Synthesis of Analogs to A-Type Proanthocyanidin Natural Products with Enhanced Antimicrobial Properties against Foodborne Microorganisms
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis of Analogs 1–7 and Their Antioxidant Activity
2.2. Antimicrobial Activity
3. Materials and Methods
3.1. Chemicals and Instruments
3.2. General Procedure A for the Synthesis of Flavylium Salts (13–16)
3.3. General Procedure B for the Synthesis of 2,8-Dioxabicyclo[3.3.1]nonane (1–7)
3.4. DPPH Radical-Scavenging Activity
3.5. Antimicrobial Activity
3.6. Minimal Inhibitory Concentration (MIC) Test
3.7. Checkerboard Titer Tests
3.8. Biofilm Formation Inhibition Assay
3.9. Disruption of Preformed Biofilm
3.10. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Novais, C.; Molina, A.K.; Abreu, R.M.V.; Santo-Buelga, C.; Ferreira, I.C.F.R.; Pereira, C.; Barros, L. Natural Food Colorants and Preservatives: A Review, a Demand, and a Challenge. J. Agric. Food Chem. 2022, 70, 2789–2805. [Google Scholar] [CrossRef]
- Sullivan, I. Proanthocyanidins. In Food Sources, Antioxidant Properties and Health Benefits; Nova Science Publishers: New York, NY, USA, 2015; p. 174. [Google Scholar]
- Li, X.; Liu, J.; Chang, Q.; Zhou, Z.; Han, R.; Liang, Z. Antioxidant and Antidiabetic Activity of Proanthocyanidins from Fagopyrum dibotrys. Molecules 2021, 26, 2417. [Google Scholar] [CrossRef] [PubMed]
- Shimura, T.; Sharma, P.; Sharma, G.G.; Banwait, J.K.; Goel, A. Enhanced anti-cancer activity of andrographis with oligomeric proanthocyanidins through activation of metabolic and ferroptosis pathways in colorectal cancer. Sci. Rep. 2021, 11, 7548. [Google Scholar] [CrossRef]
- Rauf, A.; Imran, M.; Abu-Izneid, T.; Iahtisham-Ul-Haq; Patel, S.; Pan, X.; Naz, S.; Sanches Silva, A.; Saeed, F.; Rasul Suleria, H.A. Proanthocyanidins: A comprehensive review. Biomed. Pharmacother. 2019, 116, 108999. [Google Scholar] [CrossRef] [PubMed]
- Tian, C.; Zhang, Z.; Wang, H.; Peng, Q.; Guo, Y.; Cui, C.; Liu, M. Response surface optimization and antioxidant activity of total proanthocyanidins fraction from Abutilon theophrasti Medic. leaves. Pak. J. Pharm. Sci. 2020, 33, 1511–1517. [Google Scholar] [PubMed]
- Ding, Z.; Mo, M.; Zhang, K.; Bi, Y.; Kong, F. Preparation, characterization and biological activity of proanthocyanidin-chitosan nanoparticles. Int. J. Biol. Macromol. 2021, 188, 43–51. [Google Scholar] [CrossRef] [PubMed]
- Asma, B.; Vicky, L.; Stephanie, D.; Yves, D.; Amy, H.; Sylvie, D. Standardised high dose versus low dose cranberry Proanthocyanidin extracts for the prevention of recurrent urinary tract infection in healthy women [PACCANN]: A double blind randomised controlled trial protocol. BMC Urol. 2018, 18, 29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bi, F.; Zhang, X.; Bai, R.; Liu, Y.; Liu, J.; Liu, J. Preparation and characterization of antioxidant and antimicrobial packaging films based on chitosan and proanthocyanidins. Int. J. Biol. Macromol. 2019, 134, 11–19. [Google Scholar] [CrossRef]
- Alejo-Armijo, A.; Glibota, N.; Frías, M.P.; Altarejos, J.; Galvez, A.; Ortega-Morente, E.; Salido, S. Antimicrobial and antibiofilm activities of procyanidins extracted from laurel wood against a selection of foodborne microorganisms. Int. J. Food Sci.Technol. 2017, 52, 679–686. [Google Scholar] [CrossRef]
- Alejo-Armijo, A.; Glibota, N.; Frías, M.P.; Altarejos, J.; Galvez, A.; Salido, S.; Ortega-Morente, E. Synthesis and evaluation of antimicrobial and antibiofilm properties of A-type procyanidin analogues against resistant bacteria in food. J. Agric. Food Chem. 2018, 66, 2151–2158. [Google Scholar] [CrossRef]
- Alejo-Armijo, A.; Salido, S.; Altarejos, J.; Parola, A.J.; Gago, S.; Basílio, N.; Cabrita, L.; Pina, F. Effect of methyl, hydroxyl, and chloro substituents in position 3 of 3′,4′,7-trihydroxyflavylium: Stability, kinetics, and thermodynamics. Chem. Eur. J. 2016, 22, 12495–12505. [Google Scholar] [CrossRef] [PubMed]
- Calogero, G.; Sinopoli, A.; Citro, I.; Di Marco, G.; Petrov, V.; Diniz, A.M.; Parola, A.J.; Pina, F. Synthetic analogues of anthocyanins as sensitizers for dye-sensitized solar cells. Photochem. Photobiol. Sci. 2013, 12, 883–894. [Google Scholar] [CrossRef]
- Alejo-Armijo, A.; Parola, A.J.; Pina, F.; Altarejos, J.; Salido, S. Thermodynamic stability of flavylium salts as a valuable tool to design the synthesis of A-type proanthocyanidin analogues. J. Org. Chem. 2018, 83, 12297–12304. [Google Scholar] [CrossRef]
- Kraus, G.A.; Yuan, Y.; Kempema, A. A convenient synthesis of type A procyanidins. Molecules 2009, 14, 807–815. [Google Scholar] [CrossRef] [Green Version]
- Alejo-Armijo, A.; Cuadrado, C.; Altarejos, J.; Fernandes, M.X.; Salido, E.; Díaz-Gavilán, M.; Salido, S. Lactate dehydrogenase A inhibitors with a 2,8-dioxabicyclo[3.3.1]nonane scaffold: A contribution to molecular therapies for primary hyperoxalurias. Bioorg. Chem. 2022, 129, 106127. [Google Scholar] [CrossRef]
- Wang, R.; Kalchayanand, N.; King, D.A.; Luedtke, B.E.; Bosilevac, J.M.; Arthur, T.M. Biofilm formation and sanitizer resistance of Escherichia coli O157:H7 strains isolated from “high event period” meat contamination. J. Food Prot. 2014, 77, 1982–1987. [Google Scholar] [CrossRef]
- Wang, R.; Schmidt, J.W.; Harhay, D.M.; Bosilevac, J.M.; King, D.A.; Arthur, T.M. Biofilm formation, antimicrobial resistance, and sanitizer tolerance of Salmonella enterica strains isolated from beef trim. Foodborne Pathog. Dis. 2017, 14, 687–695. [Google Scholar] [CrossRef] [PubMed]
- Wang, R. Biofilms and Meat Safety: A Mini-Review. J. Food Prot. 2019, 82, 120–127. [Google Scholar] [CrossRef] [PubMed]
- Adil, M.; Singh, K.; Verma, P.K.; Khan, A.U. Eugenol induced suppression of biofilm-forming genes in Streptococcus mutans: An approach to inhibit biofilms. J. Glob. Antimicrob. Resist. 2014, 2, 286–292. [Google Scholar] [CrossRef]
- Melo, A.S.; Colombo, A.L.; Arthington-Skaggs, B.A. Paradoxical growth effect of caspofungin observed on biofilms and planktonic cells of five different Candida species. Antimicrob. Agents Chemother. 2007, 51, 3081–3088. [Google Scholar] [CrossRef] [Green Version]
- Roy, R.; Tiwari, M.; Donelli, G.; Tiwari, V. Strategies for combating bacterial biofilms: A focus on anti-biofilm agents and their mechanisms of action. Virulence 2018, 9, 522–554. [Google Scholar] [CrossRef] [Green Version]
- Mevo, S.I.U.; Ashrafudoulla, M.; Furkanur Rahaman Mizan, M.; Park, S.H.; Ha, S.D. Promising strategies to control persistent enemies: Some new technologies to combat biofilm in the food industry—A review. Compr. Rev. Food Sci. Food Saf. 2021, 20, 5938–5964. [Google Scholar] [CrossRef] [PubMed]
- Moncada, M.C.; Parola, A.J.; Lodeiro, C.; Pina, F.; Maestri, M.; Balzani, V. Multistate/multifunctional behaviour of 4′-hydroxy-6-nitroflavylium: A write-lock/read/unlock/enable-erase/erase cycle driven by light and pH stimulation. Chem. Eur. J. 2004, 10, 1519–1526. [Google Scholar] [CrossRef]
- Pérez-Bonilla, M.; Salido, S.; van Beek, T.A.; Altarejos, J. Radical-scavenging compounds from olive tree (Olea europaea L.) wood. J. Agric. Food Chem. 2014, 62, 144–151. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Fuentes, M.A.; Ortega-Morente, E.; Abriouel, H.; Pérez-Pulido, R.; Gálvez, A. Isolation and identification of bacteria from organic foods: Sensitivity to biocides and antibiotics. Food Control. 2012, 26, 73–78. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing: Twenty-Fourth Informational Supplement; Document M100eS24, No. 3; CLSI: Wayne, PA, USA, 2015; Volume 34. [Google Scholar]
- Rukayadi, Y.; Lee, K.; Lee, M.-S.; Yong, D.; Hwang, J.-K. Synergistic anticandidal activity of xanthorrhizol in combination with ketoconazole or amphotericin B. FEMS Yeast Res. 2009, 9, 1302–1311. [Google Scholar] [CrossRef]
- Guo, N.; Wu, X.; Yu, L.; Liu, J.; Meng, R.; Jin, J.; Lu, H.; Wang, X.; Yan, S.; Deng, X. In vitro and in vivo interactions between fluconazole and allicin against clinical isolates of fluconazole-resistant Candida albicans determined by alternative methods. FEMS Immunol. Med. Microbiol. 2010, 58, 193–201. [Google Scholar] [CrossRef] [Green Version]
- Ulrey, R.K.; Barksdale, S.M.; Zhou, W.; van Hoek, M.L. Cranberry proanthocyanidins have anti-biofilm properties against Pseudomonas aeruginosa. BMC Complement. Altern. Med. 2014, 14, 499–511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Compound | EC50 (mmol Compound/mmol DPPH) |
---|---|
1 | 0.421 ± 0.02 |
2 | 0.304 ± 0.01 |
3 | 0.410 ± 0.01 |
4 | >12 |
5 | >12 |
6 | >12 |
7 | >12 |
Trolox | 0.245 ± 0.01 |
Analog | Concentration | UJA7m | UJA11c | UJA11e | UJA27g | UJA27q | UJA29o | UJA32j | UJA34f | UJA35h | UJA37p |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 1 mg/mL | 11 mm | 12 mm | ||||||||
2 | 1 mg/mL | 8 mm | 12 mm | 8 mm | |||||||
3 | 1 mg/mL | 8 mm | 8 mm | 8 mm | |||||||
4 | 1 mg/mL | 5 mm | 8 mm | 10 mm | 14 mm | 18 mm | 12 mm | 15 mm | 13 mm | 16 mm | 8 mm |
100 μg/mL | 12 mm | 10 mm | |||||||||
5 | 1 mg/mL | 8 mm | 8 mm | ||||||||
6 | 1 mg/mL | 8 mm | 16 mm | 7 mm | |||||||
7 | 1 mg/mL | 8 mm | 11 mm | 8 mm |
(a) | ||||||||||||
Analog | UJA7m | UJA11c | UJA11e | UJA27g | UJA27q | UJA29o | UJA32j | UJA34f | UJA35h | UJA37p | UJA40k | UJA40l |
1 | a | a | a | 1000 | 50 | a | a | 10 | 50 | a | a | a |
2 | a | a | a | a | 50 | a | a | 10 | 50 | 1000 | a | a |
3 | a | a | a | 10 | 50 | a | a | 50 | 50 | a | a | a |
4 | 50 | 50 | 50 | 10 | 50 | 1000 | 100 | 50 | 50 | 50 | 1000 | 1000 |
5 | a | a | a | 10 | a | a | a | 10 | 50 | 1000 | a | a |
6 | a | a | a | 10 | 10 | a | a | 10 | 10 | a | a | a |
7 | a | a | 1000 | 10 | 10 | a | 1000 | 10 | 10 | a | 1000 | 1000 |
(b) | ||||||||||||
Analog | S. aureus CECT 828 | S.aureus CECT 976 | ||||||||||
1 | a | a | ||||||||||
2 | 50 | 50 | ||||||||||
3 | a | a | ||||||||||
4 | 50 | a | ||||||||||
5 | a | a | ||||||||||
6 | a | a | ||||||||||
7 | 50 | a |
Analog | Inhibition of Biofilm Formation of at Least 75% |
---|---|
1 | UJA7m (10 µg/mL, 1 µg/mL, 0.1 µg/mL, 0.01 µg/mL) UJA11c (10 µg/mL, 1 µg/mL, 0.1 µg/mL, 0.01 µg/mL) UJA11e (10 µg/mL, 1 µg/mL, 0.1 µg/mL, 0.01 µg/mL) UJA27g (10 µg/mL, 1 µg/mL, 0.1 µg/mL, 0.01 µg/mL) UJA27q (10 µg/mL, 1 µg/mL, 0.1 µg/mL, 0.01 µg/mL) UJA29o (10 µg/mL, 1 µg/mL, 0.1 µg/mL, 0.01 µg/mL) UJA32j (0.1 µg/mL, 0.01 µg/mL) UJA34f (10 µg/mL, 1 µg/mL, 0.01 µg/mL) UJA35h (10 µg/mL, 0.01 µg/mL) UJA37p (10 µg/mL, 1 µg/mL, 0.1 µg/mL, 0.01 µg/mL) UJA40k (10 µg/mL, 1 µg/mL) UJA40l (10 µg/mL, 1 µg/mL, 0.1 µg/mL) |
2 | UJA7m (0.01 µg/mL) UJA11c (10 µg/mL, 1 µg/mL, 0.1 µg/mL, 0.01 µg/mL) UJA11e (1 µg/mL, 0.1 µg/mL) UJA27g (1 µg/mL, 0.01 µg/mL) UJA27q (1 µg/mL, 0.1 µg/mL, 0.01 µg/mL) UJA29o (1 µg/mL, 0.1 µg/mL, 0.01 µg/mL) UJA32j (10 µg/mL, 1 µg/mL, 0.1 µg/mL, 0.01 µg/mL) UJA34f (0.1 µg/mL) UJA35h (1 µg/mL, 0.1 µg/mL, 0.01 µg/mL) UJA37p (10 µg/mL) UJA40k (10 µg/mL, 0.1 µg/mL) Staphylococcus aureus CECT 828 (10 µg/mL) Staphylococcus aureus CECT 976 (10 µg/mL) |
3 | UJA7m (1 µg/mL) UJA11c (0.1 µg/mL, 0.01 µg/mL) UJA11e (1 µg/mL, 0.1 µg/mL, 0.01 µg/mL) UJA 27g (0.01 µg/mL) UJA 27q (0.01 µg/mL) UJA32j (10 µg/mL, 1 µg/mL, 0.1 µg/mL, 0.01 µg/mL) UJA34f (0.01 µg/mL) UJA35h (1 µg/mL, 0.1 µg/mL, 0.01 µg/mL) UJA37p (1 µg/mL, 0.01 µg/mL) UJA40l (10 µg/mL) |
4 | UJA7m (0.01 µg/mL) UJA11c (0.1 µg/mL) UJA11e (0.01 µg/mL) UJA29o (0.01 µg/mL) UJA32j (0.01 µg/mL) UJA34f (10 µg/mL, 0.1 µg/mL, 0.01 µg/mL) UJA35h (10 µg/mL, 0.01 µg/mL) UJA37p (10 µg/mL) UJA40k (0.01 µg/mL) UJA40l (1 µg/mL, 0.1 µg/mL) |
5 | UJA7m (10 µg/mL) UJA11c (10 µg/mL) UJA11e (1 µg/mL) UJA27g (1 µg/mL) UJA27q (1 µg/mL) UJA29o (0.1 µg/mL, 0.01 µg/mL) UJA35h (1 µg/mL, 0.1 µg/mL, 0.01 µg/mL) UJA37p (0.1 µg/mL, 0.01 µg/mL) UJA40l (0.01 µg/mL) |
6 | UJA7m (10 µg/mL, 1 µg/mL, 0.01 µg/mL) UJA11c (10 µg/mL, 1 µg/mL) UJA11e (10 µg/mL, 1 µg/mL, 0.01 µg/mL) UJA27q (10 µg/mL, 0.01 µg/mL) UJA29o (0.01 µg/mL) UJA34f (0.1 µg/mL, 0.01 µg/mL) UJA35h (1 µg/mL, 0.1 µg/mL) UJA37p (10 µg/mL, 0.01 µg/mL) UJA40l (1 µg/mL, 0.1 µg/mL, 0.01 µg/mL) |
7 | UJA7m (10 µg/mL, 0.1 µg/mL) UJA11c (0.01 µg/mL) UJA27g (0.01 µg/mL) UJA27q (0.01 µg/mL) UJA29o (0.1 µg/mL) UJA32j (10 µg/mL, 0.01 µg/mL) UJA34f (10 µg/mL, 1 µg/mL, 0.1 µg/mL, 0.01 µg/mL) UJA35h (10 µg/mL, 0.01 µg/mL) UJA37p (10 µg/mL, 0.01 µg/mL) UJA40l (10 µg/mL, 1 µg/mL, 0.1 µg/mL, 0.01 µg/mL) Staphylococcus aureus CECT 828 (10 µg/mL, 0.01 µg/mL) |
Analog | Disruption of at Least 75% of Preformed Biofilms |
---|---|
1 | UJA29o (0.01 µg/mL) UJA32j (0.1 µg/mL, 0.01 µg/mL) UJA34f (10 µg/mL) UJA35h (10 µg/mL, 1 µg/mL, 0.1 µg/mL, 0.01 µg/mL) UJA37p (0.01 µg/mL) UJA40l (0.1 µg/mL) |
2 | UJA7m (10 µg/mL, 0.1 µg/mL, 0.01 µg/mL) UJA11c (1 µg/mL, 0.1 µg/mL, 0.01 µg/mL) UJA11e (10 µg/mL, 1 µg/mL, 0.1 µg/mL, 0.01 µg/mL) UJA27g (10 µg/mL, 1 µg/mL, 0.1 µg/mL, 0.01 µg/mL) UJA27q (10 µg/mL, 0.01 µg/mL) UJA29o (10 µg/mL, 0.01 µg/mL) UJA32j (10 µg/mL, 1 µg/mL, 0.01 µg/mL) UJA35h (10 µg/mL, 0.1 µg/mL, 0.01 µg/mL) UJA37p (0.01 µg/mL) UJA40k (0.01 µg/mL) UJA40l (10 µg/mL, 1 µg/mL, 0.1 µg/mL, 0.01 µg/mL) Staphylococcus aureus CECT 976 (10 µg/mL, 0.01 µg/mL) |
3 | UJA11c (10 µg/mL, 1 µg/mL, 0.1 µg/mL, 0.01 µg/mL) UJA11e (0.1 µg/mL, 0.01 µg/mL) UJA27g (10 µg/mL) UJA32j (0.1 µg/mL, 0.01 µg/mL) UJA34f (0.01 µg/mL) UJA37p (1 µg/mL) UJA40k (1 µg/mL, 0.1 µg/mL) UJA40l (10 µg/mL, 0.1 µg/mL, 0.01 µg/mL) |
4 | UJA7m (10 µg/mL, 0.1 µg/mL, 0.01 µg/mL) UJA11c (1 µg/mL, 0.1 µg/mL, 0.01 µg/mL) UJA11e (10 µg/mL, 1 µg/mL) UJA27g (10 µg/mL, 1 µg/mL, 0.1 µg/mL) UJA27q (10 µg/mL, 1 µg/mL, 0.01 µg/mL) UJA29o (1 µg/mL, 0.1 µg/mL) UJA32j (1 µg/mL, 0.1 µg/mL, 0.01 µg/mL) UJA34f (0.1 µg/mL, 0.01 µg/mL) UJA40k (0.01 µg/mL) UJA40l (10 µg/mL, 1 µg/mL, 0.1 µg/mL) |
5 | UJA7m (1 µg/mL, 0.01 µg/mL) UJA11c (0.1 µg/mL, 0.01 µg/mL) UJA11e (1 µg/mL, 0.1 µg/mL, 0.01 µg/mL) UJA27g (0.01 µg/mL) UJA27q (1 µg/mL, 0.1 µg/mL) UJA32j (10 µg/mL, 1 µg/mL, 0.1 µg/mL, 0.01 µg/mL) UJA34f (1 µg/mL) UJA35h (1 µg/mL) UJA37p (10 µg/mL) UJA40k (10 µg/mL) UJA40l (10 µg/mL, 1 µg/mL, 0.01 µg/mL) |
6 | UJA11c (10 µg/mL, 0.1 µg/mL) UJA11e (10 µg/mL, 0.1 µg/mL) UJA27g (0.1 µg/mL) UJA29o (0.1 µg/mL, 0.01 µg/mL) UJA34f (1 µg/mL, 0.1 µg/mL) UJA35h (0.1 µg/mL, 0.01 µg/mL) UJA37p (10 µg/mL, 1 µg/mL, 0.01 µg/mL) UJA40l (10 µg/mL) |
7 | UJA7m (0.01 µg/mL) UJA11c (0.01 µg/mL) UJA11e (0.1 µg/mL, 0.01 µg/mL) UJA27g (0.1 µg/mL, 0.01 µg/mL) UJA29o (0.1 µg/mL) UJA32j (0.1 µg/mL, 0.01 µg/mL) UJA34f (1 µg/mL, 0.1 µg/mL) UJA35h (1 µg/mL, 0.01 µg/mL) UJA37p (0.01 µg/mL) |
Strains from Type Culture Collections | Resistant Strains from Organic Foods |
---|---|
Salmonella enterica CECT 915 | Bacillus cereus UJA 27q |
Salmonella enterica CECT 4300 | Enterococcus casseliflavus UJA 11e |
Escherichia coli CCUG 47553 | Enterococcus faecalis UJA 27t |
Escherichia coli CCUG 47557 | Enterococcus faecium UJA 11c |
Staphylooccus aureus CECT 828 | Staphylooccus aureus UJA 34f |
Staphylooccus aureus CECT 976 | Staphylooccus saprophyticus UJA 27g |
Staphylooccus aureus CECT 4465 | Lactobacillus casei UJA 35h |
Listeria monocytogenes CECT 4032 | Enterobacter sp. UJA 37p |
Pantoea agglomerans UJA 7m | |
Pantoea agglomerans UJA29o | |
Klebsiella terrigena UJA 32j | |
Salmonella sp. UJA 40k | |
Salmonella sp. UJA 40l |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cobo, A.; Alejo-Armijo, A.; Cruz, D.; Altarejos, J.; Salido, S.; Ortega-Morente, E. Synthesis of Analogs to A-Type Proanthocyanidin Natural Products with Enhanced Antimicrobial Properties against Foodborne Microorganisms. Molecules 2023, 28, 4844. https://doi.org/10.3390/molecules28124844
Cobo A, Alejo-Armijo A, Cruz D, Altarejos J, Salido S, Ortega-Morente E. Synthesis of Analogs to A-Type Proanthocyanidin Natural Products with Enhanced Antimicrobial Properties against Foodborne Microorganisms. Molecules. 2023; 28(12):4844. https://doi.org/10.3390/molecules28124844
Chicago/Turabian StyleCobo, Antonio, Alfonso Alejo-Armijo, Daniel Cruz, Joaquín Altarejos, Sofía Salido, and Elena Ortega-Morente. 2023. "Synthesis of Analogs to A-Type Proanthocyanidin Natural Products with Enhanced Antimicrobial Properties against Foodborne Microorganisms" Molecules 28, no. 12: 4844. https://doi.org/10.3390/molecules28124844
APA StyleCobo, A., Alejo-Armijo, A., Cruz, D., Altarejos, J., Salido, S., & Ortega-Morente, E. (2023). Synthesis of Analogs to A-Type Proanthocyanidin Natural Products with Enhanced Antimicrobial Properties against Foodborne Microorganisms. Molecules, 28(12), 4844. https://doi.org/10.3390/molecules28124844