Isoxazolyl-Derived 1,4-Dihydroazolo[5,1-c][1,2,4]Triazines: Synthesis and Photochemical Properties
Abstract
:1. Introduction
1.1. Previous Works
1.2. This Work
2. Results and Discussion
2.1. Chemistry
2.2. Photophysical Properties of DATs
2.2.1. Spectroscopic Properties in a Chloroform Solution
Entry | Compd. | λmax, nm | ε, M−1·cm−1 | λem, nm | QY a, % | Stokes Shift, nm/cm−1 |
---|---|---|---|---|---|---|
1 | 10 | 334 | 15,200 | 433 | 6.1 | 99/6845 |
2 | 11a | 352 | 18,500 | 471 | 19.0 | 119/7178 |
3 | 11b | 350 | 20,400 | 475 | 12.3 | 125/7519 |
4 | 11c | 348 | 15,500 | 473 | 16.8 | 125/7594 |
5 | 13a | 357 | 13,200 | 488 | 29 | 131/7519 |
6 | 13b | 384 | 13,700 | – | – | – |
7 | 14a | 355 | 20,100 | 473 | 33.3 | 118/7027 |
8 | 14b | 352 | 17,700 | 477 | 31.3 | 125/7445 |
2.2.2. The Solvatochromic Behaviour of DATs
2.2.3. Spectroscopic Properties in a Solid State
2.2.4. Study of DATs’ Aggregation-Induced Emission (AIE) and Aggregation-Induced Enhancement (AIEE)
3. Materials and Methods
3.1. Chemistry
3.2. Photophysical Study
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Khatir, Z.Z.; Irnnejad, H. Pharmacologic activities of 5,6-diaryl/heteroaryl-3-substituted-1,2,4-triazines as a privileged scaffold in drug development. Mini Rev. Med. Chem. 2021, 21, 2874–2928. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Sirohi, T.S.; Singh, H.; Yadav, R.; Roy, R.K.; Chaudhary, A.; Pandeya, S.N. 1,2,4-Triazine analogs as novel class of therapeutic agents. Mini Rev. Med. Chem. 2014, 14, 168–207. [Google Scholar] [CrossRef]
- Cascioferro, S.; Parrino, B.; Spanò, V.; Carbone, A.; Montalbano, A.; Barraja, P.; Diana, P.; Cirrincione, G. An overview on the recent developments of 1,2,4-triazine derivatives as anticancer compounds. Eur. J. Med. Chem. 2017, 142, 328–375. [Google Scholar] [CrossRef] [PubMed]
- Abdulrahman, S.A.; Reda, M.A.-R. Synthesis and chemistry of phosphorus compounds substituted by 1,2,4-triazine moieties as medicinal probes. Heterocycles 2021, 102, 2247–2276. [Google Scholar]
- Dong, G.; Jiang, Y.; Zhang, F.; Zhu, F.; Liu, J. Recent updates on 1,2,3-, 1,2,4-, and 1,3,5-triazine hybrids (2017–present): The anticancer activity, structure–activity relationships, and mechanisms of action. Arch. Pharm. 2022, 356, e2200479. [Google Scholar] [CrossRef]
- Alizadeh, S.R.; Ebrahimzadeh, M.A. Pyrazolotriazines: Biological activities, synthetic strategies and recent developments. Eur. J. Med. Chem. 2021, 223, 113537. [Google Scholar] [CrossRef] [PubMed]
- Marín-Ocampo, L.; Veloza, L.A.; Abonia, R.; Sepúlveda-Arias, J.C. Anti-inflammatory activity of triazine derivatives: A systematic review. Eur. J. Med. Chem. 2019, 162, 435–447. [Google Scholar] [CrossRef]
- Mojzych, M.; Šubertova, V.; Bielawska, A.; Bielawski, K.; Bazgier, V.; Berka, K.; Gucky, T.; Fornal, E.; Kryštof, V. Synthesis and kinase inhibitory activity of new sulfonamide derivatives of pyrazolo[4,3-e][1,2,4]triazines. Eur. J. Med. Chem. 2014, 78, 217–224. [Google Scholar] [CrossRef]
- Rusinov, V.L.; Charushin, V.N.; Chupakhin, O.N. Biologically active azolo-1,2,4-triazines and azolopyrimidines. Russ. Chem. Bull. 2018, 67, 573–599. [Google Scholar] [CrossRef]
- Mojzych, M.; Ceruso, M.; Bielawska, A.; Bielawski, K.; Fornal, E.; Supuran, C.T. New pyrazolo[4,3-e][1,2,4]triazine sulfonamides as carbonic anhydrase inhibitors. Bioorg. Med. Chem. 2015, 23, 3674–3680. [Google Scholar] [CrossRef]
- Al-Humairi, A.H.; Speransky, D.L.; Sadchikova, E.V. Synthesis and cytotoxic activity on cell cultures of new azolotriazines. Pharm. Chem. J. 2022, 56, 742–747. [Google Scholar] [CrossRef]
- Hiebel, M.-A.; Suzenet, F. Triazines, tetrazines, and fused ring polyaza systems. Prog. Heterocycl. Chem. 2020, 31, 505–531. [Google Scholar]
- Kaji, H.; Suzuki, H.; Fukushima, T.; Shizu, K.; Suzuki, K.; Kubo, S.; Komino, T.; Oiwa, H.; Suzuki, F.; Wakamiya, A.; et al. Purely organic electroluminescent material realizing 100% conversion from electricity to light. Nat. Commun. 2015, 6, 8476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiang, Y.; Gong, S.; Zhao, Y.; Yin, X.; Luo, J.; Wu, K.; Lu, Z.-H.; Yang, C. Asymmetric-triazine-cored triads as thermally activated delayed fluorescence emitters for high-efficiency yellow OLEDs with slow efficiency roll-off. J. Mater. Chem. C 2016, 4, 9998–10004. [Google Scholar] [CrossRef]
- Maggiore, A.; Tan, X.; Brosseau, A.; Danos, A.; Miomandre, F.; Monkman, A.P.; Audebert, P.; Clavier, G. Novel D-A chromophores with condensed 1,2,4-triazine system simultaneously display thermally activated delayed fluorescence and crystallization-induced phosphorescence. Phys. Chem. Chem. Phys. 2022, 24, 17770–17781. [Google Scholar] [CrossRef]
- Sakr, M.E.M.; Abou Kana, M.T.H.; Elwahy, A.H.M.; El-Daly, S.A.; Ebeid, E.-Z.M. Novel far UV–Vis absorbing bis(dihydrophenanthro[9,10-e][1,2,4]triazine) derivative dyes: Synthesis, optical, photophysical and solvatochromic properties. J. Mol. Struct. 2020, 1206, 127690–127696. [Google Scholar] [CrossRef]
- Al-Shamiri, H.A.S.; Sakr, M.E.M.; Abdel-Latif, S.A.; Negm, N.A.; Abou Kana, M.T.H.; El-Daly, S.A.; Elwahy, A.H.M. Experimental and theoretical studies of linear and non-linear optical properties of novel fused-triazine derivatives for advanced technological applications. Sci. Rep. 2022, 12, 19937. [Google Scholar] [CrossRef]
- Mao, Z.; Kim, J.H.; Lee, J.; Xiong, H.; Zhang, F.; Kim, J.S. Engineering of BODIPY-based theranostics for cancer therapy. Coord. Chem. Rev. 2023, 476, 214908. [Google Scholar] [CrossRef]
- Singh, G.; George, N.; Singh, R.; Singh, G.; Sushma; Kaur, G.; Singh, H.; Singh, J. Ion recognition by 1,2,3-triazole moieties synthesized via “click chemistry”. Appl. Organomet. Chem. 2023, 37, e6897. [Google Scholar] [CrossRef]
- Gavlik, K.D.; Lesogorova, S.G.; Sukhorukova, E.S.; Subbotina, J.O.; Slepukhin, P.A.; Benassi, E.; Belskaya, N.P. Synthesis of 2-aryl-1,2,3-triazoles by oxidative cyclization of 2-(arylazo)ethene-1,1-diamines: A one-pot approach. Eur. J. Org. Chem. 2016, 15, 2700–2710. [Google Scholar] [CrossRef]
- Eltyshev, A.K.; Suntsova, P.O.; Karmatskaia, K.D.; Taniya, O.S.; Slepukhin, P.A.; Benassi, E.; Belskaya, N.P. An effective and facile synthesis of new blue fluorophores on the basis of an 8-azapurine core. Org. Biomol. Chem. 2018, 16, 9420–9429. [Google Scholar] [CrossRef] [PubMed]
- Tsyrenova, B.D.; Khrustalev, V.N.; Nenajdenko, V.G. Synthesis of blue light emitting heterocycles via cyclization of 2-pyridine derived 4-azido-1,2,3-triazoles. Org. Biomol. Chem. 2021, 19, 8140–8152. [Google Scholar] [CrossRef]
- Barakat, A.; El-Faham, A.; Haukka, M.; Al Majid, A.; Solimanm, S. s-Triazine pincer ligands: Synthesis of their metal complexes, coordination behavior, and applications. Appl. Organomet. Chem. 2021, 35, e6317. [Google Scholar] [CrossRef]
- Alekseeva, D.L.; Rakhimova, V.Y.; Minin, A.S.; Belousova, A.V.; Sadchikova, E.V. Synthesis and properties of 5-aryl-3-diazo-3H-pyrazoles and 3-aryl-1H-pyrazole-5-diazonium salts. Preparation and cytolytic activity studies of 2-arylpyrazolo[5,1-c][1,2,4]benzotriazines. Chem. Heterocycl. Compd. 2018, 54, 1145–1152. [Google Scholar] [CrossRef]
- Alexeeva, D.L.; Sadchikova, E.V.; Volkova, N.N.; Efimov, I.V.; Jacobs, J.; Van Meervelt, L.; Dehaen, W.; Bakulev, V.A. Reactivity of 3-substituted pyrazole-5-diazonium salts towards 3-azolyl enamines. Synthesis of novel 3-azolylpyrazolo[5,1-c][1,2,4]triazines. Arkivoc 2016, 4, 114–129. [Google Scholar] [CrossRef] [Green Version]
- Kaminskiy, N.A.; Galenko, E.E.; Kryukova, M.A.; Novikov, M.S.; Khlebnikov, A.F. Reaction of α-diazopyrroles with enamines: Synthesis of pyrrolo[2,1-c][1,2,4]triazines and α-(1,2,5-triazapenta-1,3-dienyl)pyrroles. J. Org. Chem. 2022, 87, 10485. [Google Scholar] [CrossRef]
- Ghozlan, S.; Abdelhamid, I.; Gaber, H.; Elnagdi, M. Studies with functionally substituted enamines: Synthesis of new aminoazolo-pyrimidines and -1,2,4-triazines. J. Chem. Res. 2004, 12, 789–793. [Google Scholar] [CrossRef]
- Elnagdi, M.H.; El-Moghayar, M.R.H.; Fleita, D.H.; Hafez, E.A.A.; Fahmy, S.M. Pyrimidine derivatives and related compounds. 4. A route for the synthesis of pyrazolo[3,4-e]-as-triazines, pyrazolo[3,4-d]pyrimidines, and pyrazolo[1,5-c]-as-triazines. J. Org. Chem. 1976, 41, 3781–3784. [Google Scholar] [CrossRef]
- El-Ghandour, A.H.H.; Ibrahim, M.K.A.; Abdel-Hafiz, I.S.; Elnagdi, M.H. Studies with polyfunctionally substituted heterocycles: Synthesis of new pyridines, naphtho[1,2-b]pyrans, pyrazolo[3,4-b]pyridines and pyrazolo[1,5-a]pyrimidines. Z. Naturforsch. B Chem. Sci. 1992, 47, 572–578. [Google Scholar]
- Padwa, A.; Kumagai, T.; Woolhouse, A.D. Higher order dipolar cycloaddition reactions of diazoazoles with electron-rich dipolarophiles. J. Org. Chem. 1983, 48, 2330–2336. [Google Scholar] [CrossRef]
- Magee, W.L.; Rao, C.B.; Glinka, J.; Hui, H.; Amick, T.J.; Fiscus, D.; Kakodkar, S.; Nair, M.; Shechter, H. Dipolar cycloaddition reactions of diazoazoles with electron-rich and with strained unsaturated compounds. J. Org. Chem. 1987, 52, 5538–5548. [Google Scholar] [CrossRef]
- Padwa, A.; Kumagai, T. Extended dipolar cycloaddition reactions of 3-diazopyrazoles with electron rich olefins. Tetrahedron Lett. 1981, 22, 1199–1202. [Google Scholar] [CrossRef]
- Ege, G.; Gilbert, K.; Franz, H. Cycloaddition von Ynaminen an Diazo-azole. Ein neuer Zugang zu Azolo[5,1-c][1,2,4]triazinen. Synthesis 1977, 8, 556. [Google Scholar] [CrossRef]
- Al-Omran, F.; El-Khair, A.A. 2-(3-Arylhydrazono-3-formyl-2-oxopropyl)-1H-isoindole-1,3-(2H)-dione in heterocyclic synthesis. Novel derivatives of pyridazin-6(1H)-one, pyridazin-6(1H)-imine, and pyrazolo[5,1-c][1,2,4]triazine incorporating an N-(2-oxoethyl)phthalimide moiety. J. Chem. Res. 2006, 1, 6–9. [Google Scholar] [CrossRef]
- Dürr, H.; Schmitz, H. 3-Diazoindazole: Photochemie, Thermochemie, Cycloadditionen. Chem. Ber. 1978, 111, 2258–2266. [Google Scholar] [CrossRef]
- Sadchikova, E.V.; Mokrushin, V.S. Synthesis and properties of new 5-diazoimidazoles and their imidazolyl-5-diazonium salts. Rus. Chem. Bull. 2003, 52, 1600–1605. [Google Scholar] [CrossRef]
- Mokrushin, V.S.; Sadchikova, E.V. Khimiya Geterotsiklicheskikh Diazosoedinenii (Chemistry of Heterocyclic Diazo Compounds); Prospekt Nauki: St. Petersburg, Russia, 2013; ISBN 978-5-903090-97-6. [Google Scholar]
- Sadchikova, E.V.; Beliaev, N.A.; Alexeeva, D.L.; Safronov, N.E.; Belskaya, N.P. Non-aromatic azolo[5,1-c][1,2,4]triazines: A pot, atom and step economic (PASE) synthesis, mechanistic insight and fluorescence properties. New J. Chem. 2022, 46, 22171–22184. [Google Scholar] [CrossRef]
- Pairas, G.N.; Perperopoulou, F.; Tsoungas, P.G.; Varvounis, G. The isoxazole ring and its N-oxide: A privileged core structure in neuropsychiatric therapeutics. ChemMedChem 2017, 12, 408–419. [Google Scholar] [CrossRef]
- Zhu, J.; Mo, J.; Lin, H.Z.; Chen, Y.; Sun, H.P. The recent progress of isoxazole in medicinal chemistry. Bioorg. Med. Chem. 2018, 26, 3065–3075. [Google Scholar] [CrossRef] [PubMed]
- Barmade, M.A.; Murumkar, P.R.; Sharma, M.K.; Yadav, M.R. Medicinal chemistry perspective of fused isoxazole derivatives. Curr. Top. Med. Chem. 2016, 16, 2863–2883. [Google Scholar] [CrossRef]
- Uto, Y. 1,2-Benzisoxazole: A privileged structure with a potential for polypharmacology. Curr. Pharm. Des. 2016, 22, 3201–3211. [Google Scholar] [CrossRef]
- Sysak, A.; Obminska-Mrukowicz, B. Isoxazole ring as a useful scaffold in a search for new therapeutic agents. Eur. J. Med. Chem. 2017, 137, 292–309. [Google Scholar] [CrossRef]
- Fonseca, S.M.; Burrows, H.D.; Nunes, C.M.; Pinho e Melo, T.M.V.D.; Rocha Gonsalves, A.M.d’A. On the photophysical behaviour of 4-halo-5-phenylisoxazoles. Chem. Phys. Lett. 2005, 414, 98–101. [Google Scholar] [CrossRef] [Green Version]
- Sharma, M.; Pal, U.; Kumari, M.; Bagchi, D.; Rani, S.; Mukherjee, D.; Bera, A.; Pal, S.K.; Dasgupta, T.S.; Mozumdar, S. Effect of solvent on the photophysical properties of isoxazole derivative of curcumin: A combined spectroscopic and theoretical study. J. Photochem. Photobiol. A Chem. 2021, 410, 113164. [Google Scholar] [CrossRef]
- Jani, T.; Shastri, A.; Prajapati, D.; Vinodkumar, P.C.; Limbachiya, C.; Vinodkumar, M. Structural, spectroscopic and electron collisional studies of isoxazole (C3H3NO). Chem. Phys. 2022, 553, 111379. [Google Scholar] [CrossRef]
- Beryozkina, T.V.; Zhidovinov, S.S.; Shafran, Y.M.; Eltsov, O.S.; Slepukhin, P.A.; Leban, J.; Marquez, J.; Bakulev, V.A. Self-condensation of β-(isoxazol-5-yl) enamines under treatment with acetyl chloride and acids. Synthesis of novel 1,3-diisoxazolyl-1,3-dieneamines and 1,3,5-triisoxazolyl benzenes. Tetrahedron 2014, 70, 3915–3923. [Google Scholar] [CrossRef]
- Valeur, B.; Berberan-Santos, M.N. Molecular Fluorescence: Principles and Applications, 2nd ed.; Wiley-VCH: Weinheim, Germany, 2013; ISBN 978-3-527-65002-6. [Google Scholar]
- Mataga, N.; Chosrowjan, H.; Taniguchi, S. Ultrafast charge transfer in excited electronic states and investigations into fundamental problems of exciplex chemistry: Our early studies and recent developments. J. Photochem. Photobiol. C Photochem. Rev. 2005, 6, 37–79. [Google Scholar] [CrossRef]
- Sıdır, İ.; Sarı, T.; Sıdır, Y.G.; Berber, H. Synthesis, solvatochromism and dipole moment in the ground and excited states of substitute phenol derivative fluorescent Schiff base compounds. J. Mol. Liq. 2022, 346, 117075. [Google Scholar] [CrossRef]
- Lippert, E. Spektroskopische Bestimmung des Dipolmomentes aromatischer Verbindungen im ersten angeregten Singulettzustand. Z. Elektrochem. Ber. Bunsengesel. Phys. Chem. 1957, 61, 962–975. [Google Scholar]
- Cerõn-Carrasco, J.P.; Jacquemin, D.; Laurence, C.; Planchat, A.; Reichardt, C.; Sraïdi, K. Solvent polarity scales: Determination of new ET(30) values for 84 organic solvents. J. Phys. Org. Chem. 2014, 27, 512–518. [Google Scholar] [CrossRef]
- Reichardt, C. Empirical parameters of solvent polarity as linear free-energy relationships. Angew. Chem. Int. Ed. 1979, 18, 98–110. [Google Scholar] [CrossRef]
- Wang, Q.; Cai, L.; Gao, F.; Zhou, Q.; Zhan, F.; Wang, Q. Photochromism of Schiff base compounds derived from N,N′-bis(2-aminophenyl)isophthalamide: Structure and photosensitivity. J. Mol. Struct. 2010, 977, 274–278. [Google Scholar] [CrossRef]
- Reichardt, C. Solvents and Solvent Effects in Organic Chemistry, 3rd ed.; Wiley-VCH: Weinheim, Germany, 2006; ISBN 978-3-527-60567-5. [Google Scholar]
- Luo, J.; Xie, Z.; Lam, J.W.Y.; Cheng, L.; Chen, H.; Qiu, C.; Kwok, H.C.; Zhan, X.; Liu, Y.; Zhu, D.; et al. Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole. Chem. Commun. 2001, 18, 1740–1741. [Google Scholar] [CrossRef]
- Hong, Y.; Lam, J.W.Y.; Tang, B.Z. Aggregation-induced emission: Phenomenon, mechanism and applications. Chem. Commun. 2009, 29, 4332–4353. [Google Scholar] [CrossRef]
- Mei, J.; Leung, N.L.C.; Kwok, R.T.K.; Lam, R.T.K.; Tang, B.Z. Aggregation-induced emission: Together we shine, united we soar! Chem. Rev. 2015, 115, 11718–11940. [Google Scholar] [CrossRef]
- Chen, Y. Recent advances in AIEgens for three-photon fluorescence bioimaging. Mater. Today Chem. 2022, 25, 100975. [Google Scholar] [CrossRef]
- Rouillon, J.; Blahut, J.; Jean, M.; Albalat, M.; Vanthuyne, N.; Lesage, A.; Ali, L.M.A.; Hadj-Kaddour, K.; Onofre, M.; Gary-Bobo, M.; et al. Two-photon absorbing AIEgens: Influence of stereoconfiguration on their crystallinity and spectroscopic properties and applications in bioimaging. ACS Appl. Mater. Interfaces 2020, 12, 55157–55168. [Google Scholar] [CrossRef] [PubMed]
- Shealy, Y.F.; O’Dell, C.A. Synthesis, antileukemic activity, and stability of 3-(substituted-triazeno)pyrazole-4-carboxylic acid. Ester and 3-(substituted-triazeno)pyrazole-4-carboxamide. J. Pharm. Sci. 1971, 60, 554–560. [Google Scholar] [CrossRef] [PubMed]
- Shealy, Y.E.; Krauth, C.A.; Pittillo, R.; Hunt, D.E. A new antifungal and antibacterial agent, methyl 5(4)-(3,3-dimethyl-1-triazeno)imidazole-4(5)-carboxylate. J. Pharm. Sci. 1967, 56, 147–148. [Google Scholar] [CrossRef]
- Mokrushin, V.S.; Selezneva, I.S.; Pospelova, T.A.; Usova, V.K. Acid-base characteristics of 5-diazoimidazole derivatives. Chem. Heterocycl. Comp. 1997, 33, 1086–1091. [Google Scholar] [CrossRef]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Cryst. 2009, 42, 339–341. [Google Scholar] [CrossRef]
- Bourhis, L.J.; Dolomanov, O.V.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. The anatomy of a comprehensive constrained, restrained refinement program for the modern computing environment—Olex2 dissected. Acta Cryst. 2015, A71, 59–75. [Google Scholar]
- Sheldrick, G.M. A short history of SHELX. Acta Cryst. 2008, A64, 112–122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Entry | Compd. | <τ>f (ns) | kr × 10−9 (s−1) | knr × 10−9 (s−1) | knr/kr |
---|---|---|---|---|---|
1 | 10 | 1.577 | 0.039 | 0.595 | 15.3 |
2 | 11a | 0.369 | 0.515 | 2.195 | 4.3 |
3 | 11b | 2.220 | 0.055 | 0.426 | 7.7 |
4 | 11c | 2.553 | 0.066 | 0.326 | 4.9 |
5 | 13a | 3.318 | 0.088 | 0.213 | 2.4 |
6 | 14a | 2.307 | 0.144 | 0.289 | 2.0 |
7 | 14b | 2.781 | 0.113 | 0.247 | 2.2 |
Entry | Compd. | λex, nm | λem, nm | QY a, % |
---|---|---|---|---|
1 | 11a | 429 | 472 | 34.5 |
2 | 11c | 420 | 504 | 19.6 |
3 | 13a | 410 | 484 | 62.1 |
4 | 14a | 420 | 476 | 98.7 |
5 | 14b | 415 | 494 | 9.8 |
Entry | Compd | Solvent | λmax, nm | ε, M−1·cm−1 | λem, nm | QY a, % | Stokes Shift, nm/cm−1 |
---|---|---|---|---|---|---|---|
1 | 10 | DMSO | 344 | 10,400 | – | – | – |
2 | DMSO–H2O | 340 | 12,300 | 459 | 9 | 119/7625 | |
3 | 11a | DMSO | 364 | 22,400 | 492 | 3 | 128/7147 |
4 | DMSO–H2O | 358 | 21,700 | 503 | 4 | 145/8052 | |
5 | 11c | DMSO | 356 | 15,200 | 497 | 5 | 141/7969 |
6 | DMSO–H2O | 352 | 14,800 | 503 | 6 | 151/8528 | |
7 | 13a | DMSO | 361 | 16,300 | 499 | 19 | 138/7661 |
8 | DMSO–H2O | 355 | 18,700 | 505 | 4 | 150/8367 | |
9 | 14a | DMSO | 366 | 23,000 | 496 | 24 | 130/7161 |
10 | DMSO–H2O | 359 | 24,000 | 501 | 5 | 142/7895 | |
11 | 14b | DMSO | 362 | 17,100 | 499 | 19 | 137/7584 |
12 | DMSO–H2O | 358 | 18,100 | 502 | 5 | 144/8013 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sadchikova, E.V.; Safronov, N.E.; Beliaev, N.A.; Nenajdenko, V.G.; Belskaya, N.P. Isoxazolyl-Derived 1,4-Dihydroazolo[5,1-c][1,2,4]Triazines: Synthesis and Photochemical Properties. Molecules 2023, 28, 3192. https://doi.org/10.3390/molecules28073192
Sadchikova EV, Safronov NE, Beliaev NA, Nenajdenko VG, Belskaya NP. Isoxazolyl-Derived 1,4-Dihydroazolo[5,1-c][1,2,4]Triazines: Synthesis and Photochemical Properties. Molecules. 2023; 28(7):3192. https://doi.org/10.3390/molecules28073192
Chicago/Turabian StyleSadchikova, Elena V., Nikita E. Safronov, Nikolai A. Beliaev, Valentine G. Nenajdenko, and Nataliya P. Belskaya. 2023. "Isoxazolyl-Derived 1,4-Dihydroazolo[5,1-c][1,2,4]Triazines: Synthesis and Photochemical Properties" Molecules 28, no. 7: 3192. https://doi.org/10.3390/molecules28073192
APA StyleSadchikova, E. V., Safronov, N. E., Beliaev, N. A., Nenajdenko, V. G., & Belskaya, N. P. (2023). Isoxazolyl-Derived 1,4-Dihydroazolo[5,1-c][1,2,4]Triazines: Synthesis and Photochemical Properties. Molecules, 28(7), 3192. https://doi.org/10.3390/molecules28073192