The Effect of Maturity and Extraction Solvents on Bioactive Compounds and Antioxidant Activity of Mulberry (Morus alba) Fruits and Leaves
Abstract
:1. Introduction
2. Results and Discussion
2.1. Extraction Yields
2.2. Bioactive Compounds
2.2.1. TPC of Mulberry Fruits and Leaves
2.2.2. TFC of Mulberry Fruits and Leaves
2.2.3. TAC of Mulberry Fruits
2.2.4. Quantification of Chlorogenic Acid and Rutin Using UHPLC-DAD
2.3. Antioxidant Analysis
2.3.1. DPPH of Mulberry Fruits and Leaves
2.3.2. ABTS of Mulberry Fruits and Leaves
2.3.3. FRAP of Mulberry Fruits and Leaves
2.4. Principal Component Analysis (PCA)
3. Materials and Methods
3.1. Sample Collection and Preparation
3.2. Preparation of Mulberry Fruits and Leaf Extracts
3.3. Determination of Phenolic Compounds
3.3.1. Determination of Total Phenolic Content (TPC)
3.3.2. Determination of Total Flavonoid Content (TFC)
3.3.3. Determination of Total Anthocyanin Content (TAC)
3.3.4. Quantification of Chlorogenic Acid and Rutin Using UHPLC-DAD
3.4. Determination of Antioxidant Activity
3.4.1. 2.2-Diphenyl-1-Picrylhydrazyl Radical Scavenging (DPPH) Assay
3.4.2. 2,2′-Azino-Bis (3-Ethylbenzthiazoline-6-Sulphonic Acid) (ABTS) Assay
3.4.3. Ferric-Reducing Antioxidant Power (FRAP) Assay
3.5. Analysis of Data
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Lü, J.M.; Lin, P.H.; Yao, Q.; Chen, C. Chemical and molecular mechanisms of antioxidants: Experimental approaches and model systems. J. Cell. Mol. Med. 2010, 14, 840–860. [Google Scholar] [CrossRef] [PubMed]
- Baiano, A.; Del Nobile, M.A. Antioxidant compounds from vegetable matrices: Biosynthesis, occurrence, and extraction systems. Crit. Rev. Food Sci. Nutr. 2016, 56, 2053–2068. [Google Scholar] [CrossRef]
- Ercisli, S.; Orhan, E. Chemical composition of white (Morus alba), red (Morus rubra) and black (Morus nigra) mulberry fruits. Food Chem. 2007, 103, 1380–1384. [Google Scholar] [CrossRef]
- Younus, I.; Fatima, A.; Ali, S.M.; Usmani, S.; Begum, Z.; Badar, S.; Asghar, R. A review of ethnobotany, phytochemistry, antiviral and cytotoxic/anticancer potential of morus alba linn. Int. J. Adv. Res. Rev. 2016, 1, 84–96. [Google Scholar]
- Khan, M.A.; Rahman, A.A.; Islam, S.; Khandokhar, P.; Parvin, S.; Islam, M.B.; Hossain, M.; Rashid, M.; Sadik, G.; Nasrin, S. A comparative study on the antioxidant activity of methanolic extracts from different parts of Morus alba L. (Moraceae). BMC Res. Notes 2013, 6, 24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Munir, A.; Khera, R.A.; Rehman, R.; Nisar, S. Multipurpose White mulberry: A Review. Int. J. Biol. Chem. Sci. 2018, 13, 31–35. [Google Scholar]
- Hassan, F.-U.; Arshad, M.A.; Li, M.; Rehman, M.S.-U.; Loor, J.J.; Huang, J. Potential of Mulberry Leaf Biomass and Its Flavonoids to Improve Production and Health in Ruminants: Mechanistic Insights and Prospects. Animals 2020, 10, 2076. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Mohamad Razali, U.H.; Saikim, F.H.; Mahyudin, A.; Mohd Noor, N.Q.I. Morus alba L. Plant: Bioactive Compounds and Potential as a Functional Food Ingredient. Foods 2021, 10, 689. [Google Scholar] [CrossRef]
- Jiang, Y.; Nie, W.-J. Chemical properties in fruits of mulberry species from the Xinjiang province of China. Food Chem. 2015, 174, 460–466. [Google Scholar] [CrossRef]
- Imran, M.; Khan, H.; Shah, M.; Khan, R.; Khan, F. Chemical composition and antioxidant activity of certain Morus species. J. Zhejiang Univ. Sci. B 2010, 11, 973–980. [Google Scholar] [CrossRef]
- Levickienė, D.; Vaitkevičienė, N.; Jarienė, E.; Mažeika, R. The content of macroelements in white mulberry (Morus alba L.) leaves. Žemės Ūkio Mokslai 2018, 25, 177–183. [Google Scholar] [CrossRef]
- Ministry of Health Malaysia. Recommended Nutrient Intakes for Malaysia; Nutrition Division: Putrajaya, Malaysia, 2017. Available online: https://nutrition.moh.gov.my/wp-content/uploads/2017/05/FA-Buku-RNI.pdf (accessed on 26 March 2022).
- U.S. Department of Health and Human Service; U.S. Department of Agriculture. 2015–2020 Dietary Guidelines for Americans; Simon and Schuster: New York, NY, USA, 2015. Available online: https://health.gov/our-work/nutrition-physical-activity/dietary-guidelines/previous-dietary-guidelines/2015 (accessed on 26 March 2022).
- Lee, Y.; Hwang, K.T. Changes in physicochemical properties of mulberry fruits (Morus alba L.) during ripening. Sci. Hortic. 2017, 217, 189–196. [Google Scholar] [CrossRef]
- Jelled, A.; Hassine, R.B.; Thouri, A.; Flamini, G.; Chahdoura, H.; El Arem, A.; Lamine, J.B.; Haouas, Z.; Cheikh, H.B.; Achour, L. Immature mulberry fruits richness of promising constituents in contrast with mature ones: A comparative study among three Tunisian species. Ind. Crop. Prod. 2017, 95, 434–443. [Google Scholar] [CrossRef]
- Yu, Y.; Li, H.; Zhang, B.; Wang, J.; Shi, X.; Huang, J.; Yang, J.; Zhang, Y.; Deng, Z. Nutritional and functional components of mulberry leaves from different varieties: Evaluation of their potential as food materials. Int. J. Food Prop. 2018, 21, 1495–1507. [Google Scholar] [CrossRef] [Green Version]
- Park, S.W.; Shin, K.C.; Yoou, S.-K.; Park, H.J.; Eun, S.H.; Bae, Y.M.; Lee, H.M.; Chae, H.-J.; Chae, S.-W.; Choi, B.H. Effects of an ethanolic extract of mulberry fruit on blood pressure and vascular remodeling in spontaneous hypertensive rats. Clin. Exp. Hypertens. 2019, 41, 280–286. [Google Scholar] [CrossRef]
- Čulenová, M.; Sychrová, A.; Hassan, S.T.; Berchová-Bímová, K.; Svobodová, P.; Helclová, A.; Michnová, H.; Hošek, J.; Vasilev, H.; Suchý, P. Multiple In vitro biological effects of phenolic compounds from Morus alba root bark. J. Ethnopharmacol. 2020, 248, 112296. [Google Scholar] [CrossRef]
- Chan, E.W.C.; Lye, P.-Y.; Wong, S.-K. Phytochemistry, pharmacology, and clinical trials of Morus alba. Chin. J. Nat. Med. 2016, 14, 17–30. [Google Scholar] [CrossRef]
- Kobus-Cisowska, J.; Dziedziński, M.; Szymanowska, D.; Szczepaniak, O.; Byczkiewicz, S.; Telichowska, A.; Szulc, P. The Effects of Morus alba L. Fortification on the Quality, Functional Properties and Sensory Attributes of Bread Stored under Refrigerated Conditions. Sustainability 2020, 12, 6691. [Google Scholar] [CrossRef]
- Tomczyk, M.; Miłek, M.; Sidor, E.; Kapusta, I.; Litwińczuk, W.; Puchalski, C.; Dżugan, M. The Effect of Adding the Leaves and Fruits of Morus alba to Rape Honey on Its Antioxidant Properties, Polyphenolic Profile, and Amylase Activity. Molecules 2020, 25, 84. [Google Scholar] [CrossRef] [Green Version]
- Centhyea; Fadhilah, M.; Izzreen, M.N.Q. Determination of the Antioxidant Activity and Bioactive Compounds of Mulberry Fruit Extracts. In Proceedings of the International Conference on Biodiversity (ICB), Universiti Tun Hussein Onn Malaysia (UTHM), Johor, Malaysia, 4 November 2020. [Google Scholar]
- Li, Y.; Kong, D.; Fu, Y.; Sussman, M.R.; Wu, H. The effect of developmental and environmental factors on secondary metabolites in medicinal plants. Plant Physiol. Biochem. 2020, 148, 80–89. [Google Scholar] [CrossRef]
- Noriham, A.; Dian-Nashiela, F.; Kherni Hafifi, B.; Nooraain, H.; Azizah, A. Influences of maturity stages and extraction solvents on antioxidant activity of Cosmos caudatus leaves. Int. J. Res. Stud. Biosci. 2015, 3, 1–10. [Google Scholar]
- Kobus-Cisowska, J.; Szczepaniak, O.; Szymanowska-Powałowska, D.; Piechocka, J.; Szulc, P.; Dziedziński, M. Antioxidant potential of various solvent extract from Morus alba fruits and its major polyphenols composition. Ciênc. Rural 2020, 50, 17–29. [Google Scholar] [CrossRef] [Green Version]
- Sulaiman, S.F.; Sajak, A.A.B.; Ooi, K.L.; Seow, E.M. Effect of solvents in extracting polyphenols and antioxidants of selected raw vegetables. J. Food Compos. Anal. 2011, 24, 506–515. [Google Scholar] [CrossRef]
- Altemimi, A.; Lakhssassi, N.; Baharlouei, A.; Watson, D.G.; Lightfoot, D.A. Phytochemicals: Extraction, isolation, and identification of bioactive compounds from plant extracts. Plants 2017, 6, 42. [Google Scholar] [CrossRef] [PubMed]
- Joshi, D.R.; Adhikari, N. An overview on common organic solvents and their toxicity. J. Pharm. Res. Int 2019, 28, 1–18. [Google Scholar] [CrossRef]
- Strohm, B. Ethanol. In Encyclopedia of Toxicology, 2nd ed.; Wexler, P., Ed.; Academic Press: Cambridge, MA, USA, 2014; pp. 488–491. [Google Scholar]
- Graczová, E.; Vavrusova, M. Extractive distillation of acetone–methanol mixture using 1-ethyl-3-methylimidazolium trifluoromethanesulfonate. Chem. Eng. Trans. 2018, 70, 1189–1194. [Google Scholar]
- U.S. Food and Drug Administration. Available online: https://www.fda.gov/media/71737/download (accessed on 26 March 2022).
- European Medicines Agency. Available online: https://www.ema.europa.eu/en/documents/scientific-guideline/international-conference-harmonisation-technical-requirements-registration-pharmaceuticals-human-use_en-33.pdf (accessed on 26 March 2022).
- Grodowska, K.; Parczewski, A. Organic solvents in the pharmaceutical industry. Acta Pol. Pharm. Drug Res. 2010, 67, 3–12. [Google Scholar]
- Wulandari, Y.R.E.; Prasasty, V.D.; Rio, A.; Geniola, C. Determination of 1-Deoxynojirimycin Content and Phytochemical Profiles from Young and Mature Mulberry Leaves of Morus spp. OnLine J. Biol. Sci. 2019, 19, 124–131. [Google Scholar] [CrossRef] [Green Version]
- Dai, J.; Mumper, R.J. Plant phenolics: Extraction, analysis and their antioxidant and anticancer properties. Molecules 2010, 15, 7313–7352. [Google Scholar] [CrossRef]
- Goulao, L.F.; Oliveira, C.M. Cell wall modifications during fruit ripening: When a fruit is not the fruit. Trends Food Sci. Technol. 2008, 19, 4–25. [Google Scholar] [CrossRef] [Green Version]
- Paniagua, C.; Posé, S.; Morris, V.J.; Kirby, A.R.; Quesada, M.A.; Mercado, J.A. Fruit softening and pectin disassembly: An overview of nanostructural pectin modifications assessed by atomic force microscopy. Ann. Bot. 2014, 114, 1375–1383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, K.; Kang, S.; Li, F.; Wang, X.; Xiao, Y.; Wang, J.; Xu, H. Relationship between fruit density and physicochemical properties and bioactive composition of mulberry at harvest. J. Food Compos. Anal. 2022, 106, 104322. [Google Scholar] [CrossRef]
- Holland, C.; Ryden, P.; Edwards, C.H.; Grundy, M.M.L. Plant cell walls: Impact on nutrient bioaccessibility and digestibility. Foods 2020, 9, 201. [Google Scholar] [CrossRef] [Green Version]
- He, X.; Chen, X.; Ou, X.; Ma, L.; Xu, W.; Huang, K. Evaluation of flavonoid and polyphenol constituents in mulberry leaves using HPLC fingerprint analysis. Int. J. Food Sci. Technol. 2019, 55, 526–533. [Google Scholar] [CrossRef]
- Tatiya, A.U.; Tapadiya, G.G.; Kotecha, S.; Surana, S.J. Effect of solvents on total phenolics, antioxidant and antimicrobial properties of Bridelia retusa Spreng. stem bark. Indian J. Nat. Prod. Resour. 2011, 2, 442–447. [Google Scholar]
- DiCiaula, M.C.; Lopes, G.C.; Scarminio, I.S.; de Mello, J.C.P. Optimization of solvent mixtures for extraction from bark of Schinus terebinthifolius by a statistical mixture-design technique and development of a UV-VIS spectrophotometric method for analysis of total polyphenols in the extract. Quím. Nova 2014, 37, 158–163. [Google Scholar] [CrossRef] [Green Version]
- Galvão, M.A.M.; Arruda, A.O.d.; Bezerra, I.C.F.; Ferreira, M.R.A.; Soares, L.A.L. Evaluation of the Folin-Ciocalteu method and quantification of total tannins in stem barks and pods from Libidibia ferrea (Mart. ex Tul) LP Queiroz. Braz. Arch. Biol. Technol. 2018, 61, e18170586. [Google Scholar] [CrossRef] [Green Version]
- Bastola, K.P.; Guragain, Y.N.; Bhadriraju, V.; Vadlani, P.V. Evaluation of standards and interfering compounds in the determination of phenolics by Folin-Ciocalteu assay method for effective bioprocessing of biomass. Am. J. Anal. Chem. 2017, 8, 416–431. [Google Scholar] [CrossRef] [Green Version]
- Chuah, H.Q.; Tang, P.L.; Ang, N.J.; Tan, H.Y. Submerged fermentation improves bioactivity of mulberry fruits and leaves. Chin. Herb. Med. 2021, 13, 565–572. [Google Scholar] [CrossRef]
- Bhatt, I.D.; Rawat, S.; Badhani, A.; Rawal, R.S. Nutraceutical potential of selected wild edible fruits of the Indian Himalayan region. Food Chem. 2017, 215, 84–91. [Google Scholar] [CrossRef]
- Sharma, A.; Shahzad, B.; Rehman, A.; Bhardwaj, R.; Landi, M.; Zheng, B. Response of phenylpropanoid pathway and the role of polyphenols in plants under abiotic stress. Molecules 2019, 24, 2452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, K.-M.; Oh, T.-J.; Kim, S.-H.; Kim, H.-Y.; Chung, H.; Min, D.S.; Auh, J.-H.; Lee, H.J.; Lee, J.; Choi, H.-K. Comprehensive metabolic profiles of mulberry fruit (Morus alba Linnaeus) according to maturation stage. Food Sci. Biotechnol. 2016, 25, 1035–1041. [Google Scholar] [CrossRef] [PubMed]
- Kumar, K.; Mohan, M.; Tiwari, N.; Kumar, S. Production potential and leaf quality evaluation of selected mulberry (Morus alba) clones. J. Pharmacogn. Phytochem. 2018, 7, 482–486. [Google Scholar]
- Tabart, J.; Kevers, C.; Sipel, A.; Pincemail, J.; Defraigne, J.-O.; Dommes, J. Optimisation of extraction of phenolics and antioxidants from black currant leaves and buds and of stability during storage. Food Chem. 2007, 105, 1268–1275. [Google Scholar] [CrossRef]
- Haminiuk, C.W.I.; Plata-Oviedo, M.S.V.; de Mattos, G.; Carpes, S.T.; Branco, I.G. Extraction and quantification of phenolic acids and flavonols from Eugenia pyriformis using different solvents. J. Food Sci. Technol. 2014, 51, 2862–2866. [Google Scholar] [CrossRef] [Green Version]
- Boeing, J.S.; Barizão, É.O.; E Silva, B.C.; Montanher, P.F.; Almeida, V.d.C.; Visentainer, J.V. Evaluation of solvent effect on the extraction of phenolic compounds and antioxidant capacities from the berries: Application of principal component analysis. Chem. Cent. J. 2014, 8, 48. [Google Scholar] [CrossRef] [Green Version]
- Macheix, J.-J.; Fleuriet, A.; Billot, J. Phenolic compounds in fruit processing. In Fruit Phenolics; CRC Press Inc.: Boca Raton, FL, USA, 1990; Volume 11, pp. 239–294. [Google Scholar] [CrossRef]
- Marquez, A.; Serratosa, M.P.; Merida, J. Pyranoanthocyanin derived pigments in wine: Structure and formation during winemaking. J. Chem. 2013, 2013, 713028. [Google Scholar] [CrossRef]
- Santana-Gálvez, J.; Cisneros-Zevallos, L.; Jacobo-Velázquez, D.A. Chlorogenic acid: Recent advances on its dual role as a food additive and a nutraceutical against metabolic syndrome. Molecules 2017, 22, 358. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, T.; Morishita, T.; Kim, S.-J.; Park, S.-U.; Woo, S.-h.; Noda, T.; Takigawa, S. Physiological roles of rutin in the buckwheat plant. Jpn. Agric. Res. Q. 2015, 49, 37–43. [Google Scholar] [CrossRef] [Green Version]
- Memon, A.A.; Memon, N.; Luthria, D.L.; Bhanger, M.I.; Pitafi, A.A. Phenolic acids profiling and antioxidant potential of mulberry (Morus laevigata W., Morus nigra L., Morus alba L.) leaves and fruits grown in Pakistan. Pol. J. Food Nutr. Sci. 2010, 60, 25–32. [Google Scholar]
- Tan, J.J.Y.; Lim, Y.Y.; Siow, L.F.; Tan, J.B.L. Effects of drying on polyphenol oxidase and antioxidant activity of Morus alba leaves. J. Food Process. Preserv. 2015, 39, 2811–2819. [Google Scholar] [CrossRef]
- Arfan, M.; Khan, R.; Rybarczyk, A.; Amarowicz, R. Antioxidant activity of mulberry fruit extracts. Int. J. Mol. Sci. 2012, 13, 2472–2480. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Park, C.H.; Li, X.; Kim, Y.B.; Yang, J.; Sung, G.B.; Park, N.I.; Kim, S.; Park, S.U. Accumulation of rutin and betulinic acid and expression of phenylpropanoid and triterpenoid biosynthetic genes in mulberry (Morus alba L.). J. Agric. Food Chem. 2015, 63, 8622–8630. [Google Scholar] [CrossRef]
- Koshiro, Y.; Jackson, M.C.; Katahira, R.; Wang, M.-L.; Nagai, C.; Ashihara, H. Biosynthesis of chlorogenic acids in growing and ripening fruits of Coffea arabica and Coffea canephora plants. Z. Naturforsch. 2007, 62, 731–742. [Google Scholar] [CrossRef] [PubMed]
- Jaakola, L.; Määttä-Riihinen, K.; Kärenlampi, S.; Hohtola, A. Activation of flavonoid biosynthesis by solar radiation in bilberry (Vaccinium myrtillus L.) leaves. Planta 2004, 218, 721–728. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Zhang, Y.; Du, Z.; Chen, X.; Zhou, X.; Kong, X.; Sun, W.; Chen, Z.; Chen, C.; Chen, M. Tender leaf and fully-expanded leaf exhibited distinct cuticle structure and wax lipid composition in Camellia sinensis cv Fuyun 6. Sci. Rep. 2018, 8, 14944. [Google Scholar] [CrossRef] [Green Version]
- Campa, C.; Urban, L.; Mondolot, L.; Fabre, D.; Roques, S.; Lizzi, Y.; Aarrouf, J.; Doulbeau, S.; Breitler, J.-C.; Letrez, C.; et al. Juvenile coffee leaves acclimated to low light are unable to cope with a moderate light increase. Front. Plant. Sci. 2017, 8, 1126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, F.; Zhang, B.; Chen, G.; Fu, X. Analysis of solvent effects on polyphenols profile, antiproliferative and antioxidant activities of mulberry (Morus alba L.) extracts. Int. J. Food Sci. Technol. 2017, 52, 1690–1698. [Google Scholar] [CrossRef]
- Chua, L.S.; Ruzlan, N.N.; Sarmidi, M.R. Recovery of rutin from Labisia pumila extract using solid phase extraction. Acta Chim. Slov. 2017, 64, 888–894. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Q.; Yang, X.; Zhang, L.; Majetich, G. Optimization of ultrasonic-assisted extraction of chlorogenic acid from Folium eucommiae and evaluation of its antioxidant activity. J. Med. Plant Res. 2010, 4, 2503–2511. [Google Scholar] [CrossRef]
- Yue, Y.; Huang, Q.; Fu, Y.; Chang, J. A quick selection of natural deep eutectic solvents for the extraction of chlorogenic acid from herba artemisiae scopariae. RSC Adv. 2020, 10, 23403–23409. [Google Scholar] [CrossRef]
- Aristizábal, C.E.; Vargas, A.F.; Alvarado, P.N. Numerical determination of the correct solvents to extract a phytochemical from coffee pulp using Hansen solubility parameters, risk assessment, sustainability evaluation, and economic analysis. Dyna 2019, 86, 138–147. [Google Scholar] [CrossRef] [Green Version]
- Milescu, R.A.; Segatto, M.L.; Stahl, A.; McElroy, C.R.; Farmer, T.J.; Clark, J.H.; Zuin, V.G. Sustainable single-stage solid–liquid extraction of hesperidin and rutin from agro-products using cyrene. ACS Sustain. Chem. Eng. 2020, 8, 18245–18257. [Google Scholar] [CrossRef]
- Xie, J.; Schaich, K. Re-evaluation of the 2, 2-diphenyl-1-picrylhydrazyl free radical (DPPH) assay for antioxidant activity. J. Agric. Food Chem. 2014, 62, 4251–4260. [Google Scholar] [CrossRef] [PubMed]
- Çelik, S.E.; Özyürek, M.; Güçlü, K.; Apak, R. Solvent effects on the antioxidant capacity of lipophilic and hydrophilic antioxidants measured by CUPRAC, ABTS/persulphate and FRAP methods. Talanta 2010, 81, 1300–1309. [Google Scholar] [CrossRef] [PubMed]
- Bibi Sadeer, N.; Montesano, D.; Albrizio, S.; Zengin, G.; Mahomoodally, M.F. The versatility of antioxidant assays in food science and safety—Chemistry, applications, strengths, and limitations. Antioxidants 2020, 9, 709. [Google Scholar] [CrossRef]
- Thi, N.D.; Hwang, E.-S. Bioactive compound contents and antioxidant activity in aronia (Aronia melanocarpa) leaves collected at different growth stages. Prev. Nutr. Food Sci. 2014, 19, 204–212. [Google Scholar] [CrossRef] [Green Version]
- Tian, X.; Schaich, K. Effects of molecular structure on kinetics and dynamics of the trolox equivalent antioxidant capacity assay with ABTS+•. J. Agric. Food Chem. 2013, 61, 5511–5519. [Google Scholar] [CrossRef]
- Ilyasov, I.R.; Beloborodov, V.L.; Selivanova, I.A.; Terekhov, R.P. ABTS/PP decolorization assay of antioxidant capacity reaction pathways. Int. J. Mol. Sci. 2020, 21, 1131. [Google Scholar] [CrossRef] [Green Version]
- Ilyasov, I.R.; Beloborodov, V.L.; Selivanova, I.A. Three ABTS•+ radical cation-based approaches for the evaluation of antioxidant activity: Fast-and slow-reacting antioxidant behavior. Chem. Pap. 2018, 72, 1917–1925. [Google Scholar] [CrossRef]
- Biskup, I.; Golonka, I.; Gamian, A.; Sroka, Z. Antioxidant activity of selected phenols estimated by ABTS and FRAP methods. Postepy. Hig. Med. Dosw. 2013, 67, 958–963. [Google Scholar] [CrossRef] [PubMed]
- Dong, J.-W.; Cai, L.; Xing, Y.; Yu, J.; Ding, Z.-T. Re-evaluation of ABTS•+ assay for total antioxidant capacity of natural products. Nat. Prod. Commun. 2015, 10, 2169–2172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Makavelou, M.; Kafkaletou, M.; Tsantili, E.; Harizanis, P. Physiological and quality characteristics in four genotypes of mulberry fruit (Morus alba L.) during ripening. Acta Hortic. 2011, 981, 625–630. [Google Scholar] [CrossRef]
- Spiegel, M.; Kapusta, K.; Kołodziejczyk, W.; Saloni, J.; Żbikowska, B.; Hill, G.A.; Sroka, Z. Antioxidant Activity of Selected Phenolic Acids–Ferric Reducing Antioxidant Power Assay and QSAR Analysis of the Structural Features. Molecules 2020, 25, 3088. [Google Scholar] [CrossRef] [PubMed]
- Scalfi, L.; Fogliano, V.; Pentangelo, A.; Graziani, G.; Giordano, I.; Ritieni, A. Antioxidant activity and general fruit characteristics in different ecotypes of Corbarini small tomatoes. J. Agric. Food Chem. 2000, 48, 1363–1366. [Google Scholar] [CrossRef]
- Ismail, A.M.; Sani, M.S.A.; Azid, A.; Zaki, N.N.M.; Arshad, S.; Tukiran, N.A.; Abidin, S.A.S.Z.; Samsudin, M.S.; Ismail, A. Food forensics on gelatine source via ultra-high-performance liquid chromatography diode-array detector and principal component analysis. SN Appl. Sci. 2021, 3, 1–19. [Google Scholar] [CrossRef]
- Sani, M.S.A.; Ismail, A.M.; Azid, A.; Samsudin, M.S. Establishing forensic food models for authentication and quantification of porcine adulterant in gelatine and marshmallow. Food Control 2021, 130, 1–12. [Google Scholar] [CrossRef]
- Sánchez-Salcedo, E.M.; Mena, P.; García-Viguera, C.; Martínez, J.J.; Hernández, F. Phytochemical evaluation of white (Morus alba L.) and black (Morus nigra L.) mulberry fruits, a starting point for the assessment of their beneficial properties. J. Funct. Foods 2015, 12, 399–408. [Google Scholar] [CrossRef]
- Farahani, M.; Salehi-Arjmand, H.; Khadivi, A.; Akramian, M. Chemical characterization and antioxidant activities of Morus alba var. nigra fruits. Sci. Hortic. 2019, 253, 120–127. [Google Scholar] [CrossRef]
- Vvedenskaya, I.O.; Vorsa, N. Flavonoid composition over fruit development and maturation in American cranberry, Vaccinium macrocarpon Ait. Plant Sci. 2004, 167, 1043–1054. [Google Scholar] [CrossRef]
- Radojkovića, M.; Zekovića, Z.; Jokićb, S.; Vidovića, S. Determination of optimal extraction parameters of mulberry leaves using Response Surface Methodology (RSM). Rom. Biotechnol. Lett. 2012, 17, 7297–7310. [Google Scholar]
- Jeszka-Skowron, M.; Flaczyk, E.; Kobus-Cisowska, J.; Kośmider, A.; Górecka, D. Optimization the extraction process of phenolic compounds and antiradical activity of white mulberry leaves by response surface methodology. Zywn. Nauka. Technol. Jakosc 2014, 1, 148–159. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar]
- Izzreen, N.Q.; Fadzelly, M.A. Phytochemicals and antioxidant properties of different parts of Camellia sinensis leaves from Sabah Tea Plantation in Sabah, Malaysia. Int. Food Res. J. 2013, 20, 307–312. [Google Scholar]
- Giusti, M.M.; Wrolstad, R.E. Characterization and measurement of anthocyanins by UV-visible spectroscopy. Curr. Protoc. Food Anal. Chem. 2001, F1.2.1–F1.2.13. [Google Scholar] [CrossRef]
- Choi, H.Y.; Jhun, E.J.; Lim, B.O.; Chung, I.M.; Kyung, S.H.; Park, D.K. Application of flow injection—Chemiluminescence to the study of radical scavenging activity in plants. Phytother. Res. 2000, 14, 250–253. [Google Scholar] [CrossRef]
- Fu, L.; Xu, B.; Gan, R.Y.; Zhang, Y.; Xu, X.R.; Xia, E.Q.; Li, H.B. Total phenolic contents and antioxidant capacities of herbal and tea infusions. Int. J. Mol. Sci. 2011, 112, 2112–2124. [Google Scholar] [CrossRef] [Green Version]
Analysis | Result in Different Maturities and Different Solvents | Two-Way ANOVA | |||||
---|---|---|---|---|---|---|---|
BF | RF | ms*es (p-Value) | |||||
MeOH | EtOH | Acetone | MeOH | EtOH | Acetone | ||
Extraction Yield (%) | 52.53 ± 0.95 b | 68.21 ± 0.65 a | 67.13 ± 0.41 a | 49.71 ± 0.10 c | 52.33 ± 0.59 b | 46.50 ± 0.24 d | <0.001 |
TPC (mg GAE/g DW) | 2.32 ± 0.01 d | 2.74 ± 0.01 c | 6.91 ± 0.01 a | 1.47 ± 0.00 e | 1.71 ± 0.01 f | 4.96 ± 0.01 b | <0.001 |
TFC (mg QUE/g DW) | 25.03 ± 0.05 e | 34.38 ± 0.04 c | 40.60 ± 0.07 a | 15.00 ± 0.04 f | 28.18 ± 0.05 d | 35.11 ± 0.04 b | <0.001 |
TAC (mg Cya-3-Glu/g DW) | 5.84 ± 0.01 b | 7.15 ± 0.01 a | 2.34 ± 0.14 c | 0.49 ± 0.01 e | 0.77 ± 0.02 d | 0.16 ± 0.01 f | <0.001 |
CGA(mg CGAE/g DW) | 2.59 ± 0.01 f | 4.27 ± 0.03 e | 4.49 ± 0.01 d | 6.86 ± 0.02 c | 8.68± 0.00 b | 13.38 ± 0.02 a | <0.001 |
Rutin (mg RE/g DW) | 3.95 ± 0.01 b | 3.11 ± 0.01 d | 2.79 ± 0.02 e | 4.93 ± 0.03 a | 2.58 ± 0.01 f | 3.30 ± 0.02 c | <0.001 |
Analysis | Result in Different Maturities and Different Solvents | Two-Way ANOVA | |||||
---|---|---|---|---|---|---|---|
YL | ML | ms*es (p-Value) | |||||
MeOH | EtOH | Acetone | MeOH | EtOH | Acetone | ||
Extraction Yield (%) | 24.07 ± 0.79 | 26.07 ± 0.71 | 23.00 ± 0.81 | 25.14 ± 0.39 | 27.64 ± 0.51 | 26.68 ± 0.32 | >0.05 |
TPC (mg GAE/g DW) | 2.52 ± 0.01 e | 3.78 ± 0.01 c | 9.26 ± 0.01 a | 1.37 ± 0.00 f | 2.56 ± 0.01 d | 5.16 ± 0.01 b | <0.001 |
TFC (mg QUE/g DW) | 23.00 ± 0.04 e | 43.13 ± 0.03 b | 45.32 ± 0.07 a | 11.66 ± 0.05 f | 36.97 ± 0.05 d | 39.77 ± 0.05 c | <0.001 |
CGA (mg CGAE/g DW) | 8.93 ± 0.02 c | 30.73 ± 0.10 a | 24.74 ± 0.02 b | 1.30 ± 0.01 f | 8.78 ± 0.05 d | 7.04 ± 0.03 e | <0.001 |
Rutin (mg RE/g DW) | 3.56 ± 0.01 c | 8.45 ± 0.03 b | 8.70 ± 0.02 a | 0.83 ± 0.00 f | 1.92 ± 0.00 e | 2.26 ± 0.01 d | <0.001 |
Analysis | Result in Different Maturities and Different Solvents | Two-Way ANOVA | |||||
---|---|---|---|---|---|---|---|
BF | RF | ms*es (p-Value) | |||||
MeOH | EtOH | Acetone | MeOH | EtOH | Acetone | ||
DPPH (IC50) | 0.152 ± 0.00 c | 0.098 ± 0.00 d | 0.073 ± 0.00 e | 0.289 ± 0.01 a | 0.180 ± 0.01 b | 0.117 ± 0.01 d | <0.001 |
ABTS (mg Tr/g DW) | 3.55 ± 0.01 d | 4.82 ± 0.01 c | 6.92 ± 0.01 a | 1.64 ± 0.00 f | 2.45 ± 0.01 e | 4.89 ± 0.01 b | <0.001 |
FRAP (µM FeSO4/g DW) | 56.87 ± 0.04 d | 92.12 ± 0.12 b | 103.38 ± 0.19 a | 37.14 ± 0.05 f | 40.81 ± 0.05 e | 58.86 ± 0.09 c | <0.001 |
Analysis | Result in Different Maturities and Different Solvents | Two-Way ANOVA | |||||
---|---|---|---|---|---|---|---|
YL | ML | ms*es (p-Value) | |||||
MeOH | EtOH | Acetone | MeOH | EtOH | Acetone | ||
DPPH (IC50) | 0.080 ± 0.00 d | 0.056 ± 0.00 c | 0.017 ± 0.00 e | 0.186 ± 0.00 a | 0.106 ± 0.00 b | 0.050 ± 0.00 c | <0.001 |
ABTS (mg Tr/g DW) | 3.18 ± 0.01 d | 4.98 ± 0.01 c | 8.35 ± 0.01 a | 1.76 ± 0.01 e | 3.19 ± 0.01 d | 7.53 ± 0.01 b | <0.001 |
FRAP (µM FeSO4/g DW) | 55.51 ± 0.04 d | 94.27± 0.12 b | 135.49 ± 0.22 a | 24.87 ± 0.06 f | 50.25 ± 0.08 e | 91.86 ± 0.15 c | <0.001 |
Variables | PC1 | PC2 | |
---|---|---|---|
Eigenvalues | 5.0759 | 1.4346 | |
Variability (%) | 63.4483 | 17.9330 | |
Cumulative variability (%) | 64.4483 | 81.3813 | |
Factor loadings | TPC | 0.9000 | 0.1072 |
TFC | 0.9087 | 0.1339 | |
TAC | −0.1090 | 0.7553 | |
CGA | 0.7124 | −0.6401 | |
Rutin | 0.6602 | −0.5004 | |
DPPH | −0.8600 | −0.2012 | |
ABTS | 0.9194 | 0.2934 | |
FRAP | 0.9486 | 0.2190 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, C.; Mokhtar, R.A.M.; Sani, M.S.A.; Noor, N.Q.I.M. The Effect of Maturity and Extraction Solvents on Bioactive Compounds and Antioxidant Activity of Mulberry (Morus alba) Fruits and Leaves. Molecules 2022, 27, 2406. https://doi.org/10.3390/molecules27082406
Chen C, Mokhtar RAM, Sani MSA, Noor NQIM. The Effect of Maturity and Extraction Solvents on Bioactive Compounds and Antioxidant Activity of Mulberry (Morus alba) Fruits and Leaves. Molecules. 2022; 27(8):2406. https://doi.org/10.3390/molecules27082406
Chicago/Turabian StyleChen, Centhyea, Ruzaidi Azli Mohd Mokhtar, Muhamad Shirwan Abdullah Sani, and Nor Qhairul Izzreen Mohd Noor. 2022. "The Effect of Maturity and Extraction Solvents on Bioactive Compounds and Antioxidant Activity of Mulberry (Morus alba) Fruits and Leaves" Molecules 27, no. 8: 2406. https://doi.org/10.3390/molecules27082406
APA StyleChen, C., Mokhtar, R. A. M., Sani, M. S. A., & Noor, N. Q. I. M. (2022). The Effect of Maturity and Extraction Solvents on Bioactive Compounds and Antioxidant Activity of Mulberry (Morus alba) Fruits and Leaves. Molecules, 27(8), 2406. https://doi.org/10.3390/molecules27082406