One-Pot Synthesis, E-/Z-Equilibrium in Solution of 3-Hetarylaminomethylidenefuran-2(3H)-ones and the Way to Selective Synthesis of the E-Enamines
Abstract
:1. Introduction
2. Results and Discussion
2.1. Optimization of the Reaction Conditions
2.2. Scheme for the Synthesis of Enamines 9a–f
2.3. E/Z-Isomerization Study of Enamines 9a–f
2.4. Selective Synthesis of Enamines 9d,e in the E-Form
2.5. Enamine Synthesis Based on Diaminoheterocycle
2.6. Evaluation of the Barrier Energy for the E-/Z-Transition of Enamines 9a–f
2.7. Stereochemical Interpretation of the Synthesis of Enamines 9a–f
3. Materials and Methods
3.1. Physical Measurements
3.2. Synthesis and Characterization of Compounds 9a–c,f
3.3. Synthesis and Characterization of Compounds 9d,e
3.4. DFT Calculations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Banerjee, R.; HKS, K.; Banerjee, M. Medicinal significance of furan derivatives: A Review. Int. J. Rev. Life. Sci. 2012, 2, 7–16. [Google Scholar]
- Abdel-Hamid, H.F.; Soliman, A.; Helaly, F.M.; Ragab, S. Cytotoxic potency and induced biochemical parameters in mice serum of new furan derivatives against liver cancer cell line. Acta Pol. Pharm. 2011, 68, 499–505. [Google Scholar] [PubMed]
- Sicak, Y. Design and antiproliferative and antioxidant activities of furan-based thiosemicarbazides and 1,2,4-triazoles: Their structure-activity relationship and SwissADME predictions. Med. Chem. Res. Lett. 2021, 30, 1557–1568. [Google Scholar] [CrossRef]
- Vicidomini, C.; Cioffi, F.; Broersen, K.; Roviello, V.; Riccardi, C.; Montesarchio, D.; Capasso, D.; Di Gaetano, S.; Musumeci, D.; Roviello, G. Benzodifurans for biomedical applications: BZ4, a selective anti-proliferative and anti-amyloid lead compound. Future Med. Chem. 2019, 11, 285–302. [Google Scholar] [CrossRef] [PubMed]
- Kwiecien, H.; Peruzynska, M.; Stachowicz, K.; Piotrowska, K.; Bujak, I.; Kopytko, P.; Droździk, M. Synthesis and biological evaluation of 3-functionalized 2-phenyl- and 2-alkylbenzo[b]furans as antiproliferative agents against human melanoma cell line. Bioorg. Chem. 2019, 88, 102930–102941. [Google Scholar] [CrossRef]
- Jiang, S.; Tala, S.R.; Lu, H.; Zou, D.; Avan, I.; Ibrahim, T.S.; Abo-Dya, N.E.; Abdelmajied, A.; Debnath, A.K.; Katritzky, A.K. Design, synthesis, and biological activity of a novel series of 2,5-disubstituted furans/pyrroles as HIV-1 fusion inhibitors targeting gp41. Bioorg. Med. Chem. Lett. 2011, 21, 6895–6898. [Google Scholar] [CrossRef]
- Rawal, R.K.; Prabhakar, I.S.; Katti, S.B.; Clercq, E. 2-(Aryl)-3-furan-2-ylmethyl-thiazolidin-4-ones as selective HIV-RT Inhibitors. Bioorg. Med. Chem. 2005, 13, 6771–6776. [Google Scholar] [CrossRef]
- Jiang, S.; Tala, S.R.; Lu, H.; Abo-Dya, N.E.; Avan, I.; Gyanda, K.; Lu, L.; Katritzky, A.K.; Debnath, A.K. Design, synthesis, and biological activity of novel 5-((arylfuran/1H-pyrrol-2-yl)methylene)-2-thioxo-3-(3-(trifluoromethyl)phenyl)thiazolidin-4-ones as HIV-1 fusion inhibitors targeting gp41. J. Med. Chem. 2011, 54, 572–579. [Google Scholar] [CrossRef]
- Mehta, D.K.; Das, R. Synthesis and in-vitro antioxidant activity of some new 2,5-disubstituted-1,3,4-oxadiazoles containing furan moiety. Int. J. Pharm. Sci. Res. 2011, 2, 2959–2963. [Google Scholar]
- Donlawson, C.; Nweneka, D.O.; Orie, K.; Okah, R. Synthesis and bioactivity of 1-((2-carbamoylguanidino)(furan-2-ylmethyl)urea. Am. J. Anal. Chem. 2020, 11, 280–288. [Google Scholar] [CrossRef]
- Xia, L.; Idhayadhulla, A.; Lee, Y.R.; Wee, Y.-J.; Kim, S.H. Anti-tyrosinase, antioxidant, and antibacterial activities of novel 5-hydroxy-4-acetyl-2,3-dihydronaphtho[1,2-b]furans. Eur. J. Med. Chem. 2014, 86, 605–612. [Google Scholar] [CrossRef]
- Malladi, S.; Nadh, V.; Suresh Babu, K.; Suri Babu, P. Beni-Suef U. J. App. Sci. 2017, 6, 345–353. [Google Scholar] [CrossRef]
- Pu, W.; Yuan, Y.; Lu, D.; Wang, X.; Liu, H.; Wang, C.; Wang, F.; Zhang, G. 2-Phenylbenzo[b]furans: Synthesis and promoting activity on estrogen biosynthesis. Bioorg. Med. Chem. Lett. 2016, 26, 5497–5500. [Google Scholar] [CrossRef]
- Kleinpeter, E.; Klod, S.; Rudorf, W.-D. Electronic state of Push−Pull alkenes: An experimental dynamic NMR and theoretical ab Initio MO study. J. Org. Chem. 2004, 69, 4317–4329. [Google Scholar] [CrossRef]
- Obydennov, D.L.; Chernyshova, E.V.; Sosnovskikh, V.Y. Acyclic enaminodiones in the synthesis of heterocyclic compounds. Chem. Heterocycl. Compd. 2020, 56, 1241–1253. [Google Scholar] [CrossRef]
- Shikhaliev, K.S.; Kryl’skaya, V.I.; Potapov, A.Y. Threecomponent synthesis of 4-aryl-5-cyano-2-hetarylaminopyrimidines. Rus. Chem. Bull. 2006, 55, 1089–1090. [Google Scholar] [CrossRef]
- Komkov, A.V.; Prezent, M.A.; Ignatenko, A.V.; Yakovlev, I.P.; Dorokhov, V.A. Synthesis of new pyrido[2,3-d]pyrimidine derivatives by three-component condensation of 5-acetyl-4-aminopyrimidines, cyclohexane-1,3-diones, and orthocarboxylic acid esters. Rus. Chem. Bull. 2006, 55, 2085–2090. [Google Scholar] [CrossRef]
- Kryl’skij, D.V.; Shihaliev, H.S.; Potapov, A.Y. Trekhkomponentnye kondensacii s uchastiem getarilguanidinov. Izv. Vuzov. Himiya i Him. Tekhnologiya 2005, 48, 61–63. (In Russian) [Google Scholar]
- Antonov, A.N.; Tyurin, R.V.; Minyaeva, L.G.; Mezheritskii, V.V. Specific example of the Mannich reaction in the series of 5-acetyl-6-aminoacenaphthene and its derivatives. Rus. J. Org. Chem. 2007, 43, 998–1001. [Google Scholar] [CrossRef]
- Pyrko, A.N. Synthesis of new benzo[c]phenanthridine derivatives. Rus. J. Org. Chem. 2010, 46, 1843–1847. [Google Scholar] [CrossRef]
- Erkin, A.V.; Ramsh, S.M. A domino reaction of 3-methyl-1-[6-methyl-2-(methylsulfanyl)pyrimidin-4-yl]-4-[(phenylimino)methyl]-1H-pyrazol-5-ol with heterocyclic ch acids. Chem. Heterocycl. Compd. 2014, 50, 1102–1106. [Google Scholar] [CrossRef]
- Kosulina, T.P.; Pushkareva, K.S.; Bychenko, N.I.; Morenets, I.P.; Kul’nevich, V.G. 2-Methyl-4(5H)-oxazolonium salts in reaction with ethyl orthoformate and aromatic amines. Chem. Heterocycl. Compd. 1999, 35, 635–636. [Google Scholar] [CrossRef]
- Tkachenko, Y.N.; Tsupak, E.B.; Pozharskii, A.F. Pyrrolopyrimidines. A convenient method for the production of 6-(2-aminovinyl)-5-nitropyrimidines and their transformation into pyrrolo[3,2-d]pyrimidines. Chem. Heterocycl. Compd. 2000, 36, 307–310. [Google Scholar] [CrossRef]
- Bressi, J.C.; de Jong, R.; Wu, Y.; Jennings, A.J.; Brown, J.W.; O’Connell, S.; Tari, L.W.; Skene, R.J.; Vu, P.; Navre, M.; et al. Benzimidazole and imidazole inhibitors of histone deacetylases: Synthesis and biological activity. Bioorg. Med. Chem. Lett. 2010, 20, 3138–3141. [Google Scholar] [CrossRef]
- Gupta, V.; Kant, V. A Review on biological activity of imidazole and thiazole moieties and their derivatives. Science International. 2013, 1, 253–260. [Google Scholar] [CrossRef] [Green Version]
- Chaudhari, D.; Salunke-Gawali, S.; Chakravarty, D.; Shaikh, S.R.; Lande, D.N.; Gejji, S.P.; Raoa, P.K.; Satputed, S.; Puranikc, V.G.; Gonnade, R.G. Synthesis and biological activity of imidazole based 1,4- naphthoquinones. New J. Chem. 2020, 44, 6889–6901. [Google Scholar] [CrossRef]
- Vandyshev, D.Y.; Shikhaliev, K.S.; Potapov, A.Y.; Krysin, M.Y. Cascade two- and three-component cyclization reactions using 1,2-diamino-4-phenylimidazole and cyclohexane-1,3-diones. Chem. Heterocycl. Compd. 2014, 50, 1316–1321. [Google Scholar] [CrossRef]
- Osipov, A.K.; Anis’kov, A.A.; Yegorova, A.Y. Synthesis and configuration of (arylamino)methylidene-3H-furan-2-ones. Rus. J. Org. Chem. 2017, 53, 210–214. [Google Scholar] [CrossRef]
- Osipov, A.K.; Anis’kov, A.A.; Grinev, V.S.; Yegorova, A.Y. Study of E/Z isomerization of (arylamino)methylidenefuran-2(3H)-ones by 1H, 13C, 15N spectroscopy and DFT calculations in different solvents. Magn. Reson. Chem. 2017, 55, 730–737. [Google Scholar] [CrossRef]
- Lei, Y.; Li, H.; Pan, H.; Han, S. Structures and hydrogen bonding analysis of N,N-dimethylformamide and N,N-dimethylformamide-water mixtures by molecular dynamics simulations. J. Phys. Chem. A 2003, 107, 1574–1583. [Google Scholar] [CrossRef]
- Luzara, A.; Chandler, D. Structure and hydrogen bond dynamics of water-dimethyl sulfoxide mixtures by computer simulations. J. Chem. Phys. 1993, 98, 8160–8173. [Google Scholar] [CrossRef] [Green Version]
- Trofimov, B.A.; Schmidt, E.Y.; Ushakov, I.A.; Zorina, N.V.; Skital’tseva, E.V.; Protsuk, N.I.; Mikhaleva, A.I. Base-catalyzed stereoselective vinylation of ketones with arylacetylenes: A new C(sp3)-C(sp2) bond-forming reaction. Chem.—A Eur. J. 2010, 16, 8516–8521. [Google Scholar] [CrossRef]
- Juaristi, E.; dos Passos Gomes, G.; Terent’ev, A.O.; Notario, R.; Alabugin, I.V. Stereoelectronic Interactions as a Probe for the Existence of the Intramolecular α-Effect. J. Am. Chem. Soc. 2017, 139, 10799–10813. [Google Scholar] [CrossRef]
- Becke, A.D. Perspective on “Density functional thermochemistry. III. The role of exact exchange”. J. Chem. Phys. 1993, 98, 5648–5652. [Google Scholar] [CrossRef] [Green Version]
- Becke, A.D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 1988, 38, 3098–3100. [Google Scholar] [CrossRef]
- Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785–789. [Google Scholar] [CrossRef] [Green Version]
- Sulima, A.; Cheng, K.; Jacobson, A.E.; Rice, R.C.; Gawrischc, K.; Lee, Y.-S. Z and E rotamers of N-formyl-1-bromo-4-hydroxy-3-methoxymorphinan-6-one and their interconversion as studied by 1H/13C NMR spectroscopy and quantum chemical calculations. Magn. Reson. Chem. 2013, 51, 82–88. [Google Scholar] [CrossRef]
Entry | Solvent | Heating Method | Time (min) | Yield (Z:E) (%) |
---|---|---|---|---|
1 | EtOH | Reflux | 30 | 67 |
2 | i-PrOH | Reflux | 25 | 75 |
3 | 1,4-Dioxane | Reflux | 32 | 70 |
4 | Toluene | Reflux | 35 | 65 |
5 | Benzene | Reflux | 40 | 60 |
Compound | E-Isomer (Vacuum/DMSO) | TS (Vacuum/DMSO) | Z-Isomer (Vacuum/DMSO) |
---|---|---|---|
9a | 5.60/1.60 | 52.80/36.54 | 0.00/0.00 |
9b | 3.96/1.48 | 51.48/36.20 | 0.00/0.00 |
9c | 0.65/1.21 | 44.48/28.92 | 0.00/0.00 |
9d | 4.21/1.49 | 52.52/37.90 | 0.00/0.00 |
9e | 5.59/1.79 | 55.00/39.50 | 0.00/0.00 |
9f | 4.77/1.52 | 50.68/35.39 | 0.00/0.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tikhomolova, A.S.; Grinev, V.S.; Yegorova, A.Y. One-Pot Synthesis, E-/Z-Equilibrium in Solution of 3-Hetarylaminomethylidenefuran-2(3H)-ones and the Way to Selective Synthesis of the E-Enamines. Molecules 2023, 28, 963. https://doi.org/10.3390/molecules28030963
Tikhomolova AS, Grinev VS, Yegorova AY. One-Pot Synthesis, E-/Z-Equilibrium in Solution of 3-Hetarylaminomethylidenefuran-2(3H)-ones and the Way to Selective Synthesis of the E-Enamines. Molecules. 2023; 28(3):963. https://doi.org/10.3390/molecules28030963
Chicago/Turabian StyleTikhomolova, Alexandra S., Vyacheslav S. Grinev, and Alevtina Yu. Yegorova. 2023. "One-Pot Synthesis, E-/Z-Equilibrium in Solution of 3-Hetarylaminomethylidenefuran-2(3H)-ones and the Way to Selective Synthesis of the E-Enamines" Molecules 28, no. 3: 963. https://doi.org/10.3390/molecules28030963
APA StyleTikhomolova, A. S., Grinev, V. S., & Yegorova, A. Y. (2023). One-Pot Synthesis, E-/Z-Equilibrium in Solution of 3-Hetarylaminomethylidenefuran-2(3H)-ones and the Way to Selective Synthesis of the E-Enamines. Molecules, 28(3), 963. https://doi.org/10.3390/molecules28030963