Regioselective Synthesis of New Family of 2-Substituted 1,2,3-Triazoles and Study of Their Fluorescent Properties
Abstract
:1. Introduction
2. Results
3. Materials and Methods
- 1-(2-Benzyl-5-phenyl-2H-1,2,3-triazol-4-yl)-2,2,2-trifluoroethanone (3a). This was obtained from 1a (120 mg, 0.498 mmol) and benzyl bromide (94 mg, 0.550 mmol) and purified using gradient eluating by hexane-CH2Cl2 (3:1) followed by hexane-CH2Cl2 (1:1) and CH2Cl2. Total yield (3a + 4a) was 139 mg (84%), ratio 3a:4a = 83:17. For pure 3a, it was beige oil, yield 115 mg (70%). 1H NMR (CDCl3, 400.1 MHz) was δ 7.96–7.86 (m, 2H), 7.53–7.44 (m, 5H), 7.44–7.36(m, 3H), 5.71 (s, 2H). 13C{1H} NMR (CDCl3, 100.6 MHz) was δ 174.2 (q, 2JCF = 37.0 Hz), 152.7, 136.4, 133.5, 130.1, 129.1, 129.0, 128.9, 128.40, 128.35, 128.2, 116.3 (q, 1JCF = 290.7 Hz), 59.9. 19F NMR (CDCl3, 376.5 MHz): δ -74.9 (s, 3F). HRMS (ESI-TOF) was m/z [M + H]+. Calcd for C17H13F3N3O+ was 332.1005 and found: 332.1005. IR (ν, cm−1) was 1723 (C=O).
- 1-(1-Benzyl-5-phenyl-1H-1,2,3-triazol-4-yl)-2,2,2-trifluoroethanone (4a). This was obtained from 1a as an admixture (83:17) in the synthesis of 3a. For pure 4a, see the following: Beige thick oil, yield 24 mg (14%). 1H NMR (CDCl3, 400.1 MHz): δ 7.58–7.52 (m, 1H), 7.51–7.46 (m, 2H), 7.31–7.25 (m, 3H), 7.24–7.20 (m, 2H), 7.08–7.00 (m, 2H), 5.46 (s, 2H). 13C{1H} NMR (CDCl3, 100.6 MHz): δ 174.2 (q, 2JCF = 37.3 Hz), 143.9, 138.1, 133.9, 130.9, 129.4, 129.0, 128.9, 128.7, 127.7, 124.4, 116.1 (q, 1JCF = 290.6 Hz), 52.2. 19F NMR (CDCl3, 376.5 MHz): δ -75.4 (s, 3F). NMR data are in agreement with those in the literature [38].
- 1-(2-Benzyl-5-(4-methoxyphenyl)-2H-1,2,3-triazol-4-yl)-2,2,2-trifluoroethanone (3b). This was obtained from 1b (62 mg, 0.229 mmol) and benzyl bromide (43 mg, 0.251 mmol) and purified using gradient eluating by hexane-CH2Cl2 (3:1) followed by hexane-CH2Cl2 (1:1) and CH2Cl2. Total yield (3b + 4b) was 77 mg (93%), ratio 3b:4b = 81:19. For pure 3b, see the following: White solid, yield 0.0624 g (75.3%). 1H NMR (CDCl3, 400.1 MHz): δ 7.89 (d, 2H, 3J = 8.9 Hz), 7.48–7.33 (m, 5H), 6.97 (d, 2H, 3J = 8.9 Hz), 5.68 (s, 2H), 3.85 (s, 3H). 13C{1H} NMR (CDCl3, 100.6 MHz): δ 174.3 (q, 2JCF = 37.0 Hz), 161.0, 152.7, 136.1, 133.6, 130.6, 128.94, 128.89, 128.4, 120.6, 116.3 (q, 1JCF = 290.8 Hz), 113.8, 59.8, 55.3. 19F NMR (CDCl3, 376.5 MHz): δ −74.8 (s, 3F). HRMS (ESI-TOF): m/z [M + H]+ Calcd for C18H15F3N3O2+: 362.1111; found: 362.1089.
- 1-(1-Benzyl-5-(4-methoxyphenyl)-1H-1,2,3-triazol-4-yl)-2,2,2-trifluoroethanone (4b). This was obtained from 1b as an admixture (81:19) in the synthesis of 3b: colorless oil, yield 14.6 mg (17.3%). 1H NMR (CDCl3, 400.1 MHz): δ 7.33–7.27 (m, 3H), 7.17 (d, 2H, 3J = 8.7 Hz), 7.13–7.04 (m, 2H), 6.98 (d, 2H, 3J = 8.7 Hz), 5.47 (s, 2H), 3.87 (s, 3H). 13C{1H} NMR (CDCl3, 100.6 MHz): δ 174.2 (q, 2JCF = 37.1 Hz), 161.5, 144.0, 137.9, 134.1, 131.1, 129.0, 128.7, 127.6, 116.0, 116.2 (q, 1JCF = 290.8 Hz), 114.4, 55.4, 52.0. 19F NMR (CDCl3, 376.5 MHz): δ −75.2 (s, 3F).
- 2,2,2-Trifluoro-1-(2-(4-nitrobenzyl)-5-phenyl-2H-1,2,3-triazol-4-yl)ethanone (3c). This was obtained from 1a (48 mg, 0.199 mmol) and 1-(bromomethyl)-4-nitrobenzene (47 mg, 0.218 mmol) and purified using gradient eluating by hexane-CH2Cl2 (3:1) followed by hexane-CH2Cl2 (1:1) and CH2Cl2. Total yield (3c + 4c) was 0.0609 g (81%), ratio 3c:4c = 83:17. For pure 3c, see the following: beige solid, m.p. 97–101 °C, yield 0.0493 g (65.6%). 1H NMR (CDCl3, 400.1 MHz): δ 8.25 (d, 2H, 3J = 8.7 Hz), 7.91–7.82 (m, 2H), 7.60 (d, 2H, 3J = 8.7 Hz), 7.49–7.43 (m, 3H), 5.81 (s, 2H). 13C{1H} NMR (CDCl3, 100.6 MHz): δ 174.1 (q, 2JCF = 37.7 Hz), 153.1, 148.3, 140.1, 136.9, 130.4, 129.3, 129.1, 128.5, 127.8,124.3, 116.1 (q, 1JCF = 290.6 Hz), 58.8. 19F NMR (CDCl3, 376.5 MHz): δ −75.0 (s, 3F). HRMS (ESI-TOF): m/z [M + H]+ Calcd for C17H12F3N4O3+: 377.0856; found: 377.0854.
- 2,2,2-Trifluoro-1-(1-(4-nitrobenzyl)-5-phenyl-1H-1,2,3-triazol-4-yl)ethanone (4c). This was obtained from 1a as an admixture (81:19) in the synthesis of 3c: pale brown viscous mass, yield 11.6 mg (15.4%). 1H NMR (CDCl3, 400.1 MHz): δ 5.58 (s, 2H). 19F NMR (CDCl3, 376.5 MHz): δ -75.4 (s, 3F).
- 1-(2-Allyl-5-phenyl-2H-1,2,3-triazol-4-yl)-2,2,2-trifluoroethanone (3d). This was obtained from 1a (50.2 mg, 0.208 mmol) and 3-chloroprop-1-ene (21 mg, 0.276 mmol) and purified using gradient eluating by hexane-CH2Cl2 (3:1) followed by hexane-CH2Cl2 (1:1) and CH2Cl2. Total yield (3d + 4d) was 46 mg (79 %), ratio 3d:4d = 86:14. For pure 3d, see the following: colorless oil, yield 39.6 mg (68%). 1H NMR (CDCl3, 400.1 MHz): δ 7.93–7.84 (m, 2H), 7.50–7.43 (m, 3H), 6.21–6.09 (m, 1H), 5.45–5.37 (m, 2H), 5.16 (dt, 2H, 3J = 6.3 Hz, 4J = 1.4 Hz). 13C{1H} NMR (CDCl3, 100.6 MHz): δ 174.3 (q, 2JCF = 37.0 Hz), 152.6, 136.4, 130.1, 130.0, 129.1, 128.4, 128.2, 120.9, 116.2 (q, 1JCF = 290.6 Hz), 58.5. 19F NMR (CDCl3, 376.5 MHz): δ −75.0 (s, 3F). HRMS (ESI-TOF): m/z [M + H]+ Calcd for C13H11F3N3O+: 282.0849; found: 282.0853.
- 1-(1-Allyl-5-phenyl-1H-1,2,3-triazol-4-yl)2,2,2-trifluoroethanone (4d). This was obtained from 1a as an admixture (86:14) in the synthesis of 3d: colorless oil, yield 6.4 mg (11%). 1H NMR (CDCl3, 400.1 MHz): δ 7.58–7.50 (m, 3H), 7.40–7.36 (m, 2H), 5.95 (ddt, 1H, 2J = 16.9 Hz, 3J = 10.4 Hz, 3J = 5.7 Hz), 5.29 (d, 1H, 3J = 10.3 Hz), 5.06 (pseudo-dt, 1H, 2J = 17.1 Hz, 4J = 1.3 Hz), 4.89 (dt, 3J = 5.7 Hz, 4J = 1.5 Hz). 19F NMR (CDCl3, 376.5 MHz): δ −75.3 (s, 3F).
- 2,2,2-Trifluoro-1-(2-methyl-5-phenyl-2H-1,2,3-triazol-4-yl)ethanone (3e). This was obtained from 1a (51.9 mg, 0.215 mmol) and iodomethane (34 mg, 0.239 mmol) and purified using gradient eluating by hexane-CH2Cl2 (3:1) followed by hexane-CH2Cl2 (1:1) and CH2Cl2. Total yield (3e + 4e) was 47.2 mg (86%), ratio 3e:4e = 83:17. For pure 3e, see the following: beige oil, yield 39.2 mg (71.4%). 1H NMR (CDCl3, 400.1 MHz): δ 7.92–7.84 (m, 2H), 7.50–7.44 (m, 3H), 4.35 (s, 3H). 13C{1H} NMR (CDCl3, 100.6 MHz): δ 174.1 (q, 2JCF = 37.0 Hz), 152.6, 136.3, 130.1, 129.0, 128.4, 128.2, 116.2 (q, 1JCF = 290.5 Hz), 42.8. 19F NMR (CDCl3, 376.5 MHz): δ −75.0 (s, 3F). HRMS (ESI-TOF): m/z [M + H]+ Calcd for C11H9F3N3O+: 256.0692; found: 256.0692.
- 2,2,2-Trifluoro-1-(1-methyl-5-phenyl-1H-1,2,3-triazol-4-yl)ethanone (4e). This was obtained from 1a as an admixture (83:17) in the synthesis of 3e: beige oil, yield 8 mg (14.6%). 1H NMR (CDCl3, 400.1 MHz): δ 7.63–7.51 (m, 3H), 7.44–7.34 (m, 2H), 4.01 (s, 3H). 13C{1H} NMR (CDCl3, 100.6 MHz): δ 131.0, 129.4, 129.1, 35.5. 19F NMR (CDCl3, 376.5 MHz): δ −75.3 (s, 3F).
- 1-(2-Ethyl-5-phenyl-2H-1,2,3-triazol-4-yl)-2,2,2-trifluoroethanone (3f). This was obtained from 1a (50.7 mg, 0.210 mmol) and bromoethane (25.5 mg, 0.234 mmol) and purified using gradient eluating by hexane-CH2Cl2 (3:1) followed by hexane-CH2Cl2 (1:1) and CH2Cl2. Total yield (3f + 4f) was 0.052 g (92%), ratio 3f:4f = 91:9. For pure 3f, see the following: colorless oil, yield 47.2 mg (83.7%). 1H NMR (CDCl3, 400.1 MHz): δ 8.00–7.80 (m, 2H), 7.54–7.41 (m, 3H), 4.61 (q, 2H, 3J = 7.4 Hz), 1.68 (t, 3H, 3J = 7.4 Hz). 13C{1H} NMR (CDCl3, 100.6 MHz): δ 174.2 (q, 2JCF = 36.7 Hz), 152.4, 136.1, 130.0, 129.0, 128.4, 116.3 (q, 1JCF = 290.7 Hz), 51.4, 14.5. 19F NMR (CDCl3, 376.5 MHz): δ −75.0 (s, 3F). HRMS (ESI-TOF): m/z [M + H]+ Calcd for C12H11F3N3O+: 270.0851; found: 270.0851.
- 1-(1-Ethyl-5-phenyl-1H-1,2,3-triazol-4-yl)-2,2,2-trifluoroethanone (4f). This was obtained from 1a as an admixture (91:9) in the synthesis of 3f: colorless oil, yield 4.7 mg (8.3%). 1H NMR (CDCl3, 400.1 MHz): δ 7.61–7.52 (m, 3H), 7.39–7.36 (m, 2H), 4.33 (q, 2H, 3J = 7.3 Hz), 1.48 (t, 3H, 3J = 7.3 Hz). 19F NMR (CDCl3, 376.5 MHz): δ −75.3 (s, 3F).
- 2,2,2-Trifluoro-1-(5-phenyl-2-propyl-2H-1,2,3-triazol-4-yl)ethanone (3g). This was obtained from 1a (53.8 mg, 0.223 mmol) and bromopropane (30.3 mg, 0.246 mmol) and purified using gradient eluating by hexane-CH2Cl2 (3:1) followed by hexane-CH2Cl2 (1:1) and CH2Cl2. Total yield (3g + 4g) was 58.7 mg (93%), ratio 3g:4g = 92:8. For pure 3g, see the following: beige oil, yield 54 mg (85.6%). 1H NMR (CDCl3, 400.1 MHz): δ 7.95–7.83 (m, 2H), 7.53–7.43 (m, 3H), 4.52 (t, 2H, 3J = 7.1 Hz), 2.10 (h (sextet), 2H, 3J = 7.3 Hz), 1.02 (t, 3H, 3J = 7.4 Hz). 13C{1H} NMR (CDCl3, 100.6 MHz): δ 174.3 (q, 2JCF = 37.0 Hz), 152.3, 136.1, 130.0, 129.0, 128.42, 128.41, 116.3 (q, 1JCF = 290.8 Hz), 57.8, 22.9, 10.9. 19F NMR (CDCl3, 376.5 MHz): δ −75.0 (s, 3F). HRMS (ESI-TOF): m/z [M + H]+ Calcd for C13H13F3N3O+: 284.1005; found: 284.1007.
- 2,2,2-Trifluoro-1-(5-phenyl-1-propyl-1H-1,2,3-triazol-4-yl)ethanone (4g). this was obtained from 1a as an admixture (92:8) in the synthesis of 3g: yield 4.7 mg (7.4%). 1H NMR (CDCl3, 400.1 MHz): δ 7.60–7.52 (m, 3H), 7.36 (dd, 2H, 3J = 7.5 Hz, 4J = 1.6 Hz), 4.24 (t, 2H, 3J = 7.3 Hz), 1.92–1.82 (m, 2H), 0.87 (t, 3H, 3J = 7.4 Hz). 13C{1H} NMR (CDCl3, 100.6 MHz): δ 174.2 (q, 2JCF = 37.1 Hz), 143.7, 137.9, 130.8, 129.3, 129.1, 128.4, 116.2 (q, 1JCF = 289.3 Hz), 50.0, 29.7, 23.3. 19F NMR (CDCl3, 376.5 MHz): δ −75.3 (s, 3F).
- 2,2,2-Trifluoro-1-(2-pentyl-5-phenyl-2H-1,2,3-triazol-4-yl)ethanone (3h). This was obtained from 1a (51.2 mg, 0.212 mmol) and bromopentane (35.6 mg, 0.236 mmol) and purified using gradient eluating by hexane-CH2Cl2 (3:1) followed by hexane-CH2Cl2 (1:1) and CH2Cl2. Total yield (3h + 4h) was 58 mg (88 %), ratio 3h:4h = 92:8. For pure 3h, see the following: colorless oil, yield 53.4 mg (81%). 1H NMR (CDCl3, 400.1 MHz): δ 7.96–7.85 (m, 2H), 7.54–7.42 (m, 3H), 4.55 (t, 2H, 3J = 7.2 Hz), 2.13–2.01 (m, 2H), 1.46–1.30 (m, 4H), 0.96–0.88 (m, 3H). 13C{1H} NMR (CDCl3, 100.6 MHz): δ 174.3 (q, 2JCF = 37.0 Hz), 152.3, 136.0, 130.0, 129.0, 128.4, 116.3 (q, 1JCF = 290.7 Hz), 56.2, 29.1, 28.4, 22.0, 13.8. 19F NMR (CDCl3, 376.5 MHz): δ −75.0 (s, 3F). HRMS (ESI-TOF): m/z [M + H]+ Calcd for C15H17F3N3O +: 312.1318; found: 312.1322.
- 2,2,2-Trifluoro-1-(1-pentyl-5-phenyl-1H-1,2,3-triazol-4-yl)ethanone (4h). This was obtained from 1a as an admixture (92:8) in the synthesis of 3h: colorless oil, yield 4.6 mg (7%). 1H NMR (CDCl3, 400.1 MHz): δ 7.61–7.51 (m, 3H), 7.38–7.33 (m, 2H), 4.30–4.20 (m, 2H), 1.87–1.77 (m, 2H), 1.26–1.17 (m, 4H), 0.82 (t, 3H, 3J = 6.9 Hz). 13C{1H} NMR (CDCl3, 100.6 MHz): δ 130.8, 129.3, 129.1, 124.8, 48.5, 29.6, 28.4, 21.9, 13.7. 19F NMR (CDCl3, 376.5 MHz): δ −75.3 (s, 3F). NMR data are in agreement with those in the literature [38].
- 2,2,2-Trifluoro-1-(2-nonyl-5-phenyl-2H-1,2,3-triazol-4-yl)ethanone (3i). This was obtained from 1a (53.9 mg, 0.224 mmol) and bromononan (51.3 mg, 0.248 mmol) and purified using gradient eluating by hexane-CH2Cl2 (3:1) followed by hexane-CH2Cl2 (1:1) and CH2Cl2. Total yield (3i + 4i) was 68.6 mg (83 %), ratio 3i:4i = 93:7. For pure 3i, see the following: colorless oil, yield 63.8 mg (77.2%). 1H NMR (CDCl3, 400.1 MHz): δ 7.94–7.85 (m, 2H), 7.50–7.43 (m, 3H), 4.55 (t, 2H, 3J = 7.2 Hz), 2.06 (p, 2H, 3J = 7.3 Hz), 1.44–1.21 (m, 12H), 0.91–0.83 (m, 3H). 13C{1H} NMR (CDCl3, 100.6 MHz): δ 174.3 (q, 2JCF = 37.0 Hz), 152.3, 136.0, 130.0, 129.0, 128.42, 128.40, 116.3 (q, 1JCF = 290.7 Hz), 56.3, 31.8, 29.4, 29.3, 29.12, 28.9, 26.32, 22.61, 14.05. 19F NMR (CDCl3, 376.5 MHz): δ −75.0 (s, 3F). HRMS (ESI-TOF): m/z [M + H]+ Calcd for C19H25F3N3O+: 368.1944; found: 368.1950.
- 2,2,2-Trifluoro-1-(1-nonyl-5-phenyl-1H-1,2,3-triazol-4-yl)ethanone (4i). This was obtained from 1a as an admixture (93:7) in the synthesis of 3i: Colorless oil, yield 4.8 mg (5.8%). 1H NMR (CDCl3, 400.1 MHz): δ 7.62–7.50 (m, 3H), 7.39–7.30 (m, 2H), 4.32–4.20 (m, 2H), 1.81 (p, 2H, 3J = 7.3 Hz), 1.32–1.13 (m, 12H), 0.86 (t, 3H, 3J = 7.0 Hz). 13C{1H} NMR (CDCl3, 100.6 MHz): δ 130.8, 129.3, 129.1, 124.8, 48.5, 31.7, 29.9, 29.2, 29.08, 28.7, 26.27, 22.59, 14.06. 19F NMR (CDCl3, 376.5 MHz): δ −75.3 (s, 3F).
- 2,2,2-Trifluoro-1-(2-phenethyl-5-phenyl-2H-1,2,3-triazol-4-yl)ethanone (3j). This was obtained from 1a (52.9 mg, 0.220 mmol) and (2-bromoethyl)benzene (44.8 mg, 0.242 mmol) and purified using gradient eluating by hexane-CH2Cl2 (3:1) followed by hexane-CH2Cl2 (1:1) and CH2Cl2. Total yield (3j + 4j) was 64.8 mg (85 %), ratio 3j:4j = 93:7. For pure 3j, see the following: colorless oil, yield 60.3 mg (79%). 1H NMR (CDCl3, 400.1 MHz): δ 7.92–7.84 (m, 2H), 7.51–7.45 (m, 3H), 7.34–7.19 (m, 5H), 4.84–4.76 (m, 2H), 3.43–3.36 (m, 2H). 13C{1H} NMR (CDCl3, 100.6 MHz): δ 174.2 (q, 2JCF = 37.2 Hz), 152.3, 136.5, 136.1, 130.1, 129.0, 128.8, 128.7, 128.4, 128.3, 127.1, 116.2 (q, 1JCF = 290.7 Hz), 57.2, 35.6. 19F NMR (CDCl3, 376.5 MHz): δ −75.0 (s, 3F). HRMS (ESI-TOF): m/z [M + H3O]+ Calcd for C18H17F3N3O2+: 346.1267; found: 346.1270.
- 2,2,2-Trifluoro-1-(1-phenethyl-5-phenyl-1H-1,2,3-triazol-4-yl)ethanone (4j). This was obtained from 1a as an admixture (93:7) in the synthesis of 3j: colorless oil, yield 4.5 mg (6%). 1H NMR (CDCl3, 400.1 MHz): δ 7.53–7.48 (m, 1H), 7.44–7.39 (m, 2H), 7.23–7.17 (m, 3H), 6.96–6.90 (m, 2H), 6.90–6.83 (m, 2H), 4.46 (t, 2H, 3J = 7.1 Hz), 3.19 (t, 2H, 3J = 7.1 Hz). 19F NMR (CDCl3, 376.5 MHz): δ -75.4 (s, 3F). NMR data are in agreement with those in the literature [38].
- 2,2,2-Trifluoro-1-(2-isobutyl-5-phenyl-2H-1,2,3-triazol-4-yl)ethanone (3k). This was obtained from 1a (48.5 mg, 0.201 mmol) and 1-chloro-2-methylpropane (27.8 mg, 0.300 mmol) by heating for 14 h at 100 °C and purified using gradient eluating by hexane-CH2Cl2 (3:1) followed by hexane-CH2Cl2 (1:1) and CH2Cl2. Total yield (3k + 4k) was 50 mg (84%), ratio 3k:4k = 91:9. For pure 3k, see the following: colorless oil, yield 45.5 mg (76.2%). 1H NMR (CDCl3, 400.1 MHz): δ 7.95–7.82 (m, 2H), 7.53–7.42 (m, 3H), 4.37 (q, 2H, 3J = 7.3 Hz), 2.45 (hept, 1H, 3J = 6.9 Hz), 1.01 (s, 3H), 1.00 (s, 3H). 13C{1H} NMR (CDCl3, 100.6 MHz): δ 174.3 (q, 2JCF = 36.7 Hz), 152.2, 136.0, 130.0, 129.0, 128.41, 128.39, 116.3 (q, 1JCF = 290.7 Hz), 63.2, 29.4, 19.7. 19F NMR (CDCl3, 376.5 MHz): δ −75.0 (s, 3F). HRMS (ESI-TOF): m/z [M + H]+ Calcd for C14H15F3N3O+: 298.1163; found: 298.1163.
- 2,2,2-Trifluoro-1-(1-isobutyl-5-phenyl-1H-1,2,3-triazol-4-yl)ethanone (4k). This was obtained from 1a as an admixture (91:9) in the synthesis of 3k: colorless oil, yield 4.5 mg (7.5%). 1H NMR (CDCl3, 400.1 MHz): δ 7.61–7.52 (m, 3H), 7.39–7.36 (m, 2H), 4.33 (q, 2H, 3J = 7.3 Hz), 1.48 (t, 3H, 3J = 7.3 Hz). 19F NMR (CDCl3, 376.5 MHz): δ −75.3 (s, 3F).
- 2,2,2-Trifluoro-1-(2-isopropyl-5-phenyl-2H-1,2,3-triazol-4-yl)ethanone (3l). This was obtained from 1a (49.8 mg, 0.207 mmol) and 1-bromo-2-methylpropane (29 mg, 0.238 mmol) by heating for 8 h at 80 °C and purified using gradient eluating by hexane-CH2Cl2 (3:1) followed by hexane-CH2Cl2 (1:1) and CH2Cl2. Total yield (3l + 4l) was 46 mg (79%), ratio 3l:4l = 94:6. For pure 3l, see the following: colorless oil, yield 43.2 mg (74.3%). 1H NMR (CDCl3, 400.1 MHz): δ 7.95–7.87 (m, 2H), 7.50–7.44 (m, 3H), 4.97 (hept, 1H, 3J = 6.7 Hz), 1.69 (s, 3H), 1.68 (s, 3H). 13C{1H} NMR (CDCl3, 100.6 MHz): δ 174.4 (q, 2JCF = 36.9 Hz), 152.0, 135.7, 130.0, 129.0, 128.6, 128.4, 116.3 (q, 1JCF = 290.9 Hz), 59.0, 22.1. 19F NMR (CDCl3, 376.5 MHz): δ −75.0 (s, 3F). HRMS (ESI-TOF): m/z [M + H]+ Calcd for C13H13F3N3O +: 284.1005; found: 284.1007.
- 2,2,2-Trifluoro-1-(1-isopropyl-5-phenyl-1H-1,2,3-triazol-4-yl)ethanone (4l). This was obtained from 1a as an admixture (94:6) in the synthesis of 3l: colorless oil, yield 2.8 mg (4.7%). 1H NMR (CDCl3, 400.1 MHz): δ 7.60–7.52 (m, 3H), 7.36–7.31 (m, 2H), 4.54 (hept, 1H, 3J = 6.7 Hz), 1.61 (s, 3H), 1.59 (s, 3H). 19F NMR (CDCl3, 376.5 MHz): δ −75.3 (s, 3F).
- 1-(2-Cyclohexyl-5-phenyl-2H-1,2,3-triazol-4-yl)-2,2,2-trifluoroethanone (3m). This was obtained from 1a (48 mg, 0.199 mmol) and bromocyclohexane (36 mg, 0.221 mmol) by heating for 14 h at 100 °C and purified using gradient eluating by hexane-CH2Cl2 (3:1) followed by hexane-CH2Cl2 (1:1) and CH2Cl2. Total yield (3m + 4m) was 45.1 mg (70%), ratio 3m:4m = 93:7. For pure 3m, see the following: white solid, m.p. 53–54 °C, yield 41.9 mg (65.1%). 1H NMR (CDCl3, 400.1 MHz): δ 7.97–7.82 (m, 2H), 7.52–7.40 (m, 3H), 4.68–4.50 (m, 1H), 2.34–2.23 (m, 2H), 2.06–1.90 (m, 4H), 1.80–1.72 (m, 1H), 1.54–1.28 (m, 3H). 13C{1H} NMR (CDCl3, 100.6 MHz): δ 174.5 (q, 2JCF = 36.8 Hz), 151.9, 135.7, 129.9, 129.0, 128.7, 128.4, 116.5 (q, 1JCF = 290.9 Hz), 65.6, 32.4, 25.0, 24.8. 19F NMR (CDCl3, 376.5 MHz): δ −74.9 (s, 3F). HRMS (ESI-TOF): m/z [M + H]+ Calcd for C16H17F3N3O+: 324.1318; found: 324.1318.
- 1-(1-Cyclohexyl-5-phenyl-1H-1,2,3-triazol-4-yl)2,2,2-trifluoroethanone (4m). This was obtained from 1a as an admixture (93:7) in the synthesis of 3m: yield 3.2 mg (4.9%). 1H NMR (CDCl3, 400.1 MHz): δ 7.82–7.68 (m, 2H), 7.48–7.32 (m, 3H), 5.06–4.96 (m, 1H), 2.34–2.17 (m, 2H), 2.06–1.90 (m, 4H), 1.80–1.72 (m, 1H), 1.54–1.28 (m, 3H). 19F NMR (CDCl3, 376.5 MHz): δ −75.3 (s, 3F).
- 1,1′-(2,2′-(Butane-1,4-diyl)bis(5-phenyl-2H-1,2,3-triazole-4,2-diyl))bis(2,2,2-trifluoroethanone) (3n). This was obtained from 1a (74.1 mg, 0.307 mmol) and 1,4-dibromobytane (32.4 mg, 0.150 mmol) and purified using gradient eluating by hexane-CH2Cl2 (3:1) followed by hexane-CH2Cl2 (1:1) and CH2Cl2. Total yield (3n + 4n) was 55 mg (67%), ratio 3n:4n = 83:17. For pure 3n, see the following: colorless oil, yield 45.7 mg (55.6%). 1H NMR (CDCl3, 400.1 MHz): δ 7.95–7.76 (m, 4H), 7.53–7.40 (m, 6H), 4.72–4.60 (m, 4H), 2.27–2.13 (m, 4H). 13C{1H} NMR (CDCl3, 100.6 MHz): δ 174.2 (q, 2JCF = 37.0 Hz), 152.5, 136.3, 130.2, 129.0, 128.5, 128.1, 116.2 (q, 1JCF = 290.8 Hz), 55.0, 26.1. 19F NMR (CDCl3, 376.5 MHz): δ −75.0 (s, 6F). HRMS (ESI-TOF): m/z [M + H]+ Calcd for C24H19F6N6O2+: 537.1468; found: 537.1467.
- 2,2,2-Trifluoro-1-(5-phenyl-1-(4-(4-phenyl-5-(2,2,2-trifluoroacetyl)-2H-1,2,3-triazol-2-yl)butyl)-1H-1,2,3-triazol-4-yl)ethanone (4n). This was obtained from 1a as an admixture (83:17) in the synthesis of 3n: colorless oil, yield 9.4 mg (11.4%). 1H NMR (CDCl3, 400.1 MHz): δ 7.89–7.83 (m, 2H), 7.55–7.44 (m, 6H), 7.32 (dd, 2H, 3J = 7.9 Hz, 4J = 1.4 Hz), 4.53 (t, 2H, 3J = 6.6 Hz), 4.36 (t, 2H, 3J = 6.9 Hz), 2.09–2.01 (m, 2H), 1.99–1.86 (m, 2H). 13C{1H} NMR (CDCl3, 100.6 MHz): δ 174.2 (q, 2JCF = 37.5 Hz), 174.1 (q, 2JCF = 37.7 Hz), 152.5, 143.7, 138.0, 136.3, 131.0, 130.3, 129.19, 129.16, 129.0, 128.5, 128.3, 128.0, 116.1 (q, 1JCF = 289.8 Hz), 116.1 (q, 1JCF = 291.0 Hz), 54.9, 47.5, 26.5, 26.0. 19F NMR (CDCl3, 376.5 MHz): δ −75.0 (s, 3F), −75.4 (s, 3F).
- Ethyl 2-(4-phenyl-5-(2,2,2-trifluoroacetyl)-2H-1,2,3-triazol-2-yl)acetate (3o). this was obtained from 1a (52.9 mg, 0.219 mmol) and ethyl 2-bromoacetate (40.7 mg, 0.0244 mmol) and purified using gradient eluating by hexane-CH2Cl2 (3:1) followed by hexane-CH2Cl2 (1:1) and CH2Cl2. Total yield (3o + 4o) was 57 mg (80%), ratio 3o:4o = 90:10. For pure 3o, see the following: Beige solid, m.p. 58–60 °C, yield 51.3 mg (72%). 1H NMR (CDCl3, 400.1 MHz): δ 7.93–7.84 (m, 2H), 7.50–7.44 (m, 3H), 5.34 (s, 2H), 4.29 (q, 2H, 3J = 7.1 Hz), 1.30 (t, 3H, 3J = 7.1 Hz). 13C{1H} NMR (CDCl3, 100.6 MHz): δ 174.2 (q, 2JCF = 37.4 Hz), 165.3, 152.9, 137.1, 130,2, 129.1, 128.4, 127.9, 116.1 (q, 1JCF = 290.8 Hz), 62.6, 56.5, 14.0. 19F NMR (CDCl3, 376.5 MHz): δ −75.1 (s, 3F). HRMS (ESI-TOF): m/z [M + H]+ Calcd for C14H13F3N3O3+: 328.0904; found: 328.0908.
- Ethyl 2-(5-phenyl-4-(2,2,2-trifluoroacetyl)-1H-1,2,3-triazol-1-yl)acetate (4o). This was obtained from 1a as an admixture (90:10) in the synthesis of 3o: colorless oil, yield 5.7 mg (8%). 1H NMR (CDCl3, 400.1 MHz): δ 7.56–7.52 (m, 2H), 7.38–7.36 (m, 2H), 5.04 (s, 2H), 4.21 (q, 2H, 3J = 7.1 Hz), 1.23 (t, 3H, 3J = 7.1 Hz). 13C{1H} NMR (CDCl3, 100.6 MHz): δ 131.1, 129.2, 62.7, 49.1. 19F NMR (CDCl3, 376.5 MHz): δ −75.3 (s, 3F). NMR data are in agreement with those in the literature [38].
- N,N-Dimethyl-2-(4-phenyl-5-(2,2,2-trifluoroacetyl)-2H-1,2,3-triazol-2-yl)acetamide (3p). This was obtained from 1a (47.6 mg, 0.198 mmol) and 2-chloro-N,N-dimethylacetamide (26.7 mg, 0.220 mmol) and purified using gradient eluating by hexane-CH2Cl2 (3:1) followed by hexane-CH2Cl2 (1:1) and CH2Cl2. Total yield (3p + 4p) was 52 mg (81%), ratio 3p:4p = 89:11. For the mixture of 3p and 4p, see the following: light yellow solid, m.p. 126–128 °C. For 3p: 1H NMR (CDCl3, 400.1 MHz): δ 7.92–7.84 (m, 2H), 7.47–7.41 (m, 3H), 5.43 (s, 2H), 3.08 (s, 3H), 3.00 (s, 3H). 13C{1H} NMR (CDCl3, 100.6 MHz): δ 174.2 (q, 2JCF = 37.2 Hz), 163.9, 152.8, 136.9, 130.1, 129.2, 128.3, 128.1, 116.2 (q, 1JCF = 291.0 Hz), 56.9, 36.4, 35.9. 19F NMR (CDCl3, 376.5 MHz): δ −74.9 (s, 3F). 1H NMR (CD3CN, 400.1 MHz): δ 7.88–7.80 (m, 2H), 7.56–7.46 (m, 3H), 5.54 (s, 2H), 3.03 (s, 3H), 3.00 (s, 3H). 13C{1H} NMR (CD3CN, 100.6 MHz): δ 174.8 (q, 2JCF = 36.5 Hz), 165.8, 153.2, 137.6, 131.0, 130.0, 129.4, 129.4, 117.2 (q, 1JCF = 290.2 Hz), 58.0, 38.4, 35.9. 19F NMR (CD3CN, 376.5 MHz): δ −73.0 (s, 3F). HRMS (ESI-TOF): m/z [M + H]+ Calcd for C14H14F3N4O2+: 327.1063; found: 327.1070.
- N,N-Dimethyl-2-(5-phenyl-4-(2,2,2-trifluoroacetyl)-1H-1,2,3-triazol-1-yl)acetamide (4p). This was obtained from 1a as an admixture (89:11) in the synthesis of 3p: 1H NMR (CDCl3, 400.1 MHz): δ 7.55–7.47 (m, 3H), 5.08 (s, 2H), 2.97 (s, 3H), 2.95 (s, 3H). 13C{1H} NMR (CDCl3, 100.6 MHz): δ 130.9, 129.4, 128.9, 55.3. 19F NMR (CDCl3, 376.5 MHz): δ −75.3 (s, 3F). 1H NMR (CD3CN, 400.1 MHz): δ 5.21 (s, 2H). 13C{1H} NMR (CD3CN, 100.6 MHz): δ 131.8, 130.4, 129.7, 129.4, 117.2 (q, 1JCF = 290.2 Hz), 38.8, 36.9, 36.3. 19F NMR (CD3CN, 376.5 MHz): δ −73.2 (s, 3F).
- 2,2,2-Trifluoro-1-(5-phenyl-2-tosyl-2H-1,2,3-triazol-4-yl)ethanone (3q). This was obtained from 1a (60 mg, 0.249 mmol) and 4-toluenesulfonyl chloride (52 mg, 0.274 mmol) and purified using gradient eluating by hexane-CH2Cl2 (1:1) followed by CH2Cl2: white crystals, m.p. 156–160 °C, yield 73 mg (74%). 1H NMR (CDCl3, 400.1 MHz): δ 8.08 (d, 2H, 3J = 8.4 Hz), 7.83 (dd, 2H, 3J = 7.9 Hz, 4J = 1.4 Hz) 7.52–7.39 (m, 5H), 2.46 (s, 3H). 13C{1H} NMR (CDCl3, 100.6 MHz): δ 174.5 (q, 2JCF = 37.9 Hz), 153.4, 148.1, 138.6, 131.6, 130.8, 130.6, 129.6, 129.3, 128.5, 126.9, 115.8 (q, 1JCF = 290.5 Hz), 21.9. 19F NMR (CDCl3, 376.5 MHz): δ −75.2 (s, 3F). HRMS (ESI-TOF): m/z [M + H]+ Calcd for C17H13F3N3O3S+: 396.0324; found: 396.0626. IR (ν, cm−1): 1731 (C=O).
- 2,2,2-Trifluoro-1-(2-(methylsulfonyl)-5-phenyl-2H-1,2,3-triazol-4-yl)ethanone (3r). This was obtained from 1a (58.5 mg, 0.243 mmol) and methanesulfonyl chloride (30.5 mg, 0.267 mmol) and purified using gradient eluating by hexane-CH2Cl2 (3:1) followed by hexane-CH2Cl2 (1:1) and CH2Cl2: pale yellow solid, m.p. 99–100 °C, yield 62 mg (80%). 1H NMR (CDCl3, 400.1 MHz): δ 7.93–7.82 (m, 2H), 7.56–7.46 (m, 3H), 3.62 (s, 3H). 13C{1H} NMR (CDCl3, 100.6 MHz): δ 174.4 (q, 2JCF = 38.6 Hz), 153.6, 138.6, 131.1, 129.3, 128.7, 126.6, 115.8 (q, 1JCF = 290.4 Hz), 41.7. 19F NMR (CDCl3, 376.5 MHz): δ -75.2 (s, 3F). HRMS (ESI-TOF): m/z [M + H]+ Calcd for C11H9F3N3O3S +: 320.0313; found: 320.0315.
- 1-(2-(2,4-Dinitrophenyl)-5-phenyl-2H-1,2,3-triazol-4-yl)-2,2,2-trifluoroethanone (5). This was obtained from 1a (57 mg, 0.237 mmol) and 1-fluoro-2,4-dinitrobenzene (49 mg, 0.263 mmol) and purified using gradient eluating by hexane-CH2Cl2 (3:1) followed by hexane-CH2Cl2 (1:1): pale yellow powder, m.p. 132–134 °C, yield 79 mg (82%). 1H NMR (CDCl3, 400.1 MHz): δ 8.67 (d, 1H, 4J = 2.4 Hz), 8.56 (dd, 1H, 3J = 8.9 Hz, 4J = 2.4 Hz), 8.31 (d, 1H, 3J = 8.9 Hz), 7.83 (dd, 2H, 3J = 7.7 Hz, 4J = 1.7 Hz), 7.49–7.40 (m, 3H). 13C{1H} NMR (CDCl3, 100.6 MHz): δ 173.7 (q, 2JCF = 38.2 Hz), 153.8, 147.1, 142.8, 138.7, 134.1, 130.8, 129.0, 128.4, 127.4, 126.4, 120.7, 115.6 (q, 1JCF = 290.5 Hz). 19F NMR (CDCl3, 376.5 MHz): δ −75.0 (s, 3F). HRMS (ESI-TOF): m/z [M + H]+ Calcd for C16H9F3N5O5+: 408.0550; found: 408.0549. IR (ν, cm−1): 1738 (C=O); 1545, 1540, 1349, 1335 (NO2).
- 2,2,2-Trifluoro-1-(2-(4-nitrophenyl)-5-phenyl-2H-1,2,3-triazol-4-yl)ethanone (6). This was obtained from 1a (60 mg, 0.249 mmol) and 1-fluoro-4-nitrobenzene (44 mg, 0.312 mmol) and purified using gradient eluating by hexane-CH2Cl2 (3:1) followed by hexane-CH2Cl2 (1:1): yellow solid, m.p. 166–168 °C, yield 59.1 mg (66%). 1H NMR (CDCl3, 400.1 MHz): δ 8.47–8.37 (m, 4H), 8.04–7.91 (m, 2H), 7.58–7.49 (m, 3H). 13C{1H} NMR (CDCl3, 100.6 MHz): δ 174.3 (q, 2JCF = 37.8 Hz), 153.7, 147.7, 142.5, 138.3, 130.8, 129.2, 128.6, 127.3, 125.3, 120.2, 116.1 (q, 1JCF = 290.4 Hz). 19F NMR (CDCl3, 376.5 MHz): δ −60.5 (s, 3F), −75.0 (s, 3F). HRMS (ESI-TOF): m/z [M + H]+ Calcd for C16H10F3N4O3+: 363.0700; found: 363.0704.
- 2,2,2-Trifluoro-1-(2-(4-nitro-2-(trifluoromethyl)phenyl)-5-phenyl-2H-1,2,3-triazol-4-yl)ethanone (7). This was obtained from 1a (48.7 mg, 0.202 mmol) and 1-chloro-4-nitro-2-(trifluoromethyl)benzene (50.9 mg, 0.226 mmol) and purified using gradient eluating by hexane-CH2Cl2 (3:1) followed by hexane-CH2Cl2 (1:1): light yellow solid, m.p. 109–111 °C, yield 46 mg (53%). 1H NMR (CDCl3, 400.1 MHz): δ 8.81 (d, 1H, 4J = 2.4 Hz), 8.62 (dd, 1H, 3J = 8.8 Hz, 4J = 2.5 Hz), 8.22 (d, 1H, 3J = 8.8 Hz), 8.02–7.94 (m, 2H), 7.56–7.49 (m, 3H). 13C{1H} NMR (CDCl3, 100.6 MHz): δ 174.3 (q, 2JCF = 38.3 Hz), 153.7, 147.7, 140.8, 138.8, 130.9, 129.2, 128.7, 128.3, 127.9, 127.0, 126.2 (q, 2JCF = 35.1 Hz), 124.2 (q, 3JCF = 5.3 Hz), 121.5 (q, 1JCF = 274.4 Hz), 116.0 (q, 1JCF = 290.4 Hz). 19F NMR (CDCl3, 376.5 MHz): δ −60.5 (s, 3F), −75.3 (s, 3F). HRMS (ESI-TOF): m/z [M + H3O]+ Calcd for C17H10F6N4O4+: 449.0679; found: 449.0675.
- 2,2,2-Trifluoro-1-(2-(2-nitro-4-(trifluoromethyl)phenyl)-5-phenyl-2H-1,2,3-triazol-4-yl)ethanone (8). This was obtained from 1a (51 mg, 0.216 mmol) and 1-chloro-2-nitro-4-(trifluoromethyl)benzene (54 mg, 0.24 mmol) and purified using gradient eluating by hexane-CH2Cl2 (3:1) followed by hexane-CH2Cl2 (1:1): pale yellow oil, yield 57 mg (62%). 1H NMR (CDCl3, 400.1 MHz): δ 8.27 (d, 1H, 3J = 8.5 Hz), 8.19 (pseudo-d, 1H, 4J = 1.1 Hz), 8.05 (dd, 1H, 3J = 8.5 Hz, 4J = 4.1 Hz), 7.97–7.88 (m, 2H), 7.57–7.46 (m, 3H). 13C{1H} NMR (CDCl3, 100.6 MHz): δ 174.1 (q, 2JCF = 38.0 Hz), 153.9, 143.4, 138.8, 133.3, 132.7 (q, 2JCF = 35.0 Hz), 131.0, 129.9 (q, 3JCF = 3.5 Hz), 129.3, 128.7, 126.9, 126.1, 122.8 (q, 3JCF = 3.6 Hz), 122.2 (q, 1JCF = 273.3 Hz), 116.0 (q, 1JCF = 290.7 Hz). 19F NMR (CDCl3, 376.5 MHz): δ −64.1 (s, 3F), −75.2 (s, 3F). HRMS (ESI-TOF): m/z [M + H]+ Calcd for C17H9F6N4O3+: 431.0573; found: 431.0576.
- 2,2,2-Trifluoro-1-(2-(8-nitroquinolin-5-yl)-5-phenyl-2H-1,2,3-triazol-4-yl)ethanone (9). This was obtained from 1a (53.8 mg, 0.223 mmol) and 5-chloro-8-nitroquinoline (66 mg, 0.317 mmol) and purified using gradient eluating by hexane-CH2Cl2 (3:1) followed by hexane-CH2Cl2 (1:1): yellow powder, m.p. 114–116 °C, yield 36 mg (39%). 1H NMR (CDCl3, 400.1 MHz): δ 9.09 (dd, 1H, 3J = 4.1 Hz, 4J = 1.6 Hz), 9.04 (dd, 1H, 3J = 8.9 Hz, 4J = 1.6 Hz), 8.49 (d, 1H, 3J = 8.3 Hz), 8.20 (d, 1H, 3J = 8.3 Hz), 8.03–7.95 (m, 2H), 7.76 (dd, 1H, 3J = 8.9 Hz, 4J = 4.1 Hz), 7.53–7.47 (m, 3H). 13C{1H} NMR (CDCl3, 100.6 MHz): δ 174.5 (q, 2JCF = 37.5 Hz), 153.3, 152.8, 146.5, 142.5, 140.9, 138.3, 132.0, 130.4, 129.3, 128.5, 127.7, 125.5, 125.0, 123.6, 122.3, 121.2, 116.2 (q, 1JCF = 290.6 Hz). 19F NMR (CDCl3, 376.5 MHz): δ −75.0 (s, 3F). HRMS (ESI-TOF): m/z [M + H]+ Calcd for C19H11F3N5O3+: 414.0809; found: 414.0809.
- Ethyl 2,3,5,6-tetrafluoro-4-(4-phenyl-5-(2,2,2-trifluoroacetyl)-2H-1,2,3-triazol-2-yl)benzoate (10). This was obtained from 1a (58.5 mg, 0.243 mmol) and ethyl 2,3,4,5,6-pentafluorobenzoate (64 mg, 0.267 mmol) and purified using gradient eluating by hexane-CH2Cl2 (3:1) followed by hexane-CH2Cl2 (1:1): pale yellow solid, m.p. 72–75 °C, yield 79.5 mg (71%). 1H NMR (CDCl3, 400.1 MHz): δ 7.98–7.85 (m, 2H), 7.57–7.47 (m, 3H), 4.51 (q, 2H, 3J = 7.2 Hz), 1.43 (t, 3H, 3J = 7.2 Hz). 13C{1H} NMR (CDCl3, 100.6 MHz): δ 174.2 (q, 2JCF = 38.2 Hz), 158.4, 153.7, 145.1 (ddt, 2JCF = 255.2 Hz, 3JCF = 13.1 Hz, 4JCF = 5.4 Hz), 142.2 (ddd, 2JCF = 255.2 Hz, 3JCF = 15.6 Hz, 4JCF = 4.4 Hz), 138.9, 130.8, 129.3, 128.6, 126.9, 120.9 (tt, 3JCF = 12.7 Hz, 4JCF = 2.7 Hz), 116.0 (q, 1JCF = 290.6 Hz), 115.2 (t, 3JCF = 16.9 Hz), 63.4, 14.0. 19F NMR (CDCl3, 376.5 MHz): δ -75.2 (s, 3F), −138.13 – −138.23 (m, 2F), −145.58 – −145.74 (m, 2F). HRMS (ESI-TOF): m/z [M + H]+ Calcd for C19H11F7N3O3+: 462.0683; found: 462.0681.
- 2,2,2-Trifluoro-1-(5-(4-methoxyphenyl)-2-(4-nitrophenyl)-2H-1,2,3-triazol-4-yl)ethanone (11). This was obtained from 1b (52 mg, 0.192 mmol) and 1-fluoro-4-nitrobenzene (30 mg, 0.213 mmol) and purified using gradient eluating by hexane-CH2Cl2 (3:1) followed by hexane-CH2Cl2 (1:1): white solid, m.p. 55–57 °C, yield 47.7 mg (63%). 1H NMR (CDCl3, 400.1 MHz): δ 8.50–8.34 (m, 4H), 7.99 (d, 2H, 3J = 8.8 Hz), 7.02 (d, 2H, 3J = 8.8 Hz), 3.88 (s, 3H). 13C{1H} NMR (CDCl3, 100.6 MHz): δ 174.4 (q, 2JCF = 37.4 Hz), 161.7, 153.6, 147.7, 142.6, 138.1, 130.8, 125.3, 120.2, 119.7, 116.2 (q, 1JCF = 290.7 Hz), 114.1, 55.4. 19F NMR (CDCl3, 376.5 MHz): δ −74.8 (s, 3F). HRMS (ESI-TOF): m/z [M + H]− Calcd for C17H12F3N4O4−: 393.0816; found: 393.0822.
- 1-(2,5-diPhenyl-2H-1,2,3-triazol-4-yl)-2,2,2-trifluoroethanone (12). This was obtained from triazole 1a (400 mg, 1.660 mmol) and PhB(OH)2 (309 mg, 2.553 mmol): colorless crystals, m.p. 93–95 °C yield 367 mg (77%). 1H NMR (CDCl3, 400.1 MHz): δ 8.28–8.18 (m, 2H), 8.03–7.95 (m, 2H), 7.59–7.46 (m, 6H). 13C{1H} NMR (CDCl3, 100.6 MHz): δ 174.4 (q, 2JCF = 37.5 Hz), 152.9, 138.8, 137.1, 130.4, 129.6, 129.4, 129.2, 128.5, 128.1, 119.7, 116.3 (q, 1JCF = 290.9 Hz). 19F NMR (CDCl3, 376.5 MHz): δ −74.9 (s, 3F). HRMS (ESI-TOF): m/z [M + H]+ Calcd for C16H11F3N3O+: 318.0849; found: 318.0851. IR (ν, cm−1): 1716 (C=O).
- 2,2,2-Trifluoro-1-(5-(4-methoxyphenyl)-2-phenyl-2H-1,2,3-triazol-4-yl)-ethanone (13). This was obtained from triazole 1b (77 mg, 0.284 mmol) and PhB(OH)2 (57 mg, 0.471 mmol): beige solid, m.p. 124–126 °C, yield 63 mg (64%). 1H NMR (CDCl3, 400.1 MHz): δ 8.28–8.15 (m, 2H), 8.02 (d, 2H, 3J = 9.0 Hz), 7.58–7.51 (m, 2H), 7.49–7.43 (m, 1H), 7.02 (d, 2H, 3J = 8.9 Hz), 3.87 (s, 3H). 13C{1H} NMR (CDCl3, 100.6 MHz): δ 174.4 (q, 2JCF = 37.1 Hz), 161.3, 152.8, 138.8, 136.8, 130.7, 129.5, 129.3, 120.4, 119.7, 116.4 (q, 1JCF = 290.9 Hz), 55.3. 19F NMR (CDCl3, 376.5 MHz): δ −74.7 (s, 3F). HRMS (ESI-TOF): m/z [M + H]+ Calcd for C17H13F3N3O2+: 348.0954; found: 348.0956.
- 2,2,2-Trifluoro-1-(2-phenyl-5-(p-tolyl)-2H-1,2,3-triazol-4-yl)-ethanone (14). This was obtained from triazole 1c (95 mg, 0.373 mmol) and PhB(OH)2 (68 mg, 0.562 mmol): white solid, m.p. 124–126 °C, yield 109 mg (88%). 1H NMR (CDCl3, 400.1 MHz): δ 8.22 (d, 2H, 3J = 7.6 Hz), 7.93 (d, 2H, 3J = 8.2 Hz), 7.55 (t, 2H, 3J = 7.7 Hz), 7.47 (t, 1H, 3J = 7.3 Hz), 7.32 (d, 2H, 3J = 8.0 Hz), 2.44 (s, 3H). 13C{1H} NMR (CDCl3, 100.6 MHz): δ 174.4 (q, 2JCF = 37.2 Hz), 152.9, 140.6, 138.8, 137.0, 129.5, 129.3, 129.2, 129.1, 125.2, 119.6, 116.4 (q, 1JCF = 290.9 Hz), 21.4. 19F NMR (CDCl3, 376.5 MHz): δ -74.6 (s, 3F). HRMS (ESI-TOF): m/z [M + H]+ Calcd for C17H13F3N3O+: 332.1005; found: 332.1007.
- 2,2,2-Trifluoro-1-(2-phenyl-5-(4-(trifluorometyl)phenyl)-2H-1,2,3-triazol-4-yl)-ethanone (15). This was obtained from triazole 1d (54 mg, 0.175 mmol) and PhB(OH)2 (31 mg, 0.256 mmol): white solid, m.p. 78–80 °C, yield 43 mg (64%). 1H NMR (CDCl3, 400.1 MHz): δ 8.22 (d, 2H, 3J = 7.8 Hz), 8.14 (d, 2H, 3J = 8.1 Hz), 7.77 (t, 2H, 3J = 8.1 Hz), 7.61–7.46 (m, 3H). 13C{1H} NMR (CDCl3, 100.6 MHz): δ 174.5 (q, 2JCF = 37.8 Hz), 151.4, 138.6, 137.3, 132.1 (q, 2JCF = 32.9 Hz), 131.6, 129.72, 129.67, 129.6, 125.5 (q, 4JCF = 3.5 Hz), 123.8 (q, 1JCF = 272.4 Hz), 119.8, 116.2 (q, 1JCF = 290.6 Hz). 19F NMR (CDCl3, 376.5 MHz): δ −64.1 (s, 3F), −74.6 (s, 3F). HRMS (ESI-TOF): m/z [M + H]+ Calcd for C17H10F6N3O+: 386.0723; found: 386.0737.
- 2,2,2-Trifluoro-1-(2-(4-methoxyphenyl)-5-phenyl-2H-1,2,3-triazol-4-yl)-ethanone (16). This was obtained from triazole 1a (45 mg, 0.187 mmol) and (4-methoxyphenyl)boronic acid (51 mg, 0.338 mmol): white solid, m.p. 79–81 °C, yield 48 mg (74%). 1H NMR (CDCl3, 400.1 MHz): δ 8.13 (d, 2H, 3J = 9.2 Hz), 8.03–7.96 (m, 2H), 7.53–7.47 (m, 3H), 7.03 (d, 2H, 3J = 9.2 Hz), 3.88 (s, 3H). 13C{1H} NMR (CDCl3, 100.6 MHz): δ 174.3 (q, 2JCF = 37.0 Hz), 160.4, 152.8, 136.7, 132.4, 130.3, 129.2, 128.4, 128.2, 121.2, 116.4 (q, 1JCF = 290.6 Hz), 114.6, 55.6. 19F NMR (CDCl3, 376.5 MHz): δ −74.8 (s, 3F). HRMS (ESI-TOF): m/z [M + H]+ Calcd for C17H13F3N3O2+: 348.0954; found: 348.0957.
- 2,2,2-Trifluoro-1-(2-(4-(hexyloxy)phenyl)-5-phenyl-2H-1,2,3-triazol-4-yl)-ethanone (17). This was obtained from triazole 1a (53 mg, 0.220 mmol) and (4-(hexyloxy)phenyl)boronic acid (73 mg, 0.329 mmol): white solid, m.p. 67–69 °C, yield 63 mg (69%). 1H NMR (CDCl3, 400.1 MHz): δ 8.15–8.06 (m, 2H), 8.05–7.93 (m, 2H), 7.54–7.45 (m, 3H), 7.06–6.96 (m, 2H), 4.02 (t, 2H, 3J = 6.6 Hz), 1.86–1.76 (m, 2H), 1.53–1.44 (m, 2H), 1.40–1.31 (m, 4H), 0.92 (t, 3H, 3J = 7.0 Hz). 13C{1H} NMR (CDCl3, 100.6 MHz): δ 174.3 (q, 2JCF = 37.1 Hz), 160.0, 152.8, 136.7, 132.2, 130.2, 129.2, 128.5, 128.2, 121.2, 116.4 (q, 1JCF = 291.0 Hz), 115.1, 68.5, 31.6, 29.1, 25.7, 22.6, 14.0. 19F NMR (CDCl3, 376.5 MHz): δ −74.9 (s, 3F). HRMS (ESI-TOF): m/z [M + H]+ Calcd for C22H23F3N3O2+: 418.1737; found: 418.1733.
- 1-(2-(4-Chloro-3-fluorophenyl)-5-phenyl-2H-1,2,3-triazol-4-yl)-2,2,2-trifluoroethanone (18). This was obtained from triazole 1a (38 mg, 0.158 mmol) and (4-chloro-3-fluorophenyl)boronic acid (41 mg, 0.235 mmol): pale yellow solid, m.p. 110–113 °C, yield 44.3 mg (76%). 1H NMR (CDCl3, 400.1 MHz): δ 8.05 (dd, 1H, 3J = 9.3 Hz, 4J = 2.4 Hz), 8.02–7.94 (m, 3H), 7.58 (dd, 1H, 3J = 8.7 Hz, 3J = 7.6 Hz), 7.54–7.48 (m, 3H). 13C{1H} NMR (CDCl3, 100.6 MHz): δ 174.2 (q, 2JCF = 37.5 Hz), 158.3 (d, 1JCF = 250.9 Hz), 153.3, 138.0 (d, 3JCF = 9.1 Hz), 137.6, 131.1 (d, 2JCF = 92.7 Hz), 129.2, 128.6, 127.6, 122.3 (d, 3JCF = 17.9 Hz), 116.2 (q, 1JCF = 291.2 Hz), 115.8 (d, 4JCF = 3.9 Hz), 108.6 (d, 3JCF = 26.9 Hz). 19F NMR (CDCl3, 376.5 MHz): δ −75.0 (s, 3F), −112.2 (t, 1F, J = 8.4 Hz). HRMS (ESI-TOF): m/z [M + H]+ Calcd for C16H9ClF4N3O+: 370.0365; found: 370.0366.
- 2,2,2-Trifluoro-1-(5-phenyl-2-(p-tolyl)-2H-1,2,3-triazol-4-yl)-ethanone (19). This was obtained from triazole 1a (36 mg, 0.149 mmol) and p-tolylboronic acid (30 mg, 0.221 mmol): white solid, m.p. 112–115 °C, yield 44 mg (89%). 1H NMR (CDCl3, 400.1 MHz): δ 8.13–8.06 (m, 2H), 8.05–7.96 (m, 2H), 7.55–7.47 (m, 3H), 7.34 (d, 2H, 3J = 8.2 Hz), 2.44 (s, 3H). 13C{1H} NMR (CDCl3, 100.6 MHz): δ 174.4 (q, 2JCF = 37.4 Hz), 152.8, 139.7, 136.9, 136.6, 130.3, 130.1, 129.2, 128.5, 128.2, 119.6, 116.3 (q, 1JCF = 290.5 Hz), 21.2. 19F NMR (CDCl3, 376.5 MHz): δ −74.9 (s, 3F). HRMS (ESI-TOF): m/z [M + H]+ Calcd for C17H13F3N3O+: 332.1005; found: 332.1007.
- 2,2,2-Trifluoro-1-(5-phenyl-2-(thiophen-3-yl)-2H-1,2,3-triazol-4-yl)-ethanone (20). This was obtained from 1a (43 mg, 0.178 mmol) and thiophen-3-ylboronic acid (34 mg, 0.266 mmol): colorless solid, m.p. 98–100 °C, yield 59 mg (57%). 1H NMR (CDCl3, 400.1 MHz): δ 8.03–7.92 (m, 3H), 7.75 (dd, 1H, 3J = 5.3 Hz, 4J = 1.4 Hz), 7.55–7.48 (m, 3H), 7.45 (dd, 2H, 3J = 5.3 Hz, 4J = 1.4 Hz). 13C{1H} NMR (CDCl3, 100.6 MHz): δ 174.3 (q, 2JCF = 37.1 Hz), 152.8, 138.1, 136.6, 130.4, 129.2, 128.5, 127.9, 127.2, 120.6, 116.3 (q, 1JCF = 290.7 Hz), 115.6. 19F NMR (CDCl3, 376.5 MHz): δ −74.9 (s, 3F). HRMS (ESI-TOF): m/z [M + H]+ Calcd for C14H9F3N3OS+: 324.0413; found: 324.0413.
- (2,5-Diphenyl-2H-1,2,3-triazol-4-yl)(pyrrolidin-1-yl)methanone (21). This was obtained from 12 (58.6 mg, 0.185 mmol) and pyrrolidine (190 mg, 2.66 mmol) by heating at 90 °C for 8 h: white solid, m.p. 94–96 °C, yield 55 mg (94%). 1H NMR (CDCl3, 400.1 MHz): δ 8.14–8.11 (m, 2H), 7.96–7.93 (m, 2H), 7.50–7.34 (m, 6H), 3.71 (t, 2H, 3J = 6.9 Hz), 3.46 (t, 2H, 3J = 6.9 Hz), 1.97–1.82 (m, 4H). 13C{1H} NMR (CDCl3, 100.6 MHz): δ 161.5, 146.8, 141.1, 139.3, 129.5, 129.2, 129.0, 128.6, 127.8, 127.6, 118.9, 48.3, 46.2, 25.9, 24.2. HRMS (ESI-TOF): m/z [M + H]+ Calcd for C19H19N4O+: 319.1553; found: 319.1560.
- (2,5-Diphenyl-2H-1,2,3-triazol-4-yl)(piperidin-1-yl)methanone (22). This was obtained from 12 (50 mg, 0.158 mmol) and piperidine (205 mg, 2.41 mmol) by heating at 110 °C for 8 h: beige viscous oil, yield 37.4 mg (71%). 1H NMR (CDCl3, 400.1 MHz): δ 8.16–8.11 (m, 2H), 7.93–7.85 (m, 2H), 7.52–7.34 (m, 6H), 3.87–3.73 (m, 2H), 3.32–3.21 (m, 2H), 1.71–1.57 (m, 4H), 1.39–1.31 (m, 2H). 13C{1H} NMR (CDCl3, 100.6 MHz): δ 162.1, 146.1, 140.6, 139.4, 129.31, 129.26, 129.1, 128.8, 127.8, 127.3, 118.9, 48.2, 43.0, 26.1, 25.4, 24.4. HRMS (ESI-TOF): m/z [M + H]+ Calcd for C20H21N4O+: 333.1710; found: 333.1715.
- (2,5-Diphenyl-2H-1,2,3-triazol-4-yl)(morpholino)methanone (23). This was obtained from 12 (50 mg, 0.158 mmol) and morpholine (220 mg, 2.53 mmol) by heating at 110 °C for 8 h: beige solid, m.p. 140–142 °C, yield 37 mg (70%). 1H NMR (CDCl3, 400.1 MHz): δ 8.17–8.08 (m, 2H), 7.91–7.80 (m, 2H), 7.55–7.33 (m, 6H), 3.91–3.82 (m, 2H), 3.80–3.73 (m, 2H), 3.50–3.43 (m, 2H), 3.42–3.34 (m, 2H). 13C{1H} NMR (CDCl3, 100.6 MHz): δ 162.2, 146.8, 139.6, 139.3, 129.3, 129.1, 128.9, 128.0, 127.5, 119.0, 66.58, 66.54, 47.4, 42.5. HRMS (ESI-TOF): m/z [M + H]+ Calcd for C19H19N4O2+: 335.1503; found: 335.1506.
- N-Hexyl-2,5-diphenyl-2H-1,2,3-triazole-4-carboxamide (24). This was obtained from 12 (53 mg, 0.167 mmol) and hexan-1-amine (240 mg, 2.38 mmol) by heating at 110 °C for 8 h: white solid, m.p. 86–88 °C, yield 25 mg (43%). 1H NMR (CDCl3, 400.1 MHz): δ 8.20–8.06 (m, 4H), 7.54–7.37 (m, 6H), 6.98 (t, 1H, 3J = 4.7 Hz), 3.46 (dd, 2H, 3J = 13.4 Hz, 3J = 7.1 Hz), 1.67–1.60 (m, 2H), 1.44–1.28 (m, 6H), 0.91–0.87 (m, 3H). 13C{1H} NMR (CDCl3, 100.6 MHz): δ 160.4, 139.5, 139.2, 129.38, 129.35, 129.2, 128.3, 128.2, 119.1, 39.5, 31.5, 29.6, 26.7, 22.5, 14.0. HRMS (ESI-TOF): m/z [M + H]+ Calcd for C21H25N4O +: 349.2023; found: 349.2029.
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Liang, T.; Neumann, C.N.; Ritter, T. Introduction of fluorine and fluorine-containing functional groups. Angew. Chem. Int. Ed. 2013, 52, 8214–8264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, X.; Wu, T.; Phipps, R.J.; Toste, F.D. Advances in catalytic enantioselective fluorination, mono-, di-, and trifluoromethylation, and trifluoromethylthiolation reactions. Chem. Rev. 2015, 115, 826–870. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahrens, T.; Kohlmann, J.; Ahrens, M.; Braun, T. Functionalization of fluorinated molecules by transition metal mediated C−F bond activation to access fluorinated building blocks. Chem. Rev. 2015, 115, 931–972. [Google Scholar] [CrossRef] [PubMed]
- Yerien, D.E.; Barata-Vallejo, S.; Postigo, A. Difluoromethylation reactions of organic compounds. Chem. Eur. J. 2017, 23, 14676–14701. [Google Scholar] [CrossRef]
- Kirsch, P. Modern Fluoroorganic Chemistry: Synthesis, Reactivity, Applications; Wiley-VCH: Weinheim, Germany, 2013. [Google Scholar]
- Uneyama, K. Organofluorine Chemistry; Blackwell Publishing: Oxford, UK, 2006. [Google Scholar]
- Theodoridis, G. Fluorine-containing agrochemicals: An overview of recent developments. In Advances in Fluorine Science; Tressaud, A., Ed.; Elsevier: Amsterdam, The Netherlands, 2006; Volume 2, pp. 121–175. [Google Scholar]
- Bégué, J.P.; Bonnet-Delpon, D. Bioorganic and Medicinal Chemistry of Fluorine John; Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Fluorine and Health: Molecular Imaging, Biomedical Materials and Pharmaceuticals; Tressaud, A.; Haufe, G. (Eds.) Elsevier: Amsterdam, The Netherlands, 2008; pp. 553–778. [Google Scholar]
- Current Fluoroorganic Chemistry: New Synthetic Directions, Technologies, Materials, and Biological Applications; Soloshonok, V.A.; Mikami, K.; Yamazaki, T.; Welch, J.T.; Honek, J.F. (Eds.) ACS Symposium Series 949; American Chemical Society: Washington, DC, USA, 2006. [Google Scholar]
- Meanwell, N.A. Fluorine and fluorinated motifs in the design and application of bioisosteres for drug design. J. Med. Chem. 2018, 61, 5822–5880. [Google Scholar] [CrossRef]
- Gillis, E.P.; Eastman, K.J.; Hill, M.D.; Donnelly, D.J.; Meanwell, N.A. Applications of fluorine in medicinal chemistry. J. Med. Chem. 2015, 58, 8315–8359. [Google Scholar] [CrossRef]
- Zhu, W.; Wang, J.; Wang, S.; Gu, Z.; Aceña, J.L.; Izawa, K.; Liu, H.; Soloshonok, V.A. Recent advances in the trifluoromethylation methodology and new CF3-containing drugs. J. Fluor. Chem. 2014, 167, 37–54. [Google Scholar] [CrossRef]
- Purser, S.; Moore, P.R.; Swallow, S.; Gouverneur, V. Fluorine in medicinal chemistry. Chem. Soc. Rev. 2008, 37, 320–330. [Google Scholar] [CrossRef]
- Hagmann, W.K. The many roles for fluorine in medicinal chemistry. J. Med. Chem. 2008, 51, 4359–4369. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, J.; Gu, Z.; Wang, S.; Zhu, W.; Aceña, J.L.; Soloshonok, V.A.; Izawa, K.; Liu, H. Next generation of fluorine containing pharmaceuticals, compounds currently in phase II−III clinical trials of major pharmaceutical companies: New structural trends and therapeutic areas. Chem. Rev. 2016, 116, 422–518. [Google Scholar] [CrossRef]
- Wang, J.; Sánchez-Roselló, M.; Aceña, J.L.; del Pozo, C.; Sorochinsky, A.E.; Fustero, S.; Soloshonok, V.A.; Liu, H. Fluorine in pharmaceutical industry: Fluorine-containing drugs introduced to the market in the last decade (2001–2011). Chem. Rev. 2014, 114, 2432–2506. [Google Scholar] [CrossRef]
- Ilardi, E.A.; Vitaku, E.; Njardarson, J.T. Data-mining for sulfur and fluorine: An evaluation of pharmaceuticals to reveal opportunities for drug design and discovery. J. Med. Chem. 2014, 57, 2832–2842. [Google Scholar] [CrossRef]
- De la Torre, B.G.; Albericio, F. The Pharmaceutical Industry in 2021. An Analysis of FDA Drug Approvals from the Perspective of Molecules. Molecules 2022, 27, 1075. [Google Scholar] [CrossRef]
- Inoue, M.; Sumii, Y.; Shibata, N. Contribution of organofluorine compounds to pharmaceuticals. ACS Omega 2020, 5, 10633–10640. [Google Scholar] [CrossRef]
- Benedetto Tiz, D.; Bagnoli, L.; Rosati, O.; Marini, F.; Santi, C.; Sancineto, L. FDA-Approved Small Molecules in 2022: Clinical Uses and Their Synthesis. Pharmaceutics 2022, 14, 2538. [Google Scholar] [CrossRef]
- Vitaku, E.; Smith, D.T.; Njardarson, J.T. Analysis of the structural diversity, substitution patterns, and frequency of nitrogen heterocycles among U.S. FDA approved pharmaceuticals. J. Med. Chem. 2014, 57, 10257–10274. [Google Scholar] [CrossRef]
- Gakh, A.; Kirk, K.L. (Eds.) Fluorinated Heterocycles; Oxford University Press: Oxford, UK, 2008. [Google Scholar]
- Petrov, V.A. (Ed.) Fluorinated Heterocyclic Compounds: Synthesis, Chemistry, and Applications; John and Wiley and Sons: Hoboken, NJ, USA, 2009. [Google Scholar]
- Muzalevskiy, V.M.; Nenajdenko, V.G.; Shastin, A.V.; Balenkova, E.S.; Haufe, G. Synthesis of trifluoromethyl pyrroles and their benzo analogues. Synthesis 2009, 2009, 3905–3929. [Google Scholar]
- Serdyuk, O.V.; Muzalevskiy, V.M.; Nenajdenko, V.G. Synthesis and properties of fluoropyrroles and their analogues. Synthesis 2012, 2012, 2115–2137. [Google Scholar]
- Politanskaya, L.V.; Selivanova, G.A.; Panteleeva, E.V.; Tretyakov, E.V.; Platonov, V.E.; Nikul’shin, P.V.; Vinogradov, A.S.; Zonov, Y.A.V.; Karpov, V.M.; Mezhenkova, T.V.; et al. Organofluorine chemistry: Promising growth areas and challenges. Russ. Chem. Rev. 2019, 88, 425–569. [Google Scholar] [CrossRef]
- Luzzio, F.A. Synthesis and reactivity of fluorinated heterocycles. In Advances in Heterocyclic Chemistry; Academic Press: Cambridge, MA, USA, 2020; Volume 132, pp. 1–84. [Google Scholar]
- Wang, X.; Lei, J.; Liu, Y.; Ye, Y.; Li, J. Fluorination and fluoroalkylation of alkenes/alkynes to construct fluoro-containing heterocycles. Org. Chem. Front. 2021, 8, 2079–2109. [Google Scholar] [CrossRef]
- Mlostoń, G.; Shermolovich, Y.; Heimgartner, H. Synthesis of Fluorinated and Fluoroalkylated Heterocycles Containing at Least One Sulfur Atom via Cycloaddition Reactions. Materials 2022, 15, 7244. [Google Scholar] [CrossRef] [PubMed]
- Muzalevskiy, V.M.; Nenajdenko, V.G.; Rulev, A.Y.U.; Ushakov, I.A.; Romanenko, G.V.; Shastin, A.V.; Balenkova, E.S.; Haufe, G. Selective synthesis of α-trifluoromethyl-β-arylenamines or vinylogous guanidinium salts by treatment of β-halo-β-trifluoromethylstyrenes with secondary amines under different conditions. Tetrahedron 2009, 65, 6991–7000. [Google Scholar] [CrossRef]
- Muzalevskiy, V.M.; Sizova, Z.A.; Panyushkin, V.V.; Chertkov, V.A.; Khrustalev, V.N.; Nenajdenko, V.G. α,β-Disubstituted CF3-enones as a trifluoromethyl building block: Regioselective preparation of totally substituted 3-CF3-pyrazoles. J. Org. Chem. 2021, 86, 2385–2405. [Google Scholar] [CrossRef] [PubMed]
- Muzalevskiy, V.; Sizova, Z.; Shastin, A.; Nenajdenko, V.G.; Diusenov, A.I. Efficient multi gram approach to acetylenes and CF3-ynones starting from dichloroalkenes prepared by catalytic olefination reaction (COR). Eur. J. Org. Chem. 2020, 2020, 4161–4166. [Google Scholar] [CrossRef]
- Muzalevskiy, V.M. Synthesis of heterocyclic compounds using the Nenajdenko-Shastin reaction. Chem. Heterocycl. Comp. 2012, 48, 117–125. [Google Scholar] [CrossRef]
- Balenkova, E.S.; Shastin, A.V.; Muzalevskiy, V.M.; Nenajdenko, V.G. Freons in catalytic olefination reaction. Synthesis of fluorinated compounds from the products of olefination. Russ. J. Org. Chem. 2016, 52, 1077–1097. [Google Scholar] [CrossRef]
- Muzalevskiy, V.M.; Sizova, Z.A.; Nechaev, M.S.; Nenajdenko, V.G. Acid-Switchable Synthesis of Trifluoromethylated Triazoles and Isoxazoles via Reaction of CF3-Ynones with NaN3: DFT Study of the Reaction Mechanism. Int. J. Mol. Sci. 2022, 23, 14522. [Google Scholar] [CrossRef]
- Muzalevskiy, V.M.; Belyaeva, K.V.; Trofimov, B.A.; Nenajdenko, V.G. Organometal-free arylation and arylation/trifluoroacetylation of quinolines by their reaction with CF3-ynones and base-induced rearrangement. J. Org. Chem. 2020, 85, 9993–10006. [Google Scholar] [CrossRef]
- Muzalevskiy, V.M.; Mamedzade, M.N.; Chertkov, V.A.; Bakulev, V.A.; Nenajdenko, V.G. Reaction of CF3-ynones with azides. An efficient regioselective and metal-free route to 4-trifluoroacetyl-1,2,3-triazoles. Mendeleev Commun. 2018, 28, 17–19. [Google Scholar] [CrossRef]
- Serafini, M.; Pirali, T.; Tron, G.C. Chapter Three—Click 1,2,3-triazoles in drug discovery and development: From the flask to the clinic? In Applications of Heterocycles in the Design of Drugs and Agricultural Products Edited. In Advances in Heterocyclic Chemistry; Meanwell, N.A., Lolli, M.L., Eds.; Academic Press: Cambridge, MA, USA, 2021; Volume 134, pp. 101–148. [Google Scholar]
- Saini, P.; Sonika; Singh, G.; Kaur, G.; Singh, J.; Singh, H. Robust and Versatile Cu(I) metal frameworks as potential catalysts for azide-alkyne cycloaddition reactions: Review. Mol. Catal. 2021, 504, 111432. [Google Scholar] [CrossRef]
- Kalavadiyaa, P.L.; Kapuparaa, V.H.; Gojiyaa, D.G.; Bhatta, T.D.; Hadiyala, S.D.; Joshia, H.S. Ultrasonic-assisted synthesis of pyrazolo [3,4-d]pyrimidin-4-ol tethered with 1,2,3-triazoles and their anticancer activity. Russ. J. Bioorg. Chem. 2020, 46, 803–813. [Google Scholar] [CrossRef]
- Agalave, S.G.; Maujan, S.R.; Pore, V.S. Click Chemistry: 1,2,3-Triazoles as Pharmacophores. Chem. Asian J. 2011, 6, 2696–2718. [Google Scholar] [CrossRef]
- Rani, A.; Singh, G.; Singh, A.; Maqbool, U.; Kaur, G.; Singh, J. CuAAC-ensembled 1,2,3-triazole-linked isosteres as pharmacophores in drug discovery: Review. RSC Adv. 2020, 10, 5610–5635. [Google Scholar] [CrossRef]
- Singh, G.; Majeed, A.; Singh, R.; George, N.; Singh, G.; Gupta, S.; Singh, H.; Kaur, G.; Singh, J. CuAAC ensembled 1,2,3-triazole linked nanogels for targeted drug delivery: A review. RSC Adv. 2023, 13, 2912–2936. [Google Scholar] [CrossRef]
- Singh, G.; George, N.; Singh, R.; Singh, G.; Sushma; Kaur, G.; Singh, H.; Singh, J. Ion recognition by 1,2,3-triazole moieties synthesized via “click chemistry”. Appl. Organomet. Chem. 2023, 37, e6897. [Google Scholar] [CrossRef]
- George, N.; Singh, G.; Singh, R.; Singh, G.; Singh, H.; Kaur, G.; Singh, J. Click modified bis-appended Schiff base 1,2,3-triazole chemosensor for detection of Pb(II)ion and computational studies. J. Mol. Struct. 2023, 1288, 135666. [Google Scholar] [CrossRef]
- Singh, G.; Gupta, S.; Kaur, J.D.; Markan, P.; Vikas; Yadav, R.; Sehgal, R.; Singh, J.; Singh, R. Highly selective Schiff base functionalized silatrane based receptor as Sn(II) ion chemosensor: Synthesis, photophysical, DFT and docking studies. J. Mol. Struct. 2023, 1288, 135687. [Google Scholar] [CrossRef]
- Singh, G.; Devi, A.; George, N.; Singh, J.; Yadav, R.; Sehgal, R. 1,2,3-triazole hybrid organosilanes: Synthesis, photophysical detection of F- ions and molecular docking. Inorg. Chem. Commun. 2023, 153, 110742. [Google Scholar] [CrossRef]
- Yan, W.; Wang, Q.; Lin, Q.; Li, M.; Petersen, J.L.; Shi, X. N-2-Aryl-1,2,3-triazoles: A novel class of UV/Blue-Light-Emitting fluorophores with tunable optical properties. Chem. Eur. J. 2011, 17, 5011–5018. [Google Scholar] [CrossRef]
- Tsyrenova, B.; Nenajdenko, V. Synthesis and spectral study of a new family of 2,5-diaryltriazoles having restricted rotation of the 5-aryl substituent. Molecules 2020, 25, 480. [Google Scholar] [CrossRef] [Green Version]
- Melhuish, W.H. Quantum efficiencies of fluorescence of organic substances: Effect of solvent and concentration of the fluorescent solute. J. Phys. Chem. 1961, 65, 229–235. [Google Scholar] [CrossRef]
Compd. | , cm−1 | ε, L·mol−1·cm−1 | , cm−1 | φ a | ΔνST, cm−1 |
---|---|---|---|---|---|
3a | 234/42,730 | 15,140 | 298/33,550 | 0.09 | 9180 |
3d | 232/43,100 | 10,900 | 297/33,670 | 0.07 | 9430 |
3e | 232/43,100 | 12,200 | 297/33,670 | 0.07 | 9430 |
3p | 231/43,290 | 13,090 | 298/33,550 | 0.07 | 9740 |
3q | 224/44,640 | 18,750 | 303/33,000 | 0.03 | 11,640 |
3r | 230/43,470 | 11,700 | 299/33,440 | 0.03 | 10,030 |
Compd. | ε, L·mol−1· cm−1 | , cm−1 | φ b | ΔνST, cm−1 | |
---|---|---|---|---|---|
6 | 222/45,040 316/31,640 | 11,370 17,880 | — | ||
7 | 227/44,050 305/32,780 | 14,800 12,120 | — | ||
8 | 278/35,970 | 15,240 | — | ||
10 | 221/45,240 271/36,900 | 18,020 17,600 | 408/24,500 | 0.04 | 12,400 |
11 | 230/43,480 329/30,390 | 14,650 19,290 | — | ||
12 | 276/36,230 | 17,420 | 335/29,850 | 0.52 | 6380 |
13 | 241/41,490 283/35,330 | 13,560 19,660 | 364/27,470 | 0.41 | 7860 |
14 | 279/35,840 | 20,630 | 339/29,490 | 0.60 | 6350 |
15 | 276/36,230 | 20,120 | 342/29,240 | 0.65 | 6990 |
16 | 287/34,840 | 16,580 | 366/27,320 | 0.59 | 7520 |
17 | 289/34,600 | 21,450 | 368/27,180 | 0.60 | 7420 |
18 | 291/34,360 | 22,860 | 338/29,580 | 0.57 | 4780 |
19 | 279/35,840 | 22,370 | 345/28,980 | 0.60 | 6860 |
20 | 226/44,240 278/35,970 | 14,620 19,300 | 347/28,810 | 0.23 | 7160 |
Compd. | , cm−1 | ε, L·mol−1· cm−1 | , cm−1 | φ a | ΔνST, cm−1 |
---|---|---|---|---|---|
21 | 290/34,480 | 29,740 | 342/29,240 | 0.03 | 5240 |
22 | 290/34,480 | 20,310 | 342/29,240 | 0.04 | 5240 |
23 | 289/34,600 | 21,450 | 340/29,410 | 0.02 | 5190 |
24 | 286/34,960 | 19,420 | 345/28,980 | 0.26 | 5980 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muzalevskiy, V.M.; Sizova, Z.A.; Nenajdenko, V.G. Regioselective Synthesis of New Family of 2-Substituted 1,2,3-Triazoles and Study of Their Fluorescent Properties. Molecules 2023, 28, 4822. https://doi.org/10.3390/molecules28124822
Muzalevskiy VM, Sizova ZA, Nenajdenko VG. Regioselective Synthesis of New Family of 2-Substituted 1,2,3-Triazoles and Study of Their Fluorescent Properties. Molecules. 2023; 28(12):4822. https://doi.org/10.3390/molecules28124822
Chicago/Turabian StyleMuzalevskiy, Vasiliy M., Zoia A. Sizova, and Valentine G. Nenajdenko. 2023. "Regioselective Synthesis of New Family of 2-Substituted 1,2,3-Triazoles and Study of Their Fluorescent Properties" Molecules 28, no. 12: 4822. https://doi.org/10.3390/molecules28124822
APA StyleMuzalevskiy, V. M., Sizova, Z. A., & Nenajdenko, V. G. (2023). Regioselective Synthesis of New Family of 2-Substituted 1,2,3-Triazoles and Study of Their Fluorescent Properties. Molecules, 28(12), 4822. https://doi.org/10.3390/molecules28124822