z.; Liu, L.; Li, H.; Yang, K.; Tan, L.; Wan, P.; Liu, X.; Ouyang, Z.; et al. Antibacterial properties of magnesium in vitro and in an in vivo model of implant-associated methicillin-resistant Staphylococcus aureus infection. Antimicro. Age. Chemo. 2014, 58, 7586–7591. [Google Scholar] [CrossRef] [Green Version]
- Yu, H.H.; Kim, K.J.; Cha, J.D.; Kim, H.K.; Lee, Y.E.; Choi, N.Y.; You, Y.O. Antimicrobial activity of berberine alone and in combination with ampicillin or oxacillin against methicillin-resistant Staphylococcus aureus. In Future Microbiology; Mary Ann Liebert, Inc.: Larchmont, NY, USA, 2005; Volume 15. [Google Scholar]
- Awan, M.S.; Ali, S.; Ali, A.; Hussain, A.; Qazalbash, M.A. A comparative study of barberry fruits in terms of its nutritive and medicinal contents from CKNP region, Gilgit-Baltistan, Pakistan. J. Biodiv. Environ. Sci. 2014, 5, 9–17. [Google Scholar]
- Sharma, N.; Jandaik, S.; Kumar, S.; Chitkara, M.; Sandhu, I.S. Synthesis, characterization and antimicrobial activity of manganese- and iron-doped zinc oxide nanoparticles. J. Exp. Nanosci. 2016, 11, 54–71. [Google Scholar] [CrossRef]
- Mariod, A.A.; Ibrahim, R.M.; Ismail, M.; Ismail, N. Antioxidant activities of phenolic rich fractions (PRFs) obtained from black mahlab (Monechma ciliatum) and white mahlab (Prunus mahaleb) seedcakes. Food Chem. 2010, 118, 120–127. [Google Scholar] [CrossRef]
- Bevilacqua, A.E.; Califano, A.N. Determination of organic acids in dairy products by high performance liquid chromatography. J. Food Sci. 1989, 54, 1076–1079. [Google Scholar] [CrossRef]
- Rodriguez-Delgado, M.A.; Malovana, S.; Perez, J.P.; Borges, T.; Garcia-Montelongo, F.J. Separation of phenolic compounds by high-performance liquid chromatography with absorbance and fluorimetric detection. J. Chromato. 2001, 912, 249–257. [Google Scholar] [CrossRef]
- AOAC. Offical Methods of Analysis, 14th ed.; Association of Official Analytical Chemists: Arlington, VA, USA, 1984. [Google Scholar]
- Cemerog, L.U. The Major Analyses Methods in Fruit and Vegetable Processing Industry (Meyve ve Sebze Isleme Endüstrisinde Temel Analiz Metotlari); Publ. No. 02-2; Biltav Yayınları: Ankara, Turkey, 1992; p. 381. [Google Scholar]
- Skujins, S. Handbook for ICP-AES (Varian-Vista). In A Short Guide to Vista Series ICP-AES Operation; Version 1.0; Varian Int. AG: Zug, Switzerland, 1998. [Google Scholar]
- Meng, J.; Fang, Y.; Zhang, A. Phenolic content and antioxidant capacity of Chinese raisins produced in Xinjiang province. Food Res. Int. 2011, 9, 2830–2836. [Google Scholar] [CrossRef]
Organic Acids | Content (g/kg) | ||
---|---|---|---|
B1 | B2 | B3 | |
Citric acid (g/kg) | 1.798 ± 0.037 a | 0.837 ± 0.018 c | 1.468 ± 0.028 b |
Tartaric acid (g/kg) | 0.901 ± 0.018 b | 1.134 ± 0.045 a | 0.911 ± 0.023 b |
Malic acid (g/kg) | 1.585 ± 0.028 a | 1.108 ± 0.068 c | 1.339 ± 0.012 b |
Succinic acid (g/kg) | 0.126 ± 0.004 a | 0.116 ± 0.007 b | 0.101 ± 0.006 c |
Phenolic Contents | Content (g kg−1) | ||
---|---|---|---|
B1 | B2 | B3 | |
Gallic acid | 0.182 ± 0.023 a | 0.137 ± 0.016 b | 0.142 ± 0.018 b |
Catechin | 0.640 ± 0.012 a | 0.590 ± 0.021 b | 0.601 ± 0.021 b |
Chlorogenic acid | 0.624 ± 0.024 a | 0.455 ± 0.018 c | 0.475 ± 0.022 b |
Vanillic | 0.044 ± 0.001 a | 0.026 ± 0.001 b | 0.029 ± 0.001 b |
Caffeic | 0.089 ± 0.001 a | 0.062 ± 0.002 b | 0.065 ± 0.001 b |
Syringic | 0.049 ± 0.001 a | 0.037 ± 0.001 b | 0.036 ± 0.001 b |
P-coumaric | 0.029 ± 0.003 a | 0.027 ± 0.002 a | 0.029 ± 0.001 a |
Ferulic acid | 0.031 ± 0.001 a | 0.023 ± 0.003 b | 0.021 ± 0.002 b |
Rutin | 0.073 ± 0.001 a | 0.059 ± 0.004 b | 0.055 ± 0.004 b |
O-coumaric | 0.051 ± 0.002 a | 0.034 ± 0.002 b | 0.035 ± 0.001 b |
Quercetin | 0.021 ± 0.001 a | 0.022 ± 0.001 a | 0.021 ± 0.001 a |
Parameters | Contents | ||
---|---|---|---|
B1 | B2 | B3 | |
Dry matter (DM) % | 32.28 ± 2.3 a | 22.67 ± 1.1 b | 21.71 ± 1.4 b |
Water-soluble DM (%) | 27.57 ± 1.8 a | 21.78 ± 0.8 b | 21.65 ± 1.3 b |
Ash (%) | 0.93 ± 0.07 a | 0.63 ± 0.02 b | 0.69 ± 0.04 b |
Aw | 0.97 ± 0.5 a | 0.81 ± 0.1 b | 0.83 ± 0.03 b |
pH | 5.58 ± 1.0 a | 4.12 ± 0.6 b | 2.17 ± 0.1 c |
Moisture (%) | 88.37 ± 4.7 a | 58.67 ± 3.8 b | 48.25 ± 2.3 c |
Reducing sugar (%) | 6.14 ± 0.8 a | 5.87 ± 0.4 b | 4.82 ± 0.3 c |
Crude protein (%) | 13.67 ± 1.2 a | 8.61 ± 0.8 b | 8.92 ± 0.9 b |
Crude cellulose (%) | 10.36 ± 0.9 a | 8.72 ± 1.1 b | 6.82 ± 0.3 c |
Crude oil (%) | 0.81 ± 0.05 a | 0.56 ± 0.03 b | 0.58 ± 0.03 b |
Minerals | Mineral Contents (ppm) | ||
---|---|---|---|
B1 | B2 | B3 | |
Ag | 48.84 ± 3.3 a | 46.21 ± 2.3 a | 45.26 ± 3.7 a |
Al | 19.11 ± 1.2 a | 17.68 ± 1.1 a | 17.24 ± 1.1 a |
As | 4.67 ± 0.3 a | 4.64 ± 0.5 a | 4.34 ± 0.2 a |
B | 68.47 ± 4.2 a | 63.23 ± 3.2 a | 65.28 ± 4.3 a |
Ba | 1.61 ± 0.1 a | 1.58 ± 0.04 a | 1.63 ± 0.5 a |
Bi | 0.28 ± 0.03 a | 0.26 ± 0.01 a | 0.27 ± 0.01 a |
Ca | 2868.56 ± 58.3 a | 2439.02 ± 13.2 b | 2454.35 ± 17.2 b |
Co | 0.32 ± 0.02 a | 0.31 ± 0.02 a | 0.32 ± 0.01 a |
Cr | 37.89 ± 2.4 a | 37.13 ± 3,6 a | 35.47 ± 4.2 a |
Cu | 5.12 ± 0.5 a | 4.85 ± 0.4 a | 4.95 ± 0.3 a |
Fe | 403.57 ± 4.8 a | 320.36 ± 8.4 b | 302.48 ± 9.2 c |
K | 13,113.31 ± 723.0 a | 11,216.26 ± 578.2 b | 11,176.25 ± 845.4 b |
Li | 0.41 ± 0.01 a | 0.43 ± 0.01 a | 0.39 ± 0.1 a |
Mg | 1363.16 ± 6.3 a | 1123.10 ± 5.8 b | 1098.47 ± 32.5 b |
Mn | 6.47 ± 0.8 a | 6.60 ± 0.04 a | 6.50 ± 0.3 a |
Na | 2725.24 ± 8.3 a | 2498.12 ± 13.6 b | 2396.45 ± 12.5 c |
Ni | 22.58 ± 1.2 a | 21.24 ± 1.4 a | 21.46 ± 0.8 a |
P | 2568.37 ± 12.2 a | 2536.43 ± 16.8 a | 2576.43 ± 15.3 a |
Sr | 18.14 ± 1.2 a | 19.46 ± 2.1 a | 19.26 ± 1.4 a |
V | 0.82 ± 0.04 a | 0.88 ± 0.2 a | 0.83 ± 0.3 a |
Zn | 9.47 ± 1.4 a | 8.97 ± 1.1 b | 9.23 ± 0.8 b |
Bacteria | Zone of Inhibition (mm) | ||||
---|---|---|---|---|---|
Treatments | Control | ||||
B1 | B2 | B3 | Streptomycin | SDW | |
S. aureus | 9.1 ± 1.1 b (S) | 0 ± 0.0 c (NS) | 0 ± 0.0 c (NS) | 18.0 ± 0.5 a (VS) | 0 ± 0.0 c (NS) |
L. monocytogenes | 10.2 ± 0.8 b (VS) | 0 ± 0.0 c (NS) | 0 ± 0.0 c (NS) | 18.0 ± 0.7 a (VS) | 0 ± 0.0 c (NS) |
E. coli | 14.1 ± 1.6 b (VS) | 5.0 ± 0.6 c (NS) | 0 ± 0.0 d (NS) | 18.4 ± 0.4 a (VS) | 0 ± 0.0 d (NS) |
P. fluorescens | 15.3 ± 1.3 b (VS) | 7.0 ± 0.5 c (S) | 5.0 ± 0.8 c (NS) | 17.8 ± 0.6 a (VS) | 0 ± 0.0 d (NS) |
V. parahaemolyticus | 14.0 ± 1.5 b (VS) | 6.1 ± 1.1 c (S) | 7.1 ± 1.0 c (S) | 18.1 ± 0.5 a (VS) | 0 ± 0.0 d (NS) |
A. caviae | 16.2 ± 1.2 a (VS) | 6.2 ± 0.8 b (S) | 6.0 ± 0.5 b (S) | 18.0 ± 0.5 a (VS) | 0 ± 0.0 c (NS) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, L.; Zhang, Z.; Hu, X.; You, L.; Khan, R.A.A.; Yu, Y. Phenolic Contents, Organic Acids, and the Antioxidant and Bio Activity of Wild Medicinal Berberis Plants- as Sustainable Sources of Functional Food. Molecules 2022, 27, 2497. https://doi.org/10.3390/molecules27082497
Yang L, Zhang Z, Hu X, You L, Khan RAA, Yu Y. Phenolic Contents, Organic Acids, and the Antioxidant and Bio Activity of Wild Medicinal Berberis Plants- as Sustainable Sources of Functional Food. Molecules. 2022; 27(8):2497. https://doi.org/10.3390/molecules27082497
Chicago/Turabian StyleYang, Liu, Zhenyuan Zhang, Xiaoying Hu, Lixin You, Raja Asad Ali Khan, and Yan Yu. 2022. "Phenolic Contents, Organic Acids, and the Antioxidant and Bio Activity of Wild Medicinal Berberis Plants- as Sustainable Sources of Functional Food" Molecules 27, no. 8: 2497. https://doi.org/10.3390/molecules27082497
APA StyleYang, L., Zhang, Z., Hu, X., You, L., Khan, R. A. A., & Yu, Y. (2022). Phenolic Contents, Organic Acids, and the Antioxidant and Bio Activity of Wild Medicinal Berberis Plants- as Sustainable Sources of Functional Food. Molecules, 27(8), 2497. https://doi.org/10.3390/molecules27082497