Selected Textural and Electrochemical Properties of Nanocomposite Fillers Based on the Mixture of Rose Clay/Hydroxyapatite/Nanosilica for Cosmetic Applications
Abstract
:1. Introduction
2. Results and Discussion
2.1. Powder XRD Analysis of Rose Clay-Hydroxyapatite-Silica Composites
2.2. Textural Characteristics
2.3. The Structure of the Electrical Double Layer (EDL)
2.3.1. Surface Charge Density
2.3.2. Zeta Potential
2.4. Particles Size
2.5. Rana—Cancer, Developmental & Reproductive Toxicity, Allergies & Immunotoxicity
2.6. Tests on the Release of Acai
3. Methods and Materials
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Unuabonah, E.I.; Taubert, A. Clay-polymer nanocomposites (CPNs): Adsorbents of the future for water treatment. Appl. Clay Sci. 2014, 99, 83–92. [Google Scholar] [CrossRef]
- Harraz, H.Z. Nano clay and it’s applications. Appl. Mineral. 2016. [Google Scholar] [CrossRef]
- Carrado, K.A. Synthetic organo- and polymer–clays: Preparation, characterization, and materials applications. Appl. Clay Sci. 2000, 17, 1–23. [Google Scholar] [CrossRef]
- Bourlinos, A.B.; Jiang, D.D.; Giannelis, E.P. Clay-organosiloxane hybrids: A route to cross-linked clay particles and clay monoliths. Chem. Mater. 2004, 16, 2404–2410. [Google Scholar] [CrossRef]
- Aguzzi, C.; Cerezo, P.; Viseras, C.; Caramella, C. Use of clays as drug delivery systems: Possibilities and limitations. Appl. Clay Sci. 2007, 36, 22–36. [Google Scholar] [CrossRef]
- Liu, Y.-L.; Walker, H.W.; Lenhart, J.J. The effect of natural organic matter on the adsorption of microcystin-LR onto clay minerals. Colloids Surf. A Physicochem. Eng. Asp. 2019, 583, 123964. [Google Scholar] [CrossRef]
- Betega de Paiva, L.; Morales, A.R.; Díaz, F.R.V. Organoclays: Properties, preparation and applications. Appl. Clay Sci. 2008, 42, 8–24. [Google Scholar] [CrossRef]
- Faïza, B.; Gerhard, L. (Eds.) Developments in Clay Science; Elsevier: Amsterdam, The Netherlands, 2013; Volume 5. [Google Scholar]
- Murray, H.H. Overview—Clay mineral applications. Appl. Clay Sci. 1991, 5, 379–395. [Google Scholar] [CrossRef]
- Middleton, G.V.; Church, M.J.; Coniglio, M.; Hardie, L.A.; Longstaffe, F.J. (Eds.) Encyclopedia of Sediments and Sedimentary Rocks; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2003. [Google Scholar]
- Bergaya, F.; Theng, B.K.G.; Lagaly, G. (Eds.) Handbook of Clay Science; Elsevier: Amsterdam, The Netherlands, 2006; ISBN 9780080441832. [Google Scholar]
- Biedrzycka, A.; Skwarek, E.; Urban, M.H. Hydroxyapatite with magnetic core: Synthesis methods, properties, adsorption and medical applications. Adv. Colloid Interface Sci. 2021, 291, 102401. [Google Scholar] [CrossRef] [PubMed]
- Sadat-Shojai, M.; Khorasani, K.T.; Dinpanah-Khoshdargi, E.; Jamshidi, A. Synthesis methods for nanosized hydroxyapatite with diverse structures. Acta Biomater. 2013, 9, 7591–7621. [Google Scholar] [CrossRef]
- Mohd Pu’ad, N.A.S.; Koshy, P.; Abdullah, H.Z.; Idris, M.I.; Lee, T.C. Syntheses of hydroxyapatite from natural sources. Heliyon 2019, 5, 01588. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skwarek, E.; Janusz, W.; Gun’ko, V.M.; Pakhlov, E.M.; Zarko, V.I.; Gdula, K. Characteristics of surface and electrochemical properties of composites with fumed metal oxides and hydroxyapatite. Adsorption 2016, 22, 725–734. [Google Scholar] [CrossRef] [Green Version]
- Skwarek, E.; Gładysz-Płaska, A.; Choromańska, J.B.; Broda, E. Adsorption of uranium ions on nano-hydroxyapatite and modified by Ca and Ag ions. Adsorption 2019, 25, 639–647. [Google Scholar] [CrossRef] [Green Version]
- Skwarek, E.; Janusz, W. The study of the interactions of malonic acid ions with the hydroxyapatite surface in liquid. J. Mol. Liq. 2022, 3591, 119370. [Google Scholar] [CrossRef]
- Janusz, W.; Kobal, I.; Sworska, A.; Szczypa, J. Investigation of the electrical double layer in a metal oxide/monovalent electrolyte solution system. J. Colloid Interface Sci. 1997, 187, 381–387. [Google Scholar] [CrossRef] [PubMed]
- Choudhury, P.R.; Mondal, P.; Majumdar, S. Synthesis of bentonite clay based hydroxyapatite nanocomposite cross-linked by glutaraldehyde and optimization by response surface methodology for lead removal from aqueous solution. RSC Adv. 2015, 122, 100838–100848. [Google Scholar] [CrossRef]
- Kundu, K.; Afshar, A.; Katti, D.; Edirisinghe, M.; Katti, K. Composite nanoclay-hydroxyapatite-polymer fiber scaffolds for bone tissue engineering manufactured using pressurized gyration. Compos. Sci. Technol. 2021, 202, 108598. [Google Scholar] [CrossRef]
- Ankush, K.; Pugazhenthi, G.; Vasanth, D. Fabrication and properties of polyhydroxybutyrate/kaolin nanocomposites and evaluation of their biocompatibility for biomedical applications. J. Appl. Polym. Sci. 2022, 139, 51803. [Google Scholar] [CrossRef]
- Byś, K.; Strachota, B.; Strachota, A.; Pavlova, E.; Steinhart, M.; Mossety-Leszczak, B.; Zając, W. Novel tough and transparent ultra-extensible nanocomposite elastomers based on poly(2-methoxyethylacrylate) and their switching between plasto-elasticity and viscoelasticity. Polymers 2021, 13, 4254. [Google Scholar] [CrossRef]
- Mohamed, K.J.; Chehimi, M.; Sabu, T. Clay—Polymer Nanocomposites; Elsevier: Amsterdam, The Netherlands, 2017; ISBN 978-0-323-46153-5. [Google Scholar]
- De Lima Yamaguchi, K.K.; Ravazi Pereira, L.F.; Lamarão, C.V.; Lima, E.S.; da Veiga-Junior, V.F. Amazon acai: Chemistry and biological activities: A review. Food Chem. 2015, 179, 137–151. [Google Scholar] [CrossRef]
- Al Nasser, M.N.; Mellor, I.R. Neuroprotective activities of acai berries (Euterpe sp.): A review. J. Herbmed. Pharmacol. 2022, 11, 166–181. [Google Scholar] [CrossRef]
- Gregg, S.J.; Sing, K.S.W. Adsorption, Surface Area and Porosity; Academic Press: London, UK, 1982. [Google Scholar]
- Adamson, A.W.; Gast, A.P. Physical Chemistry of Surface, 6th ed.; Wiley: New York, NY, USA, 1997. [Google Scholar]
- Gun’ko, V.M. Textural characteristics of composite adsorbents analyzed with density functional theory and self-consistent regularization procedure. Chem. Phys. Technol. Surf. 2020, 11, 163–174. [Google Scholar] [CrossRef]
- Gun’ko, V.M. Morphological and textural features of various materials composed of porous or nonporous nanoparticles differently packed in secondary structures. Appl. Surf. Sci. 2021, 569, 151117. [Google Scholar] [CrossRef]
- Ravikovitch, P.I.; Neimark, A.V. Density functional theory model of adsorption on amorphous and microporous silica materials. Langmuir 2006, 22, 11171–11179. [Google Scholar] [CrossRef]
- Gun’ko, V.M.; Mikhalovsky, S.V. Evaluation of slitlike porosity of carbon adsorbents. Carbon 2004, 42, 843–849. [Google Scholar] [CrossRef]
- Gun’ko, V.M. Composite materials: Textural characteristics. Appl. Surf. Sci. 2014, 307, 444–454. [Google Scholar] [CrossRef]
Sample | SBET (m2/g) | SNLDFT (m2/g) | Vp (cm3/g) | Vnano (cm3/g) | Vmeso (cm3/g) | Vmacro (cm3/g) | Snano (m2/g) | Smeso (m2/g) | Smacro (m2/g) | <RV> (nm) | <RS> (nm) | Δw | cslit | ccyl | csph |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
s1 | 59 | 58 | 0.144 | 0.022 | 0.097 | 0.024 | 36 | 22 | 1 | 13.9 | 2.7 | 0.056 | 0.892 | 0.101 | 0.007 |
s2 | 45 | 42 | 0.125 | 0.016 | 0.083 | 0.026 | 26 | 18 | 1 | 16.3 | 3.1 | 0.044 | 0.861 | 0.132 | 0.007 |
s3 | 43 | 39 | 0.117 | 0.016 | 0.083 | 0.017 | 25 | 18 | 1 | 12.8 | 2.8 | 0.016 | 0.910 | 0.076 | 0.014 |
s4 | 58 | 57 | 0.136 | 0.021 | 0.092 | 0.023 | 35 | 21 | 1 | 14.4 | 2.7 | 0.077 | 0.886 | 0.095 | 0.019 |
s5 | 35 | 30 | 0.125 | 0.012 | 0.089 | 0.024 | 18 | 17 | 1 | 16.7 | 3.8 | −0.011 | 0.836 | 0.120 | 0.044 |
s6 | 45 | 41 | 0.134 | 0.014 | 0.088 | 0.031 | 24 | 20 | 1 | 18.5 | 3.6 | 0.135 | 0.771 | 0.053 | 0.176 |
s7 | 19 | 17 | 0.080 | 0.007 | 0.057 | 0.016 | 9 | 10 | 0 | 16.8 | 4.1 | −0.066 | 0.900 | 0.073 | 0.027 |
s8 | 18 | 16 | 0.082 | 0.006 | 0.055 | 0.021 | 8 | 10 | 1 | 20.1 | 4.7 | 0.0 | 0.859 | 0.093 | 0.048 |
s9 | 22 | 20 | 0.099 | 0.008 | 0.072 | 0.019 | 10 | 12 | 1 | 16.1 | 4.2 | −0.088 | 0.866 | 0.094 | 0.040 |
s10 | 22 | 19 | 0.101 | 0.008 | 0.075 | 0.018 | 9 | 12 | 0 | 16.7 | 4.2 | −0.056 | 0.944 | 0.037 | 0.019 |
s11 | 51 | 55 | 0.088 | 0.020 | 0.053 | 0.015 | 35 | 16 | 1 | 11.9 | 2.0 | 0.081 | 0.880 | 0.120 | - |
s12 | 37 | 38 | 0.087 | 0.015 | 0.057 | 0.015 | 24 | 13 | 0 | 13.2 | 2.5 | 0.002 | 0.884 | 0.116 | - |
s13 | 37 | 37 | 0.090 | 0.014 | 0.060 | 0.015 | 22 | 14 | 1 | 13.5 | 2.6 | 0.033 | 0.899 | 0.101 | - |
Sample | Compositions | Native Clay | 100 °C Clay | 200 °C Clay |
---|---|---|---|---|
pHpzc | ||||
s11, s12, s13 | Clay | 9.9 | 9.8 | 9.6 |
s1, s2, s3 | Clay, 5% HA, silica | 9.4 | 9.3 | 9.1 |
s4, s5, s6 | Clay, 10% HA, silica | 9.2 | 9.2 | 9.1 |
s9, s10 | Clay, 10% HA, silica, acai | 8.4 | 8.2 | 8 |
No. | Samples | Average Particle Size [nm] | ||
---|---|---|---|---|
Component Contents | Water | Sea Water (Electrolyte) | ||
1 | s11 | Clay | 544.1 | 279.8 |
2 | s12 | Clay 100 °C | 368.1 | 341.0 |
3 | s13 | Clay 200 °C | 354.9 | 362.8 |
4 | s1 | Clay + 5% HA + silica | 488.3 | 393.0 |
5 | s2 | Clay 100 °C + 5% HA + silica | 369.1 | 377.4 |
6 | s3 | Clay 200 °C + 5% HA + silica | 347.9 | 334.9 |
7 | s4 | Clay + 10% HA + silica | 467.5 | 345.1 |
8 | s5 | Clay 100 °C + 10% HA + silica | 380.0 | 339.4 |
9 | s6 | Clay 200 °C + 10% HA + silica | 347.9 | 335.2 |
10 | s9 | Clay + 10% HA + silica+ acai | 359.0 | 389.0 |
11 | - | Clay 100 °C + 10% HA + silica+ acai | 335.9 | 343.6 |
12 | s10 | Clay 200 °C + 10% HA + silica +acai | 324.6 | 375.8 |
# | Sample | Component Contents | Cancer | Developmental & Reproductive Toxicity | Allergies & Immunotoxicity |
---|---|---|---|---|---|
1 | - | Hydroxyapatite (HA) | 18 | 18 | 20 |
2 | - | Silica (A300) | 20 | 18 | 21 |
3 | - | Acai (euterpe oleraceae (acai) berry) | 18 | 18 | 21 |
4 | - | Rose clay/HA/Acai | 19 | 18 | 20 |
5 | - | Rose clay/Silica/Acai | 19 | 18 | 21 |
6 | s7 | Rose clay/HA/Silica/Acai | 19 | 18 | 21 |
7 | - | Rose clay/HA | 20 | 19 | 20 |
8 | - | Rose clay/Silica | 21 | 19 | 21 |
9 | s1 | Rose clay/HA/Silica | 20 | 18 | 20 |
No | Sample | Component Contents | A (a.u.) | C (mg/g) | C (µg/g) |
---|---|---|---|---|---|
Native clay | |||||
1 | - | Rose clay/Acai | 0.050 | 0.30 | 30.1 |
2 | - | Rose clay/HA (5%)/Acai | 0.052 | 0.030 | 30.21 |
3 | - | Rose clay/Silica/Acai | 0.057 | 0.033 | 33.11 |
4 | s7 | Rose clay/HA (5%)/Silica/Acai | 0.065 | 0.038 | 37.76 |
5 | - | Rose clay/HA (10%)/Acai | 0.045 | 0.032 | 31.88 |
6 | s9 | Rose clay/HA (10%)/Silica/Acai | 0.059 | 0.043 | 42.84 |
Rose clay,100 °C | |||||
7 | - | Rose clay/Acai | 0.056 | 0.033 | 32.53 |
8 | - | Rose clay/HA (5%)/Acai | 0.057 | 0.033 | 33.11 |
9 | - | Rose clay/Silica/Acai | 0.054 | 0.031 | 31.37 |
10 | - | Rose clay/HA (5%)/Silica/Acai | 0.049 | 0.029 | 29.35 |
11 | - | Rose clay/HA (10%)/Acai | 0.057 | 0.033 | 33.11 |
12 | - | Rose clay/HA (10%)/Silica/Acai | 0.062 | 0.042 | 41.88 |
Rose clay, 200 °C | |||||
13 | - | Rose clay/Acai | 0.068 | 0.049 | 49.38 |
14 | - | Rose clay/HA (5%)/Acai | 0.073 | 0.042 | 42.41 |
15 | - | Rose clay/Silica/Acai | 0.061 | 0.055 | 54.52 |
16 | s8 | Rose clay/HA (5%)/Silica/Acai | 0.071 | 0.082 | 82.49 |
17 | - | Rose clay/HA (10%)/Acai | 0.091 | 0.068 | 67.77 |
18 | s10 | Rose clay/HA (10%)/Silica/Acai | 0.078 | 0.045 | 45.31 |
Sample | Rose Clay (wt.%) | Hydroxyapatite (HA) (wt.%) | Nanosilica (wt.%) | Acai (wt.%) | Preheating of Clay (°C) |
---|---|---|---|---|---|
s1 | 92 | 5 | 3 | 0 | - |
s2 | 92 | 5 | 3 | 0 | 100 |
s3 | 92 | 5 | 3 | 0 | 200 |
s4 | 87 | 10 | 3 | 0 | - |
s5 | 87 | 10 | 3 | 0 | 100 |
s6 | 87 | 10 | 3 | 0 | 200 |
s7 | 62 | 5 | 3 | 30 | - |
s8 | 62 | 5 | 3 | 30 | 200 |
s9 | 57 | 10 | 3 | 30 | - |
s10 | 57 | 10 | 3 | 30 | 200 |
s11 | 100 | 0 | 0 | 0 | - |
s12 | 100 | 0 | 0 | 0 | 100 |
s13 | 100 | 0 | 0 | 0 | 200 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paientko, V.; Oranska, O.I.; Gun’ko, V.M.; Skwarek, E. Selected Textural and Electrochemical Properties of Nanocomposite Fillers Based on the Mixture of Rose Clay/Hydroxyapatite/Nanosilica for Cosmetic Applications. Molecules 2023, 28, 4820. https://doi.org/10.3390/molecules28124820
Paientko V, Oranska OI, Gun’ko VM, Skwarek E. Selected Textural and Electrochemical Properties of Nanocomposite Fillers Based on the Mixture of Rose Clay/Hydroxyapatite/Nanosilica for Cosmetic Applications. Molecules. 2023; 28(12):4820. https://doi.org/10.3390/molecules28124820
Chicago/Turabian StylePaientko, Victoria, Olena I. Oranska, Volodymyr M. Gun’ko, and Ewa Skwarek. 2023. "Selected Textural and Electrochemical Properties of Nanocomposite Fillers Based on the Mixture of Rose Clay/Hydroxyapatite/Nanosilica for Cosmetic Applications" Molecules 28, no. 12: 4820. https://doi.org/10.3390/molecules28124820
APA StylePaientko, V., Oranska, O. I., Gun’ko, V. M., & Skwarek, E. (2023). Selected Textural and Electrochemical Properties of Nanocomposite Fillers Based on the Mixture of Rose Clay/Hydroxyapatite/Nanosilica for Cosmetic Applications. Molecules, 28(12), 4820. https://doi.org/10.3390/molecules28124820